Formal Methods in Software Development
Resume of the 30/10/2019 lesson

[gor Melatti and Ivano Salvo

1 SPIN Verification Algorithm (PAN): Opti-
mizations

e States compression

e Byte masking

— similar to Murphi bit compression

— in PAN, the current state vector now is essentially a concatenation of
C structures, each representing a processes

— byte masking works by aligning each of such structures to each byte,
instead of each 4 bytes (word) as it would be by default with C
compiler

— this is really simple, PAN does this by default (to disable it, you have
to compile PAN with ~-DNOCOMP)

— not very effective
e Collapse compression

— not present in Murphi, as it is closely related to processes; requires
compilation of PAN with -DCOLLAPSE

— it exploits the Promela models structure
— the idea is to separately storing:
* processes state (program counter + local variables)

- each process separated from the others, but if you compile
PAN with -DJOINPROCS then they will be put together

* channels state

- all together, but you could store them separately by compling
PAN with -DSEPQS

* global variables values

— for each of such fragments, an index is generated



— finally, a PAN (complete) state is stored as a vector of indices, which
tells how the fragments above must be combined to obtain the com-
plete state

— of course, this works well if there are many combinations of few frag-
ments
% e.g., this may happen if there are n instances of the same proc-
type
— in order to check if a (complete) state is already visited or not, PAN
does the following
1. split s in fragments
* there will be p 4+ ¢ + g fragments

* note that p = 1 with -DJOINPROCS, g = 1 by default unless
-DSEPQS, and g = 1 (global variables are always together)

2. for each fragment f, PAN checks if f is in the hash table

3. if not, the state is of course not already visited; a new unique
identifier for f is generated and stored together with f

* simply a counter: the i-th generated fragment (within the
same fragment category) has identifier ¢ — 1

4. otherwise, the unique identifier is returned

5. finally, s is stored as the list of unique identifiers collected pre-
viously

e Hash compaction

— as in Murphi
— compile PAN with -DHCn for n-bytes signatures; default is 2 bytes

e Minimized Automaton

— kind of hybrid technique between explicit and implicit model checking

— that is, it is explicit model checking with some ideas from implicit
one

— with this technique, no hash table is required

— it is replaced by a minimized automaton which recognizes visited
states

— of course, states are viewed as sequences of bits

— in fact, you can always write the set of visited states as a regular
expression on their single bits

x at the worst, as an OR of visited states, each of whom is the
AND of its bits

% this would probably result in a memory occupation which is
higher that the standard hash table



* however, usually this worst case does not occur, and a reduction
in the RAM requirements is achieved by simplifying the regu-
lar expression with the recognizing automaton, using standard
formal language techniques

hence, if the regular expression is “regular” enough, the minimized
automaton requires less RAM than the hash table

generally speaking, in order to perform explicit model checking, the
following operations must be allowed:

1. return 1 if a given state s has already been visited, and 0 other-
wise

2. insert a new state in the old set of visited states, and return the
new set of visited states

this was straightforward with the hash table

with the automaton, operation 1 is still straightforward, operation 2
is not

% it is necessary to modify the current automaton, by adding
and/or deleting nodes and/or edges

to this aim, SPIN uses an ad-hoc structure representing a limited
regular expression (recall that states are finite) and implementing
sufficiently well operations 1 and 2

that is, a deterministic automaton with k levels is used, being k the
maximum length of a state representation

% such an automaton does not have cycles
see spin_minaut.pdf
the minimized automaton may be well combined with collapse com-
pression
in this case, an hash table is brought back, but only to contain states
fragments

identifiers vectors are stored with the minimized automaton

e PAN also efficiently implement the DFS stack through the stack cycling
technique

the DFS stack is only accessed sequentially; no random access
thus, it is ok to store the stack on disk

a finite-length M portion is kept in RAM, holding the currently
needed stack

that is, once push and pop operations require to access to a stack
portion which is outside RAM, that part is fetched from the disk

the block taken from the disk has size %, in order to avoid going
back and forth on the disk due to sequences pop-push-pop-push...



RAM

DISK

Figure 1: Situazione per lo stack cycling



— see Figure 1, and suppose pushes are towards the top (from 0 to
M — 1), whilest pops are towards the bottom

— if a push over k£ — 1 is made, more memory is required, and such
(clean) memory is fetched from the disk

— in order to do this, the part labelled b is stored in some disk zone
(e.g., that highlighted with an asterisk in Figure 1)

— then, b may be overwritten by copying a in it

— on the other end, now a is free, and push may be executed starting

k
from 3

— for pops, the idea is symmetric; this time, fetching a disk zone does
not bring a cleared memory buffer, but a part of stack which was
stored in the disk previously (as a consequence of former too many
pushes)

e All this techniques allow to save memory, when storing the same set of
visited states

e It is difficult to tell which method is good for a given Promela model; you
can only go for trial and errors

