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Lesson 12a:

Probabilistic CTL



Probabilistic CTL (PCTL) enrich the syntax of CTL with a 
probabilistic operator P[a,b](𝜑) whose intended semantics is
that the probability of 𝜑 is in the interval [a, b] (obviusly a ≥ 0 
and a ≤ b ≤1).

In PCTL we can define quantitative properties to be checked in 
a Markov chain. The interpretation of formula is boolean.

P[a,b](𝜑) is the probabilistic counterpart of the path quantifiers E
and A.

Probabilistic CTL



State formulae:

𝜓 ::=  true |  a | 𝜓1 ⋀ 𝜓2 |  ¬𝜓 |  PJ(𝜑)

where a ∊ AP, 𝜑 is a path formula, and J⊆[0,1] is an interval
with rational bounds.

Path formulae:

𝜑 ::=  X 𝜓 |  𝜓1 U 𝜓2 | 𝜓1 U≤n 𝜓2

where 𝜓1, 𝜓2 are state formulae and n is a natural number.

As in CTL, temporal operators X and U are required to be 
preceded by P. Intervals can be abbreviated: P≤0.5 means P[0,0.5], 
P=1 means P[1,1], and P>0 means P]0,1] etc.

Semantic is similar to CTL. Step bounded until 𝜓1 U≤n 𝜓2 
requires that 𝜓2 holds after at most n steps. 

Probabilistic CTL: Syntax



The simulation of a six-sided die by a fair coin. The PCTL 
formula∧i=1..6 P=1/6(F i) asserts that each 6 possible outcomes
have equal probability.

In the communication protocol, the PCTL formula:

P=1(F delivered) ⋀ P=1(G (try→ P≥0.99 (F≤3 delivered)))

Asserts that almost surely some message will be delivered and 
that almost surely, for any attempt to send a message, with 
probability at least 99% the message will be sent within 3 steps.

Probabilistic CTL: examples



The semantics is the same as that of CTL, except for 𝒫J(𝜑) and 
bounded until. We have:

s ⊨ PJ(𝜑) iff Pr(s ⊨ 𝜑) ∊ J

𝜋 ⊨ 𝜓1 U≤n 𝜓2 iff∃0 ≤ j ≤ n. 𝜋j ⊨ 𝜓2 ⋀ (∀0 ≤ k < j. 𝜋k ⊨ 𝜓1)

Formally, we need to check whether events specified by PCTL 
path formulae are measurable.

Theorem: For each PCTL path formula 𝜑 and state s of a 
Markov chain, Path(s, 𝜑) = {𝜋 ∊ Path(s) | 𝜋 ⊨ 𝜑} is measurable. 

Proof: Induction on 𝜑. If 𝜑 ≡ X 𝜑’, then Path(s, 𝜑) is the union of 
Path(t, 𝜑’), such that t ⊨ 𝜑’. If 𝜑 ≡ 𝜓1 U≤n 𝜓2, then Path(s, 𝜑) is
the union of all cylinder sets Cyl(s0s1…sk), where k ≤ n, sk ⊨ 𝜓2
and si ⊨ 𝜓1 for 0 ≤ i < k. If 𝜑 ≡ 𝜓1 U𝜓2, then Path(s, 𝜑) can be 
written as∪n ≥ 0 {𝜋 ∊ Path(s) | 𝜋 ⊨ 𝜓1 U≤n 𝜓2}. ☐

Probabilistic CTL: semantics



As usual, other operators, such as F and R as well as other
boolean connectives can be derived using duality. 
E.g. F≤n 𝜓 ≡ true U≤n 𝜓.

In general, we have that P<p(𝜑)≡ P>p(¬𝜑) and P]a,b](𝜑)≡ ¬P≤a(𝜑)⋀
P≤b(𝜑) . Be careful to the duality between lower and upper
bounds! Therefore we could limit to consider only upper-
bounds and one between P=1 and P=0 for qualitative properties.

If an event E holds with probability at most p, then the 
complementary event E holds with probability at least 1-p. For 
example: P≤p(G 𝜑)≡P≥1-p(F ¬𝜑) and P]p,q](G≤n 𝜑)≡P[1-q, 1-p[(G≤n 𝜑).

Probabilistic CTL: equivalences



Let us consider the equivalence P≥0(X P>0(F 𝜓))≡P>0(F P>0(X 𝜓))

(⇒) Let s be such that s ⊨ P≥0(X P>0(F 𝜓)), then there exists t, 
such that 𝒫(s, t)>0 and t ⊨ P>0(F 𝜓) and therefore there exists a 
finite path t0t1…tk where t=t0 and tk ⊨ 𝜑. Therefore tk-1 ⊨ X 𝜓. 
Since s t0t1…tk-1 is a path fragment starting in s with positive 
probability, we have s ⊨ P>0(F P>0(X 𝜓)).

