Formal Methods in Software Development Resume of the 20/11/2019 lesson

Igor Melatti

1 Symbolic Model Checkers: NuSMV

- From a NuSMV model \mathcal{M} (defined with the ASSIGN section) to the corresponding Kriepke structure $M = (S, S_0, R, L)$
 - $-V = \langle v_1, \ldots, v_n \rangle$ is the set of variables defined inside the main module of \mathcal{M} , with domains $\langle D_1, \ldots, D_n \rangle$
 - * note that each D_i may be the instantiation of other modules
 - * in which case, again, all variables must be considered as unfolded
 - * that is, if a variable v is the instantiation of a module with k variables, then v counts as k variables instead of one
 - * if one of such k variables is another instantiation, this procedure must be recursively repeated
 - * NuSMV calls this operation *hierarchy flattening*
 - * essentially, it is the same as for records in Murphi
 - * simple types are the recursion base step
 - $-S = D_1 \times \ldots \times D_n$ (as in Murphi)
 - $-S_0$ is defined by looking at init predicates
 - * $s \in S_0$ iff, for all variables $v \in V$, $s(v) \in init(v)$
 - * if init(v) is not specified in \mathcal{M} , then any value for v is ok
 - * formally, if $s \in S_0$, then also $s' \in S_0$ being $s'(v') = s(v') \forall v' \neq v$
 - -R is defined by looking at **next** predicates
 - * we assume all next predicates to be defined by the case construct (if not, simply assume it is the case construct with just one TRUE condition)
 - * for each (flattened) variable v, we name $g_1(v), \ldots g_{k_v}(v)$ the conditions (guards) of the case for next(v), and $a_1(v), \ldots a_{k_v}(v)$ the resulting values (actions) of the case for next(v)
 - * note that, by NuSMV syntax, each $a_i(v)$ is actually a set (possibly a singleton)

- * $(s, s') \in R$ iff, for all variables $v \in V$, if $g_i(s(v)) \land \forall j < i \neg g_j(s(v))$ then $s'(v) \in a_i(v)$
- * that is, s may go in s' iff, for all variables v, if the values of v in s satisfy the guard g_i (and none of the preceding guards for the same variable), then the value of v in s' is one of the values specified by the **case** for guard g_i
- $AP = \{(v = d) \mid v = v_i \in V \land d \in D_i\}$
- $(v = d) \in L(s)$ iff variable v has value d in s
- If, instead, the NuSMV model \mathcal{M} is defined with the TRACS section, then
 - $-V = \langle v_1, \ldots, v_n \rangle$ is the set of variables as above and $S = D_1 \times \ldots \times D_n$
 - $-S_0$ is defined by looking at INIT section
 - * $s \in S_0$ iff, for all variables $v \in V$ and for all INIT sections I, I(s(v)) holds
 - -R is defined by looking at TRANS section
 - * $(s, s') \in R$ iff, for all variables $v \in V$ and TRANS sections T, T(s(v), s'(v)) holds