
Formal Methods in Software Development

Resume of the 02/10/2019 lesson

Igor Melatti and Ivano Salvo

• Summing up, the relations between Kriepke structures and Murphi models
are as follows. We are given a Murphi model, let’s call it M and let’s
assume that:

– V = 〈v1, . . . , vn〉 is the set of global variables of M, with domains
〈D1, . . . , Dn〉
∗ note that each Di may be a Cartesian product of other domains

(if the corresponding type is an array or a record)

∗ question: which is the difference, in terms of the definition of the
domain, between an array or a record?

∗ however, in the following we will take a different road: we will
consider all variables unfolded

∗ that is, if a variable is an array with q elements, then it is actually
to be considered as q different variables

∗ the same for records

∗ for combination of arrays and records, all possible combinations
must be considered

∗ simple types are ok

∗ as an example: var a : array [1..n] of record begin b

: 1..m; c: 1..k; endrecord

∗ then there will be 2n variables as follows:
a1b, . . . , anb, a1c, . . . , anc

– let I = {I1, . . . , Ik} be the set of startstate sections in M
∗ startstates may be defined inside rulesets; here we suppose all

rulesets are unfolded

∗ thus, if a startstate I is inside m nested rulesets R1, . . . ,Rm, and
each ruleset Ri is defined on an index ji spanning on a domain
Di (note that Di must be a simple type), then there actually are∏m

l=1 |Dl| startstates to be considered, instead of just one

∗ of course, in each of these startstates definitions, the tuple
j1, . . . , jm takes all possible values of R1 × . . .×Rm

– let T = {T1, . . . , Tp} be the set of rule sections

1

∗ same as above: must be unfolded if in rulesets

• Then, the Kriepke structure M = (S, S0, R, L) described by M is such
that:

– S = D1 × . . .×Dn

– s ∈ S0 iff s may be obtained by applying the body of a startstate in
I

– (s, t) ∈ R iff there is a rule Ti ∈ T s.t. Ti guard is true in s and Ti

body changes s to t

∗ that is: in the body of Ti, variables starting values are those of s

∗ note that there may be two or more rules defining the same
transition from s to t; no problem with this

∗ note that there is no assurance that R is total: Murphi can check
this at run-time

– AP = {(v = d) | v = vi ∈ V ∧ d ∈ Di}
– (v = d) ∈ L(s) iff variable v has value d in s

Murphi Model Checker: Behind the Hood

• We have seen its input language syntax and semantics, now comes the
verification algorithm

• Murphi needs 3 steps in order to verify or simulate a system

• Assume you have described your system S in the file model.m

1. the Murphi compiler (src/mu) is invoked on model.m and outputs a
model.cpp file (unless there are errors...)

2. the file model.cpp is compiled with a C++ compiler, giving the di-
rectory include/ as additional include directory; in this way, an
executable file model is obtained

3. just execute model (with option -s for simulation; option -h gives an
overview of all possible options)

• Most important step 1 compilation options:

-c enables hash compaction (see the verification part; typically combined
with -b)

-b values not aligned on bytes in the current state (verification will require
less space, slightly more execution time)

• The step 1 is accomplished by means of the 25 files in the src/ directory

• Standard compiler implementation, with Flex lexical analyzer (mu.l) and
Yacc parser (mu.y)

2

• The main function, i.e. the one building model.cpp, is
program::generate code in cpp code.cpp (called by main, in mu.cpp)

• In short, program::generate code uses the parse tree generated by Yacc
to “implement” in C++ the guards and the bodies of the rules

• The result goes in model.cpp, that as a consequence will contain the
model-specific code

• Let’s have a closer look to model.cpp

• Each Murphi variable v (local or global) corresponds to a C++ instance
mu v of the class mu int (possibly through class generalizations)

• Class mu int is used to handle variables with max value 254 (255 is used
for the undefined value)

• For integer subranges with greater values, class mu long is used; also
mu byte (equal to mu int...) and mu boolean exist

• If v is a local variable, mu v directly contains the value (attribute cvalue,
in world is false)

• Otherwise, if v is global (as in Figs. 2 and 4), mu v retrieves the value from a
fixed-address structure containing the current state value (workingstate;
in world is true)

• The main elements of class mu int are listed in Fig. 1

• As for the byteOffset computation, program::generate code simply
computes the one for a variable mu v mapping a Murphi variable v in the
following way

– Let M1, . . . ,Mn be the upper bounds of the n variables preceeding
the declaration of v

– Let b(x) = blog2(x+1)c+1 be the number of bits required to represent
the maximum value x (plus the undefined value)

