
Formal Methods in Software Development

Resume of the 23/10/2019 lesson

Igor Melatti and Ivano Salvo

1 The SPIN model checker

• Each statement may have a label (e.g. again in Figure 1)

– if the label begins with “end”, then it is a valid end-state

– an end-state is valid if it has an “end” label or if it consists of the
closing brackets of a process

– any other state from which it is not possible to execute a transition
triggers a verification error, claiming a deadlock has been found

• Examples in Figures 1 and 2

• SPIN execution model

– processes statements are executed in interleaving as in modern oper-
ating systems

– it is possible to specify a statement block not to be interrupted by
other processes: atomic and d step

– see Figure 3, which contains some simplifications

– e.g., it could be possible to have non-determinism in atomic blocks
too

– compare with Murphi execution model

• SPIN state: values of both global and local variables and channels, plus
program counters of all running processes

• Again, we try to define the Kripke structure M = 〈S, S0, R, L〉 corre-
sponding to a given Promela model

– S = D1 × . . .×Dn × {1, . . . ,M1} × . . .× {1, . . . ,Mk}
∗ here we are assuming n (flattened) local and global variables,

including channels

1



/* Peterson’s solution to the mutual exclusion problem - 1981 */

/* global vars (initialized to 0) */

bool turn , flag [2]; /* was Q in Murphi */

byte ncrit;

/* note that the P array in Murphi is not needed: program counters

are already automatically handled ... */

active [2] proctype user()

{

assert(_pid == 0 || _pid == 1);

again:

flag[_pid] = 1; /* process communication via shared memory */

turn = _pid;

(flag[1 - _pid] == 0 || turn == 1 - _pid);

ncrit ++;

assert(ncrit == 1); /* critical section */

ncrit --;

flag[_pid] = 0;

goto again

}

Figure 1: Peterson protocol

2



#define p 0

#define v 1

/* zero dimension channel: rendez -vous */

chan sema = [0] of { bit };

proctype dijkstra ()

{ byte count = 1; /* initialized local variable */

do
:: (count == 1) ->

sema!p; /* send 0 and blocks , unless some other proc is

already blocked in reception */

count = 0

:: (count == 0) ->

sema?v; /* receive 1, same as above */

count = 1

od

}

proctype user()

{ do
:: sema?p; /* wait for dijkstra process to send 0, unless

it was already sent */

/* critical section */

sema!v; /* send 1 to dijkstra ("I finished ") */

/* non -critical section */

od

}

init

{ run dijkstra ();

run user();

run user();

run user()

}

Figure 2: Dijkstra protocol

3



/* Make a random walk in the NFSS described by SD */

void Make_a_run(SpinDescription SD)

{

/* only one initial state */

s := all non -initialized global variables are 0, all channels are

empty;

foreach active proctype p in SD

add p as a running process in s with p.pc=1;

i f (SD contains the init process)

add init as a running process in s with init.pc=1;

s_current := s;

while (1) { /* loop forever (unless an error occurs) */

i f (∃ running process p in s_current s.t. p.pc is in an atomic

block)

may_be_exec := statement istr at p.pc;

else {

may_be_exec := ∅;
/* we do not deal with the rendez -vous communications */

foreach running process p in s_current {

foreach statement istr at p.pc {

/* "pc" is the process program counter */

i f (istr is executable in s_current)

may_be_exec = may_be_exec ∪ istr;

} } }

i f (may_be_exec = ∅)
error "Deadlock"; /* other errors may be checked */

istr := pick at random a statement in may_be_exec;

s_next := execute(s_current , istr);

s_current := s_next;

} /* while */

} /* Make_a_run () */

Figure 3: SPIN execution model

4



∗ we also assume there are k running processes, with process i
having Mi statements inside it

∗ if a Di corresponds to short or int, then it has 216 or 232 values
on a typical 64-bit architecture, as it is in C

∗ a channel is essentially an array of structures

∗ SPIN does not have a special value for “undefined” (as Murphi
has), but ⊥ is needed for the local variables still not reached by
the program counter

∗ indeed, this state space is dynamic, as it contains the currently
running processes

∗ new processes may be added at any time by a run statement

∗ thus, the state space cannot be defined in advance as it is with
Murphi; this is only possible when only active proctypes are
used, without run commands

∗ even in this case, it is possible to some local variables definition is
still not reached by the process program counter, and thus they
actually don’t exist...