(⟸) Conversely, if s ⊨ P>0(F P>0(X 𝜓)) then there exists a path
fragment s0s1…sk with s=s0 and sk ⊨ P>0(X 𝜓), but this means that
sk has a successor t such that t ⊨ 𝜓. This means that the path
fragment s1…skt is a witness for s1 ⊨ P>0(F 𝜓) and hence
s ⊨ P≥0(X P>0(F 𝜓)).

PCTL: proving equivalences



The problem is to verify in a Markov chain if s ⊨ 𝜑, where 𝜑 is a 
PCTL formula. As for CTL, the idea is to compute set of states
Sat(𝜓) for all subformulae 𝜓 of 𝜑. For propositional sub-
formulae, the problem is essentially the same as in CTL, so the 
interesting case is to determine Sat(PJ 𝜓) = {s ∊ S | Pr(s ⊨ 𝜓) ∊ J }.

For the operator X, it suffices to multiply the matrix 𝒫 by the 
characteristic vector of Sat(𝜓):

Pr(s ⊨ X 𝜓) = ∑s’ ∊ Sat(𝜓) 𝒫(s, s’)

If we have formulae of the form 𝜓1 U≤n 𝜓2 or 𝜓1 U 𝜓2, we can 
just use technique we have seen for constrained reachability in 
the last lesson, where C=Sat(𝜓1) and B=Sat(𝜓2). 

For the bounded operator U≤n we have to stop after n iterations.

PCTL model checking



Theorem: Let M be a finite MC and 𝜑 be a PCTL formula. The 
model checking problem M ⊨ 𝜑 can be solved in time
𝒪(poly(size(M))・nmax・|𝜑|) where nmax is the maximum step
bound that appears in formulae of the form 𝜓1 U≤n 𝜓2.

For efficiency reasons, qualitative properties such as
P=1(𝜓1 U 𝜓2) or P>0(𝜓1 U 𝜓2) are solved by using graph-based
algorithms [this avoids solving systems of linear equations].

A counterexample or witness in PCTL is a set of path
fragments that show the refutation or satisfaction of a formula.

PCTL model checking



Example: If s ⊭ P≤p(F 𝜓), then Pr(s ⊨ F 𝜓)>p. A proof is a set 𝛱 of 
finite path fragments such that all 𝜋 ∊ 𝛱, 𝜋 = s0s1…sk , sk ⊨ 𝜓 and 
for i<k, si ⊭ 𝜓 and ∑𝜋 ∊ 𝛱 Pr(𝜋)>p. 

If s ⊭ P≥p(F 𝜓), is obtained by a set 𝛱 of path that refute F 𝜓. 
These paths have the shape 𝜋 = s0s1…sk , for i ≤ k, si ⊭ 𝜓 si, and sk
belongs to a BSCC C of M such that C ⋂ Sat(𝜓) = ∅. Moreover
we must have that ∑𝜋 ∊ 𝛱 Pr(𝜋)>1−p. The cylinder sets Cyl(𝜋) 
satisfies G¬𝜓 paths. 

To compute Pr(s ⊨ G¬𝜓) it is necessary to consider paths that
reach a BSCC T of M such that C ⋂ Sat(𝜓) = ∅ through ¬𝜓 states: 
we can collect all such paths (increasing k) until the probability
is greater than 1−p.

Counterexamples and witnesses



Let us consider the MC below. Let us assume that we are 
checking the property P≤1/2(F b) and that s0 is the initial state.

M ⊭ P≤1/2(F b) is witnessed by three paths:

{s0s1t1, s0s1s2t1 , s0s2t1}

whose probability is 0.2+0.2+0.15=0.55>0.5=1/2.

Observe that the counterexample is not unique. There are other
paths such as s0s1s2t2 and s0s2t2.

PCTL model checking: Example



The goal here is to compare the expressive power of PCTL wrt
CTL. It is evident that quantitative properties cannot be 
expressed in CTL. But what about qualitative properties?

State formulae:

𝜓 ::=  true |  a | 𝜓1 ⋀ 𝜓2 |  ¬𝜓 |  P>0(𝜑) | P=1(𝜑)

where a ∊ AP, 𝜑 is a path formula.

Path formulae:

𝜑 ::=  X 𝜓 |  𝜓1 U 𝜓2

where 𝜓1, 𝜓2 are state formulae. 

Observations: P=0(𝜑)=¬P>0(𝜑) and P<1(𝜑)=¬P=1(𝜑).

Definition: The PCTL formula 𝜑 is equivalent to the CTL 
formula 𝜓, notation 𝜑≡𝜓 iff Sat(𝜑)=Sat(𝜓) for all MC M. 

