Formal Methods in Software Development
Resume of the 23/10/2019 lesson

Igor Melatti and Ivano Salvo

1 The SPIN model checker

e Each statement may have a label (e.g. again in Figure 1)

— if the label begins with “end”, then it is a valid end-state

— an end-state is valid if it has an “end” label or if it consists of the
closing brackets of a process

— any other state from which it is not possible to execute a transition
triggers a verification error, claiming a deadlock has been found

e Examples in Figures 1 and 2

e SPIN execution model

— processes statements are executed in interleaving as in modern oper-
ating systems

— it is possible to specify a statement block not to be interrupted by
other processes: atomic and d_step

— see Figure 3, which contains some simplifications

— e.g., it could be possible to have non-determinism in atomic blocks
too

— compare with Murphi execution model
e SPIN state: values of both global and local variables and channels, plus
program counters of all running processes

e Again, we try to define the Kripke structure M = (S, Sy, R, L) corre-
sponding to a given Promela model

— S=Dyx...XDpx{l,...,. My} x...x{1,..., M}

x here we are assuming n (flattened) local and global variables,
including channels

/% Peterson’s solution to the mutual exzclusion problem - 1981 */

/% global wvars (initialized to 0) */

bool turn, flagl(2]; /* was § in Murphi */

byte ncrit;

/% note that the P array in Murpht its not needed: program counters
are already automatically handled... */

active [2] proctype user ()

{
assert (_pid == 0 || _pid == 1);

again:
flagl_pid]l = 1; /* process communication via shared memory */
turn = _pid;
(flagl[1 - _pidl]

0 Il turn == 1 - _pid);

ncrit++;
assert (ncrit == 1); /% critical section */
ncrit--;

flagl[_pid]l = 0;
goto again

Figure 1: Peterson protocol

#define p 0
#define v 1

/* zero dimension channel: rendez-vous */
chan sema = [0] of { bit };

proctype dijkstra()
{ byte count = 1; /* initialized local wariable */

do
(count == 1) ->
sema!p; /* send 0 and blocks, unless some other proc is
already blocked in reception */

count = 0

(count == 0) ->

sema?v; /* receive 1, same as above */
count = 1

od
}

proctype user ()
{ do
sema?p; /* wait for dijkstra process to send 0, unless
it was already sent */
/* critical section */
semal!v; /* send 1 to dijkstra ("I finished") */
/% mon-critical section */
od

init

{ run dijkstra();
run user () ;
run user () ;
run user ()

Figure 2: Dijkstra protocol

/% Make a random walk in the NFSS described by SD */
void Make_a_run(SpinDescription SD)

{
/* only one initial state */
s := all non-initialized global variables are 0, all channels are
empty;

foreach active proctype p in SD
add p as a running process in s with p.pc=1;
if (SD contains the init process)
add init as a running process in s with init.pc=1;
s_current := s;
while (1) { /* loop forever (unless an error occurs) */
if (3 running process p in s_current s.t. p.pc is in an atomic

block)

may_be_exec := statement istr at p.pc;
else {

may_be_exec := @;

/% we do not deal with the rendez-vous communications */
foreach running process p in s_current {
foreach statement istr at p.pc {
/% "pc" 4s the process program counter */
if (istr is executable in s_current)

may_be_exec = may_be_exec U istr;
}r 3
if (may_be_exec = ()
error "Deadlock"; /* other errors may be checked */
istr := pick at random a statement in may_be_exec;
s_next := execute(s_current, istr);
s_current := s_next;

} /* while */
} /* Make_a_run() */

Figure 3: SPIN execution model

* we also assume there are k£ running processes, with process i
having M; statements inside it

* if a D; corresponds to short or int, then it has 2'6 or 232 values
on a typical 64-bit architecture, as it is in C

* a channel is essentially an array of structures

* SPIN does not have a special value for “undefined” (as Murphi
has), but L is needed for the local variables still not reached by
the program counter

* indeed, this state space is dynamic, as it contains the currently
TUNNING processes

* new processes may be added at any time by a run statement

* thus, the state space cannot be defined in advance as it is with
Murphi; this is only possible when only active proctypes are
used, without run commands

% even in this case, it is possible to some local variables definition is
still not reached by the process program counter, and thus they
actually don’t exist...