— i.e., if a method exhaust all available RAM, you try with the following
one

e SPIN and PAN also implement a strategy which reduces the number of
visited states themselves: the partial order reduction (POR)

— similar to Murphi symmetry reduction, in the sense that the goal is
the same

— however, in Murphi symmetry reduction the modeler is aware of such
technique (some variables types such as multiset have to be used)

— in SPIN, POR is applied to nearly all Promela models automatically,
with very few execptions

— the idea for POR is that not all possible interleavings of currently
running processes in Promela have to be considered in order to verify
the given property

— this allows to lower down the number of states to be visited
— from Figure 2 to Figure 3

— not always applicable: the “diamond” case must be present (see
states with X in Figure 2)

% that is, the order of executing two given instructions must be
irrelevant

— some conditions which guarantee actions independence are in
spin_por.pdf, pages 2 and 3



Figure 2: Typical interleaving case

Figure 3: Typical interleaving reduction



— POR is always active in PAN, unless you compile with ~-DNOREDUCE

% in some cases it is not applicable, e.g., when both fairness and
synchronous channels are used

2 SPIN and LTL
e How to use SPIN to verify LTL formulas

— not very user-friendly, not even with the graphical user interface

— it is necessary to first generate the Biichi automaton (as a never
claim) for the desired LTL formula and then manually attach to the
Promela file

— anever claim is a special proctype containing the Promela description
of the Biichi automaton corresponding to the negation of the desired
LTL formula

* SPIN will try to find a path satisfying such negation, and such
a path, if it exists, will be the counterexample...

— moreover, atomic propositions in LTL formulas must be defined using
define macros beginning with a capital letter

— may be generated also from the command line with option -f (re-
quiring the actual formula, enclosed in single apexes) or -F (requiring
the name of a file containing the actual formula, in one line only)

x see exp.script; both log files contain an error!

* this notwithstanding I am verifying a formula ¢ first, and then
P

x this may be happen in LTL!

x in fact, as LTL model checking problem requires, PAN checks
that all paths satisfy the given formula

* among all possible paths in a Kriepke structure, there may be
two paths s.t. m # m and 71 | ¢ and m JE o =M E e
* thus:
- 3m 7 £ p, hence M £ ¢
- 31 7 £ —p, hence M B —p
 of course, if M = ¢, then M B —p
* for a visual representation see slide 3 of timo5.pdf

— in order to verify ¢ from the command line, it is necessary to generate
= and append it to the Promela description

— it is sufficient to prefix a ! enclosing the whole ¢

— using the GUI, the formula may be created with buttons, and defines
may be not put in the file



never { /x V([0 (p U @) %/

TO_init:
if
(! ((@))) —-> goto accept_S4
(r ((P)) && ' ((q))) -> goto accept_all
(1) -> goto TO_init
fi;
accept_S4:
if
(! ((@))) -> goto accept_S4
(r ((p)) && ! ((q@))) -> goto accept_all
fi;
accept_all:
skip
}

Figure 4: Neverclaim generated by SPIN for LTL formula ¢ = G(p U q)
1

Figure 5: Automa di Biichi ricavato dalla figura 4

— it is also possible to specify either the desired or the undesired be-
havior
— in the first case, the negation of the given formula will be generated
— in order to check the generated never claim also writes as a comment
the formula used
— example: p = G(p U q)
— with spin -f *!([1 (p U @))’ Figure 4 is obtained
— the corresponding Biichi automaton is in Figure 5
* the last transition in the rightmost state is automatically in-
serted, as it is not present in the neverclaim
* automaton in Figure 5 encodes all possible counterexamples to
given ¢
* in fact, if the verification finds a path satisfying a neverclaim, it
returns it as a counterexample




% in particular, all paths that eventually satisfy —p A —¢ are sent
in accepting states

e SPIN and PAN are good in combining POR and LTL, see spin_por.pdf

a is an “observable action”, if a is executed, then same edge in the
Biichi automaton will change validity

e.g., if an edge is labelled with p = (v ==0) and a := (v = 1)...
if an edge is labelled with 1 (i.e., true) all actions are non-observable

thus, a “safe” action oes not change the value of variables in the
Biichi automaton

Figures from la to le of spin_por.pdf; note that dfs # Dfs
one step each: Biichi automaton and Kripke structure

dfs is for Kriepke, Dfs for neverclaim

they call each other

POR onyl applied to Kriepke

neverclaim is just one process, POR is useless

Figure 1d: acceptance cycles

after having reached an accepting state in the neverclaim...

* labelled with something beginning with accept

* an accepting state is actually a final state for the Biichi automa-
ton

. a cycle has been closed starting a new DFS from the accepting
state

i.e., the current path 7 (leading to the accepting state) has a cycle
with an accepting state

thus, 7 is a word in the language accepted by the automaton