Qualitative fragment of PCTL



It is well-known that almost surely differs from all, because of 
some path with zero probability. In the MC below, we have
s ⊨ P=1(F a) but s ⊭ A F a. The converse always holds. 

For certain formulae, P=1 corresponds to A and P>0 corresponds
to E. For example: s ⊨ P=1(X 𝜑) ⇔ s ⊨ A X 𝜑
and s ⊨ P>0(X 𝜑) ⇔ s ⊨ E X 𝜑. 

We have: s ⊨ P>0(F 𝜑) ⇔ s ⊨ E F 𝜑
and s ⊨ P=1(G 𝜑) ⇔ s ⊨ A G 𝜑

We show how to prove this statements:

Assuming s ⊨ P>0(F 𝜑), we have Pr(s ⊨ F 𝜑)>0 that implies that
there exists a finite path fragment whose last state satisfies 𝜑. 
But this path fragment is a witness of  s ⊨ E F 𝜑 in CTL.

Conversely, assuming s ⊨ E F 𝜑 we have that there exist a finite 
path fragment and its cylinder satisfies s ⊨ P>0(F 𝜑). 

The other statement follows by duality.

”Trivial” Equivalences



Theorem: There is no CTL formula equivalent to the following
PCTL formulae: P=1(F a) and P>0(G a).

Proof (idea): If we consider the infinite random walk, the 
validity of the above PCTL formulae depend on probabilities
on transitions, whereas CTL formulae depend only on the 
underlying graph. ☐

This theorem is no longer true on finite Markov chains: 
P=1(F a) is equivalent to the CTL formula A ((E F a) W a), where
W is the “weak until operator”: 𝜑 W 𝜓 ≡ (𝜑 U 𝜓) ⋁ G 𝜑.

Surprisingly, we can prove the following:

Theorem: There is no qualitative PCTL formula equivalent to 
the following CTL formulae: A F a and E G a.

”Trivial” Equivalences



As we have seen, often a 0-probability loop makes the difference
between a PCTL property P=1(𝜑) and a CTL A 𝜑.

Let us define the following strong fairness constraints:

sfair = ∧s∊S∧t ∊ post(s) GF s→ GF t

Then we have the following equivalences:

s ⊨ P=1(𝜑 U 𝜓) ⇔ s ⊨sfair A (𝜑 U 𝜓) and s ⊨P>0(G 𝜑) ⇔ s ⊨sfair E G 𝜑

Therefore, qualitative PCTL is a sort of CTL plus strong fairness.

PCTL and fairness



Lesson 12b:

Linear Time Properties



Linear Time Properties are a set of traces.

The model checking problem for them is: 

“Given a finite MC M, and a linear time property P, compute 
the probability of the set of path of M for which P holds.”

Here, we address this problem for Safety Regular Propertis, 
and hint to the solution for 𝜔-Regular Properties.

Definition: Let M be a MC, and P a 𝜔-Regular Properties (both
over the same set AP of atomic propositions). The probability
for M to exhibit a trace in P, denote PrM(P), is:

PrM(P) = PrM{ 𝜋 ∊ Paths(M) | trace(𝜋) ∊ P } 

For a state s of M, we write PrM(s ⊨ P) = PrM{ 𝜋 ∊ Paths(s) | 
trace(𝜋) ∊ P }. For an LTL formula 𝜑, PrM(𝜑) = PrM(words(𝜑)).  

Linear Time Properties



The basic idea is exactly the same as for Linear Time 
Properties in classical Model Checking: reduce the problem of 
computing PrM(P) to a reachability problem in a Markov chain
M⊗A where A represent (the complement) of P.

The main difference is that to guarantee that M⊗A is Markov
chain, we need that A is a deterministic automata.This is not a 
problem for Regular Safety properties, that are characterized
as the complement of bad prefixes generated by a Deterministic
Finite Automata (DFA): DFAs have the same expressive power
of Non-deterministic Finite Automata (NFAs). 

For 𝜔-Regular Properties, we know that Deterministic Büchi
Automata (DBAs) are strictly less expressive of their non-
deterministic counterpart (NBAs).

For this reason, another family of automata, Deterministic
Rabin Automata (DRA) is considered.

Linear Time Properties: idea



A safety property is regular whenever the set of bad prefixes is
a regular language. Let A=(Q, 2AP, 𝛿, q0, F) be a DFA. We have:
Psafe={A0A1A2…∊ (2AP)𝜔| A0A1A2…An ∉ ℒ(A) }. Our problem is to 
compute the probability:

PrM(Psafe) = 1 − ∑s ∊ S 𝜄(s)・Pr(s ⊨ A)

Where Pr(s ⊨ A) is given by:

Pr(s ⊨ A) = PrM(𝜋 ∊ Paths(s) | pref(trace(𝜋)) ⋂ ℒ(A) ≠ ∅) 

= PrM(𝜋 ∊ Paths(s) | trace(𝜋) ∉ Psafe)

Therefore:

Pr(s ⊨ A) = ∑𝜋 ∊ BP(s) PrM(𝜋)

where BP(s) is the set of minimal bad prefixes defined by ℒ(A) 
starting in s. Computing these sums could be hard. We will
adapt the automaton-based techniques for classical MC.