– Let B(x) = 1 if b(x)÷8 = 0 or b(x) = 8, 4 otherwise (i.e. only 1-byte
or 4-bytes integers may be used)

– Then, byteOffset(mu v) =
∑n

i=1 B(Mi)

• Note that workingstate has a fixed length, that is BLOCKS IN WORLD =∑N
i=1 B(Mi), being N the number of all global variables; namely, the bits

attribute of the class state (of which workingstate is an instance) has
BLOCKS IN WORLD unsigned chars

• We are now ready to have a glance at the Murphi assignment mapping in
C++

– As an example, a = b; becomes mu a = (mu b);

3

c la s s mu__int {

enum {undef_value =0xff};

bool in_world; /* local (false) or global

(true) */

int lb , ub; /* upper and lower bound

*/

int byteOffset; /* in bytes */

/* valptr points to workingstate ->bits[byteOffset]

for global

variables , and to cvalue for local var */

unsigned char *valptr;

unsigned char cvalue; /* value for local

variables */

public:
/* constructor , sets all the attributes (the

variable is

supposed to be local by default , with an

undefined value);

byteOffset is given as a parameter , so it is

computed by

generate_code */

mu__int(int lb, int ub, int size , char *n, int
byteOffset);

/* other useful functions */

int operator= (int val) {

i f (val <= ub && val >= lb) value(val);

e l se boundary_error(val);

return val;

}

operator int () const {

i f (isundefined ()) return undef_error ();

return value ();

};

const int value () const {return *valptr ;};

int value(int val) {* valptr = val; return val ;};

void defined(bool val) { i f (!val) *valptr =

undef_value ;};

bool defined () const {return (* valptr !=

undef_value);};

void undefined () {* valptr = undef_value ;};

bool isundefined () const {return (* valptr ==

undef_value);};

void to_state(state *thestate) {

/* used to make the variable global */

in_world = TRUE;

valptr = (unsigned char *)&(workingstate ->bits[

byteOffset]);

};

};

Figure 1: Class mu int (from include mu util.h)

4

– The operator () is redefined so that mu b retrieves the value for b,
either from itself (attribute cvalue) or from workingstate (thanks
to valptr)

– Then, the redefined operator = is called, so that mu a updates the
value for a to be equal to that of b, either from itself (attribute
cvalue) or from workingstate

– If the right side of the assignment has a generic expression, it is
evaluated in a similar way (the operator () solves the Murphi variable
references, the other values will be integer constants...)

• We can now look at the translation of rules

• For each rule i (starting from 0 and the end of model.m!) there is a class
named RuleBasei

• Example: the Murphi code in Fig. 2 is translated in the C++ code in
Fig. 3

• Another example (with rulesets): the Murphi code in Fig. 4 is translated
in the C++ code in Fig. 5

• Note that the first part of Condition and Code is meant to translate an
integer from 0 to (u1 − l1 + 1)(u2 − l2 + 1)− 1 in 2 values for the rulesets
indeces

• The interface class for the verification algorithm is NextStateGenerator

• Suppose there are R rules r0, . . . , rR−1, and that each ri is contained
in Ni nested rulesets having upper bound uij and lower bound lij , for
j = 1, . . . , Ni

• Then, class NextStateGenerator is shown in Fig. 6

• Note that Condition simply calls its homonymous method of the RuleBase
class corresponding the current r...

• Step 2 will compile the file in Fig. 7

• Step 3 will execute the result of the compilation of the file in Fig. 7

• Fig. 8 show how simulation is carried out

• Not very useful, SPIN simulation is much butter

• Fig. 9 show how verification is carried out

• The hash table T and the FIFOQueue Q is where state explosion strikes

• Q can be efficiently implemented with disk auxiliary storage, so it is not a
problem

5

Const VAL_LIM: 5;

Type val_t : 0.. VAL_LIM;

Var v : val_t;

Rule "incBy1"

v <= VAL_LIM - 1 ==>

Var useless : val_t;

Begin
useless := 1;

v := v + useless;

End;

Figure 2: A Murphi rule

c lass RuleBase1 {

public:

...

bool Condition(unsigned r) { /* implements the guard */

return (mu_v) <= (4);

}

...

void Code(unsigned r) { /* implements the body */

mu_1_val_t mu_useless("useless", 0);

mu_useless = 1;

mu_v = (mu_v) + (mu_useless);

};

...