– |I| = 1, see Figure 3

– R is intuitively defined as follows (also check Figure 3): R(s, s′) holds
iff there is a running process p in s and an executable statement t
at the current program counter of p (recall that the program counter
for all processes is stored in s) s.t. t, when executed, leads from s to
s′

∗ if t is the beginning of an atomic sequence, then the whole atomic
sequence must be executed

∗ till the first blocking statement of the sequence

∗ if t is a send on an empty channel c, and there is another current
statement t′ in another process p′ (i.e., the value of the program
counter of p′ in s identifies t′ as the next statement to be executed
for p′ in s) s.t. t′ is a receive on c, both t and t′ have to be
executed when leading from s to s′

– L is similar to Murphi, i.e., equations between (global and local) vari-
ables and values; however, also program counters must be considered

2 SPIN Verification Algorithm

• Able to answer to the following questions: is there a deadlock (invalid end
state)? are there reachable assertions which fail (safety)? is a given LTL
formula (safety or liveness) ok in the current system?

• Similar to Murphi:

5



1. the SPIN compiler (SrcXXX/spin -a) is invoked on model.prm and
outputs 5 files, pan.c, pan.h, pan.m, pan.b, pan.t (unless there are
errors...)

2. the 5 files given above are compiled with a C compiler; in this way,
an executable file model is obtained; it is sufficient to compile pan.c,
which includes all other files;

3. just execute model (option -h gives an overview of all possible op-
tions)

• PAN: Protocol ANalyzer

– pan.[ch] is the fixed part of the verifier, it implements a DFS (also
BFS starting from some later version, but less efficient), it also in-
cludes the other files

– pan.m is the part of the verifier which depends on the Promela model:
it contains a C switch statement implementing the transition rela-
tion

∗ very similar to Murphi Code implementing a rule body

∗ given the current state, saved in a memory buffer called now

and very similar to the Murphi’s workingstate, given a running
process index i and the program counter p inside that process,
it performs on now the modifications demanded by the Promela
statement at line i of process p, so obtaining the next state

∗ of cours, it takes into account special cases such that atomic
sequences and synchronuous communications

– pan.b: the same of pan.m, but backwards!

∗ actually, pan.m does not surprise and it is not conceptually dif-
ficult to understand and implement

∗ implementing the same backwards is not straightforward, but
SPIN does it!

∗ essentially, all Promela instruction may be reversed, and the code
to reverse them is in pan.b

∗ essentially, PAN maintains old values for all variables in the state
(i.e., values are saved before overwriting due to new assignments)

∗ thanks to the fact that the visit is a DFS (SPIN is optimized for
DFS), it is only needed to maintain the last values, thus a stack
for each variable is used for this purpose

– pan.t creates a table with an entry for each statement in the source
Promela model; for each statement, the corresponding values to ex-
ecute the forward and backward in pan.[bm] are stored (needed for
simulations and counterexamples)

• On-the-fly exploration: as in Murphi, the RAM contains only the part of
the graph which has been explored till now

6



– only the states, no transitions between them

• Hash table for the visited states

– Murphi uses open addressing, here the hash table is handled with
collision lists

– in order to speed up visited states check, such lists are ordered (i.e.,
each new state is inserted in order)

• We already said that SPIN uses a DFS instead of Murphi BFS; so one could
think to something such as Figure 4, i.e., a recursive implementation

• This is not what it is done by SPIN, as it is meant to be implemented in
the most efficient way

• Thus, instead of using the standard implicit (and not efficient) call stack
as in Figure 4, we have an ultra-light explicit stack

– recall that Murphi had a queue, since a BFS is performed

• Moreover, recursion is simulated with C goto statements! Also global
variables are widely used

• This leads us to the DFS in Figure 5, which is closer to what SPIN actually
does

DFS(graph G = (V,E), node v)
{

Visited := Visited ∪ v;
foreach v′ ∈ V t.c. (v, v′) ∈ E {

i f (v′ /∈ Visited)

DFS(G, v′);
}

}

Figure 4: Standard recursive DFS

• However, we still need one more element to be added to Figure 5: namely,
the stack does not store states

• Instead, each stack entry only stores a pair 〈p, o〉 of indices (integers)

– p is a process pid

– o identifies a statement at the current program counter of p

– (recall that there may be non-determinism inside each process...)