— |I| =1, see Figure 3

— R is intuitively defined as follows (also check Figure 3): R(s, s’) holds
iff there is a running process p in s and an executable statement ¢
at the current program counter of p (recall that the program counter
for all processes is stored in s) s.t. ¢, when executed, leads from s to

S,

x if ¢ is the beginning of an atomic sequence, then the whole atomic
sequence must be executed

* till the first blocking statement of the sequence

% if ¢t is a send on an empty channel ¢, and there is another current
statement ¢’ in another process p’ (i.e., the value of the program
counter of p’ in s identifies ¢’ as the next statement to be executed
for p’ in s) s.t. t’' is a receive on ¢, both ¢ and ¢ have to be
executed when leading from s to s’

— L is similar to Murphi, i.e., equations between (global and local) vari-
ables and values; however, also program counters must be considered

2 SPIN Verification Algorithm

e Able to answer to the following questions: is there a deadlock (invalid end
state)? are there reachable assertions which fail (safety)? is a given LTL
formula (safety or liveness) ok in the current system?

e Similar to Murphi:

1. the SPIN compiler (SrcXXX/spin -a) is invoked on model.prm and
outputs 5 files, pan.c, pan.h, pan.m, pan.b, pan.t (unless there are
errors...)

2. the 5 files given above are compiled with a C compiler; in this way,
an executable file model is obtained; it is sufficient to compile pan.c,
which includes all other files;

3. just execute model (option -h gives an overview of all possible op-
tions)

e PAN: Protocol ANalyzer

— pan. [ch] is the fixed part of the verifier, it implements a DFS (also
BFS starting from some later version, but less efficient), it also in-
cludes the other files

— pan.mn is the part of the verifier which depends on the Promela model:
it contains a C switch statement implementing the transition rela-

tion

*

*

very similar to Murphi Code implementing a rule body

given the current state, saved in a memory buffer called now
and very similar to the Murphi’s workingstate, given a running
process index ¢ and the program counter p inside that process,
it performs on now the modifications demanded by the Promela
statement at line 7 of process p, so obtaining the next state

of cours, it takes into account special cases such that atomic
sequences and synchronuous communications

— pan.b: the same of pan.m, but backwards!

*

actually, pan.m does not surprise and it is not conceptually dif-
ficult to understand and implement

implementing the same backwards is not straightforward, but
SPIN does it!

essentially, all Promela instruction may be reversed, and the code
to reverse them is in pan.b

essentially, PAN maintains old values for all variables in the state
(i.e., values are saved before overwriting due to new assignments)
thanks to the fact that the visit is a DFS (SPIN is optimized for
DFS), it is only needed to maintain the last values, thus a stack
for each variable is used for this purpose

— pan.t creates a table with an entry for each statement in the source
Promela model; for each statement, the corresponding values to ex-
ecute the forward and backward in pan. [bm] are stored (needed for
simulations and counterexamples)

e On-the-fly exploration: as in Murphi, the RAM contains only the part of
the graph which has been explored till now

— only the states, no transitions between them

e Hash table for the visited states
— Murphi uses open addressing, here the hash table is handled with
collision lists
— in order to speed up visited states check, such lists are ordered (i.e.,

each new state is inserted in order)

o We already said that SPIN uses a DFS instead of Murphi BF'S; so one could
think to something such as Figure 4, i.e.; a recursive implementation

e This is not what it is done by SPIN, as it is meant to be implemented in
the most efficient way

e Thus, instead of using the standard implicit (and not efficient) call stack
as in Figure 4, we have an ultra-light explicit stack

— recall that Murphi had a queue, since a BFS is performed

e Moreover, recursion is simulated with C goto statements! Also global
variables are widely used

e This leads us to the DFS in Figure 5, which is closer to what SPIN actually
does

DFS(graph G = (V,E), node v)
{
Visited := Visited U w;
foreach v' €V t.c. (v,v')€E {
if (v ¢ Visited)
DFS (G, v');