}

Figure 3: Translation of the Murphi rule in Fig. 2

6

ruleset i: l1..u1 do
ruleset j: l2..u2 do
Rule "incBy1"

i < j ==>

Begin v := v + i - j; End;
Endruleset; Endruleset;

Figure 4: A Murphi ruleset

c la s s RuleBase0 {

public:
bool Condition(unsigned r) {

/* Condition will be called (u1 − l1 + 1)(u2 − l2 + 1)
times for each

state to be expanded (indeed , NextRule () is

called , but

it has nearly the same code), with r ranging

from 0 to

(u1 − l1 + 1)(u2 − l2 + 1)− 1 */

s ta t i c mu__subrange_7 mu_j;

mu_2_j.val_2u_2e ((r % (u2 − l2 + 1)) + l2);
r = r / (u2 − l2 + 1);
s ta t i c mu__subrange_6 mu_i;

mu_1_i.val_1u_1e ((r % (u1 − l1 + 1)) + l1);
/* useless , but it is automatically generated ...

*/

r = r / (u1 − l1 + 1);
return (mu_i) < (mu_j);

}

void Code(unsigned r) {

s ta t i c mu__subrange_7 mu_j;

mu_2_j.val_2u_2e ((r % (u2 − l2 + 1)) + l2);
r = r / (u2 − l2 + 1);
s ta t i c mu__subrange_6 mu_i;

mu_1_i.val_1u_1e ((r % (u1 − l1 + 1)) + l1);
r = r / (u1 − l1 + 1);
mu_v = ((mu_v) + (mu_i)) - (mu_j);

};

...

};

Figure 5: Translation of the Murphi ruleset in Fig. 4

7

Let P (k) =
∑k−1

i=0 (
∏Ni

j=1(uij − lij + 1)) + 1 be the number of

flattened rules preceeding the rule rk;

c la s s NextStateGenerator {

RuleBase0 R0;
...

RuleBase(R− 1) R(R− 1);
public:
void SetNextEnabledRule(unsigned & what_rule);

...

bool Condition(unsigned r) { /* r will range from 0
to P (R) */

category = CONDITION;

i f (what_rule < P (1))
return R0.Condition(r - 0);

i f (what_rule >= P (1) && what_rule < P (2))
return R1.Condition(r - P (1));

...

i f (what_rule >= P (R− 1) && what_rule < P (R))
return R(R− 1).Condition(r - P (R− 1));

return Error;

}

void Code(unsigned r) {

i f (what_rule < P (1)) {

R0.Code(r - 0); return;
}

i f (what_rule >= P (1) && what_rule < P (2)) {

R1.Code(r - P (1)); return;
}

...

i f (what_rule >= P (R− 1) && what_rule < P (R)) {

R(R− 1).Code(r - P (R− 1)); return;
}

}

...

};

const unsigned numrules = P (R);

Figure 6: Class NextStateGenerator

8

Concatenation of include/*.h

model.C

Concatenation of include/*.C

Figure 7: The file compiled in the step 2

/* Make a random walk in the NFSS described by MD */

void Make_a_run(MurphiDescription MD, AP φ)
{

pick at random an initial state s among the ones in MD;

i f (!φ(s))
return with error message;

s_current = s;

while (1) { /* loop forever (unless an error occurs) */

s_next = s_current;

rules_tried = 0;

while (s_next == s_current && rules_tried <

num_rules_MD) {

pick at random a rule r never tried before;

i f (the r guard is satisfied by s_current)

s_next = execution of the r body on s_current;

rules_tried ++;

} /* while */

i f (!φ(s_next))
return with error message;

s_current = s_next;

} /* while */

} /* Make_a_run () */

Figure 8: Murphi simulation

9

FIFO Queue Q;

HashTable T;

/* Returns true iff φ holds in all the reachable states

*/

bool BFS(NFSS S, AP φ)
{

let S = (S, I,A, next);

/* is there an initial state which is an error state? */

foreach s in I {

i f (!φ(s))
/* error found , S does not satisfy φ */

return fa l se ;
}

/* load Q with initial states */

foreach s in I Enqueue(Q, s);

/* mark the initial states as visited */

foreach s in I HashInse r t (T, s);

/* visit */

while (Q 6= ∅) {

/* take from Q the state to be expanded */

s = Dequeue(Q);
/* s expansion */

foreach (s_next , a) in next (s) {

i f (!φ(s_next))
/* error found , S does not satisfy φ */

return fa l se ;

i f (s_next i s not in T) {

/* s next must be eventually expanded */

Enqueue(Q, s_next);

/* mark s next as visited */

HashInse r t (T, s_next);