• The rational behind this is the following

7



DFS(graph G = (V,E))
{

s := init; i := 1; depth := 0;

push(s, 1);
Down:

i f (s ∈ Visited)

goto Up;

Visited := Visited ∪ s;
let V ′ = {v′ | (v, v′) ∈ E};
i f (|V ′| >= i) {

t := i-th element in V ′;

increment i on the top of the stack;

push(t, 1);
depth := depth + 1;

goto Down;

}

Up:

(s, i) := pop();

depth := depth - 1;

i f (depth > 0)

goto Down;

}

Figure 5: DFS with gotos and explicit stack

8



– there is just one initial state

– let 〈p0, o0〉 be the first (from the bottom) pair on the stack; it univo-
cally identifies a statement istr0 to be executed

– by applying istr0 to s0 we obtain a state s1 (formally,
s1 =apply(s0, p0, o0))

– analoguously, s2 =apply(s1, p1, o1) if 〈p1, o1〉 is the second pair on
the stack

– thus, a stack 〈〈p0, o0〉, . . . , 〈pd, od〉〉 univocally identifies a state sd,
obtained by chaining the executions due to pairs 〈pi, oi〉

– formally, ∀1 ≤ i ≤ d si =apply(si−1, pi−1, oi−1)

– moreover, SPIN is able to define the undo function, with the same
parameters of the apply function

∗ of course, apply is defined in pan.m, undo in pan.b

∗ undo needs a stack of values for each variable, as explained above

∗ however, it tries to minimise such stacks usage; e.g., if a c = c

+ 2 statement must be undone, then it is sufficient to execute c

= c - 2

∗ for direct assigments (e.g., c = 4), the apply function puts the
preceding values of v in the stack of v before overwriting it with
4

∗ undo will pop the value from the stack of v and put it back in v

∗ this works because the whole visit is a DFS

– finally, recall we have a global fixed structure now implementing the
current state (same as Murphi’s workingstate)

– summing up, given what we said (Figure 6):

∗ no need of pushing a whole state s in the DFS stack: SPIN
pushes the pair 〈p, o〉 which generates s if applied to the current
state

∗ no need of popping a state s: SPIN pops the pair 〈p, o〉 which
generates s if undone on the current state

• Finally, ch13.pdf adds some more details

– atomic sequences handling:

∗ if we are inside an atomic sequence, SPIN must take care that
only the current process can execute

∗ this is done by setting From = To = II (line 44), which forces
the for loop in line 24 to oly select the current process

∗ normal behaviour is reprised at line 46

∗ a state may be searched and possibly inserted in the hash table
(line 13) only if we are not in an atomic sequence

9



DFS(NFSS N )

{

let N = (S, {q},A, next, L);
now := init; depth := 0;

Down:

i f (now ∈ Visited)

goto Up;

Visited := Visited ∪ now;

foreach p s.t. p i s a running process in now {

foreach opt s.t. opt is enabled at p.pc {

now := apply(now , p, opt);

/* no need of incrementing opt on the top of the

stack: when

popping , it will be done by the for on opt...

*/

push(p, opt);

depth := depth + 1;

goto Down;

Up:

(p, opt) := pop();

depth := depth - 1;

now := undo(now , p, opt);

} }

i f (depth > 0)

goto Down;

}

Figure 6: SPIN DFS

10



– timeout handling:

∗ it is a Promela boolean expression, which is true iff the whole sys-
tem deadlocks (all processes must execute non-executable state-
ments)

∗ thus, when the double for at lines 24 and 28 is finished without
any statement being executable (thus, n is still 0) and this is not
a valid end state, PAN tries to perform the whole computation
again with timeout set to 1

∗ linea 46 reprises the normal non-timeout behaviour

– apply ed undo are implemented in pan.m (included at line 30) and
pan.b (line 54)

∗ if a statement cannot be executed, pan.m performs a C continue

statement, which forces for in line 28 to go on with next iteration

∗ otherwise, a goto P999 is executed

∗ instead, pan.b executes goto R999

11