Figure 4: Standard recursive DF'S
e However, we still need one more element to be added to Figure 5: namely,
the stack does not store states

e Instead, each stack entry only stores a pair (p,o) of indices (integers)

— pis a process pid
— o identifies a statement at the current program counter of p

— (recall that there may be non-determinism inside each process...)

e The rational behind this is the following

DFS(graph G = (V,E))

{
s := init; i := 1; depth := 0;
push(s, 1);
Down:
if (s € Visited)
goto Up;
Visited := Visited U s;
let V'={v'|(v,v') € E};
if (V'] >= i) {
t := i-th element in V’;
increment i on the top of the stack;
push(t, 1);
depth := depth + 1;
goto Down;
}
Up:
(s, i) := pop(Q);
depth := depth - 1;
if (depth > 0)
goto Down;
}

Figure 5: DFS with gotos and explicit stack

— there is just one initial state

— let (po,00) be the first (from the bottom) pair on the stack; it univo-
cally identifies a statement istry to be executed

— by applying istrg to sy we obtain a state s; (formally,
s1 =apply(so, po; 00))

— analoguously, so =apply(s1,p1,01) if (p1,01) is the second pair on
the stack

— thus, a stack ((po,00),...,(pd,0q4)) univocally identifies a state sq,
obtained by chaining the executions due to pairs (p;, 0;)
— formally, V1 < i < d s; =apply(si—1,Pi—1,0i—1)
— moreover, SPIN is able to define the undo function, with the same
parameters of the apply function
x of course, apply is defined in pan.m, undo in pan.b
+ undo needs a stack of values for each variable, as explained above

* however, it tries to minimise such stacks usage; e.g., if a ¢ = ¢
+ 2 statement must be undone, then it is sufficient to execute c
=c-2

x for direct assigments (e.g., ¢ = 4), the apply function puts the
preceding values of v in the stack of v before overwriting it with
4

* undo will pop the value from the stack of v and put it back in v
* this works because the whole visit is a DFS

— finally, recall we have a global fixed structure now implementing the
current state (same as Murphi’s workingstate)

— summing up, given what we said (Figure 6):

* no need of pushing a whole state s in the DFS stack: SPIN
pushes the pair (p, o) which generates s if applied to the current
state

* no need of popping a state s: SPIN pops the pair (p,0) which
generates s if undone on the current state

e Finally, ch13.pdf adds some more details

— atomic sequences handling:
x if we are inside an atomic sequence, SPIN must take care that
only the current process can execute

* this is done by setting From = To = II (line 44), which forces
the for loop in line 24 to oly select the current process

* normal behaviour is reprised at line 46

* a state may be searched and possibly inserted in the hash table
(line 13) only if we are not in an atomic sequence

DFS (NFSS N)
{
let N =(S,{q}, A next,L);
now := init; depth := 0;
Down:
if (now € Visited)
goto Up;
Visited := Visited U now;
foreach p s.t. p is a running process in now {
foreach opt s.t. opt is enabled at p.pc {
now := apply(now, p, opt);
/* no need of incrementing opt on the top of the
stack: when
popping, tt will be dome by the for omn opt...
*/
push(p, opt);
depth := depth + 1;
goto Down;
Up:
(p, opt) := pop();
depth := depth - 1;
now := undo(now, p, opt);
3
if (depth > 0)
goto Down;

Figure 6: SPIN DFS

10

— timeout handling:

% it is a Promela boolean expression, which is true iff the whole sys-
tem deadlocks (all processes must execute non-executable state-
ments)

* thus, when the double for at lines 24 and 28 is finished without
any statement being executable (thus, n is still 0) and this is not
a valid end state, PAN tries to perform the whole computation
again with timeout set to 1

* linea 46 reprises the normal non-timeout behaviour

— apply ed undo are implemented in pan.m (included at line 30) and
pan.b (line 54)

* if a statement cannot be executed, pan.m performs a C continue
statement, which forces for in line 28 to go on with next iteration

* otherwise, a goto P999 is executed

* instead, pan.b executes goto R999

11