} /* if */ } /* foreach */ } /* while */

/* here , Q is empty and T contains all the reachable

states */

/* error not found , S satisfies φ */

return true;
} /* BFS() */

Figure 9: Murphi verification

10

• Note that each Q entry is not a state, but a pointer to a state

• If hash compaction is not used, each entry of Q points to the slot in the
hash table containing the desired state

• For T, one can try to use hash compaction (enabled by compiling the
Murphi model with -c)

– When dealing with hash table insertions and searches, state “signa-
tures” are used instead of the whole states

– The idea is that it is unlikely to happen that two different states have
the same signature

– If this happens, some states may be never reached, even if they are
indeed reachable

– Thus, there may be “false positives”: the verification terminates with
an OK messages, while the system was buggy instead

– However, this is very unlikely to happen, and in every case it is much
better than testing, which may miss whole classes of bugs

– As for the hash compaction implementation, here is it

– At the beginning of the verification, a vector hashmatrix of
24*BLOCKS IN WORLD longs (4 byte per each long) is created and ini-
tialized with random values (hashmatrix will never be modified)

– Then, given a state s to be sought/inserted, 3 longs l0, l1 and l2

are computed from hashmatrix

– Namely, li, for i = 0, 1, 2, is the bit-to-bit xor of the longs in the set
H(i) = {hashmatrix[3k + i] | the k-th bit of the uncompressed state
s is 1};

– That is to say, every bit of s is used to determine if a given element
of hashmatrix has or hasn’t to be used in the signature computation

– This is accomplished in the functions of file include/mu hash.cpp,
where to avoid to compute 8*BLOCKS IN WORLD bit-to-bit xor oper-
ations, some xor properties allow to use the preceeding computed
signature and save some xor computation (oldvec variable)

– Then, l0 is used as a hash value (index in the hash table)

– The concatenation of l1 and l2 (truncated to a given number of bits
by option -b) gives the signature (the value to be sought/inserted in
T)

– It should be obvious, now, that a signature cannot be used to generate
states, so that’s why Q entries do not point to hash table entries any
more

– Thus, if current workingstate state is found to be new, and so its sig-
nature is put inside the hash table, a new memory block is allocated
to be assigned to the current from of the queue, and workingstate

is copied into that

11

– To save some (not much...) space, the Murphi compiler option -b

may be used to compress states (bit compression in SPIN’s parlance)

– In this way, workingstate contents are not forced to be aligned to
byte boundaries, so it occupies less space

– Moreover, effective subranges size is used (remember we store the
lower bound...); see Figs. 10 and 11

– Of course, a more complex handling than the valptr and byteOffset

one shown in Fig. 1 has to be used

Var
x : 255..261;

y : 30..53;

StartState
x := 256;

y := 53;

End;

Figure 10: Murphi example for the bit compression

without -b

workingstate->bits

y

x y

0xc

0x00x0 0x1 0x0 0x35

with -b0x2

workingstate->bits

x︷ ︸︸ ︷

Figure 11: State occupation for Fig. 10 with and without bit compression

12

• A trasversal technique is to use symmetry or multiset reduction

– Differently from SPIN’s partial order reduction, these techniques are
not transparent to the user

– In fact, symmetry reduction are applicable only if some types have
been declared using the scalarset keyword (for multiset reduction,
the keyword is multiset)

– Not all systems are symmetric

– However, when it is possible to apply symmetry reduction, only a
subset of the state space is (safely) explored

– To be more precise, symmetry reduction induces a partition of the
state space in equivalence classes

– A functions chain (implemented in the model-dependent part in
model.cpp) is able to return the representative of the equivalence
class of a given state

– Thus, only equivalence classes representatives are explored

• Most important verification options:

-h prints all the options

-bN N bits to be used for each signature in hash compaction

-mN use exactly N MB of RAM for hash table (0.9N) and queue (0.1N);
note however that with hash compaction more memory may be used

-ndl disable deadlock detection

-pN print progress reports after every 10N states

1 Assignments

1. Find the corresponding code fragment of each instruction (or block of
instructions) of Fig. 9 in the effective code in the include/ directory
of Murphi; if for some code fragments there is not an enough precise
correspondence, point it out (in particular, explain how the current state
expansion is effectively carried out)

2. Add to Fig. 9 the deadlock detection implemented in the effective code in
the include/ directory of Murphi

3. Add to Fig. 9 the symmetry reduction (only a couples of additional lines
should be necessary, plus some rearrangments)

4. Write down the startstates analogous for Fig. 6 (hint: create a simple
Murphi model and compile it...)

5. Modify the Murphi simulation so that

13

(a) It stops after a given number N of transitions (N must be given via
a new option -simlimN)

(b) At each step it ask the user to choose between the currently enabled
rules

14