Regular Safety Properties



Note that: 1) Each state ⟨s, q⟩ in M⊗A records the state in A for the 
path fragment taken so far in M. 2) The deterministic automata A 
does not affect probabilities.   

Product Markov Chain



In this way, we have reduced the problem of quantitative analysis
of Regular Safety problem to a quantitative reachability (see
lesson 11). 

Qualitative analysis is similar, following qualitative reachability. 

Unfortunately, this does not extend to the more general 𝜔-
Regular Properties because, in general, they require Non-
deterministic Büchi automata and non-determinism affects
probabilities! 

Quant. analysis for regular safety



Deterministic Rabin Automata

A computation is accepting in a DRA if there exists a pair of set of 
states (Li, Ki) ∊ Acc such that states in Li are visited only finitely
many times and states of Ki are visited infinitely often. Accepting
paths satisfies the LTL formula ∨i (FG¬ Li ⋀ GF Ki). Büchi
automata are a particular case where Acc={(∅, F)}



Let us consider the LTL property: GF a. This property can be 
modeled by a DBA (left). The corresponding DRA is on the 
right, where Acc = {(∅, {q1})}. 

Properties such as FG a are not expressible by DBA. On the 
other hand the same DRA with Acc = {({q0}, {q1})} accepts the 
infinite words whose ends with an infinite suffix that never
visit q0 and these are exactly the words in words(FG a ).

Theorem: The class of languages accepted by DRAs agrees with 
the class of 𝜔-regular languages.

DRAs: Example



The overall procedure is polynomial in |M⊗A|.

On the other hand, it can be shown that trasforming a LTL 
properties 𝜑 into the corresponding DRA automata is double 
exponential in |𝜑|, that is 𝟐𝟐|𝝋|. There are some more 
sophisticated techniques that avoid this complexity.

However, in any case, we have the following: 

Linear Time Prop.: conclusions



Lesson 12c:

Probabilistic
bisimulation



State formulae:

𝜓 ::=  true |  a | 𝜓1 ⋀ 𝜓2 |  ¬𝜓 |  PJ(𝜑)

where a ∊ AP, 𝜑 is a path formula, and J⊆[0,1] is an interval
with rational bounds.

PCTL* path formulae:

𝜑 ::= 𝜓 | X 𝜑 | 𝜑1 U 𝜑2 | 𝜑1 ⋀ 𝜑2 | ¬ 𝜑

where 𝜓1, 𝜓2 are PCTL* state formulae.

Exercise: Define the bounded until operator.

According to the non-probabilistic case, model checking
problem for PCTL* can be solved by alternating the PCTL 
procedure and LTL, thus obtaing an algorithm exponential in 
|𝜑| and the problem has been shown to be PSPACE-complete.

Probabilistic CTL*: Syntax



The main difference wrt bisimulation for Transition Systems is
that here we require that each bisimulation is a equivalence
relation (otherwise this definition does not make sense).

Remembere that, in any case, the greatest bisimulation is always
an equivalence relation.

Probabilistic bisimulation



The reflexive, symmetric and transitive closure of the relation: 
ℛ = {(s1, s2), (u1, u3), (u2, u3), (v1, v3), (v2, v3)} is a probabilistic
bisimulation. To see this, we have first to devise equivalence
classes, that are: T1={s1, s2}, T2={u1, u2 , u3}, and T3={v1, v2 , v3}. 

We finally check that 𝒫(s1, T1)=𝒫(s2, T1)=0, 𝒫(s1, T2)=𝒫(s2, T2)=2/3, 
and 𝒫(s1, T3)=𝒫(s2, T3)=1/3 [and so on].

Probabil. bisimulation: example



Probabilistic bisimulation preserves all PCTL*-definable
quantitative properties. 

Probabilistic bisimulation is the coarsest equivalence enjoying
this property.

Non-equivalent states can be distinguished by using PCTL*.

This is formally stated by the following:

Theorem: Let M be a MC and s1, s2 states of M. Then the 
following statements are equivalent:

• s1 and s2 are probabilistic bisimilar

• s1 and s2 fulfill the same set of PCTL/PCTL* formulae

Bisimulation char. of PCTL(*)



Lesson 12

Merry Crhistmas and 
Happy New Year…

…Questions?


