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Real systems are often dependent on phenomena of a stochastic
nature. Here, we address verification of probabilistic systems. 

By contrast, probabilistic verification means no complete 
coverage (“there is no error with a probability of 90%”).  

* Randomized algorithms: several algorithms (distributed) 
such leader election use tossing coins to break symmetries.

* Modelling unreliable or unpredictable behaviours (ex: 
message loss, system failures): modelling that with 
nondeterminism can be too coarse. In late stage of model 
design, probabilistic valuation can take place of nondet. 

* Performance evaluation: distribution of inputs, messages, etc. 
are importat to evaluate quantitative aspects such as waiting
time, queue length, expected time between failures.

Probabilistic Systems



We will see:

• Markov chains as generalisation of Kripke structures and in 
this view we will have a “state based” approach to Markov
chains;

• Probabilities in Linear Time properties (here probabilities
appear at the ”semantic level”)

• A logic for defining probabilistic properties (here
probabilities are in the syntax): PCTL.

Quantitative properties: “The probability for delivering a 
message in the next t time units is 98%” 

Qualitative properties: A desired event happens almost surely
(i.e. with probability 1) or a bad event occurs almost never (i. e. 
with probability 0): reachability, persistency, repeated
reachability.

Verifying Probabilistic Systems
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Markov Chains



Definition: A (discrete time) Markov chain is a tuple
M = (S, 𝒫, 𝜄, AP, L) where:

S, AP, L as usual are states, atomic propositions and labelling

𝒫 : S × S→[0,1] is the transition probability function, such that
for all s ∊ S, ∑t ∊ S𝒫(s, t) = 1

𝜄 : S→[0,1] is the initial distribution, such that ∑s ∊ S 𝜄(s) = 1

M is finite if S and AP are finite, and the size of M is: 
|M|=|S| + |{ (s, t) ∊ S : 𝒫(s, t) > 0}|

(it is the size of the underlying digraph)

We will identify 𝒫 with the matrix of probability [𝒫(s, t)]s,t ∊ S
where the row 𝒫(s,・) contains probability to reach successors
of s, and the column 𝒫(・, s) contains probability to enter state s
from its predecessors.

States such that 𝜄(s)>0 are initial states and it is the probability
that system evolution starts in s. 

Markov Chains: definition



Let us consider an error prone communication protocol, that
with probability 10% can loose a message. The message is sent
until it is eventually delivered.

Probability matrix and initial states (start, try, lost, delivered):

Markov Chains: Example 1



Observe that in the underline Kripke structure (without
probabilities) we can check LTL or CTL properties, like:

G X100 delivered and E G¬delivered

Both these two properties does not hold, even though with very
low probability. In particular, the second has probability 0!

Probabilistic model checking allow quantitative properties to 
be checked. Qualitative properties are a special case, when we
ask for an event to have probability 0 or 1.

Markov Chains: Example 1



Simulation of a standard six-sided die by a fair coin
[Knuth&Yao]. Are all outcomes equally likely? Exercise J

Markov Chains: Example 2



Simulation of the Craps Gambling Game… Player wins on 7, 
11 and loses on 2, 3, 12. Otherwise dice are rolled again, until
eventually 7 or the point is obtained. 7 player loses, the point
wins.  

Markov Chains: Example 3



Paths(M) denotes the set of paths, Pathsfin(M) finite paths. When
M is clear from the context, and s is a state, we can use Paths(s) 
and Pathsfin(s) to denote paths starting at s. In a path s0s1…sn we
have that

Direct successors of a state s are denoted by Post(s). Post*(s) is
the set of states reachable from s. Similarly, direct predecessors
of s are denoted by Pre(s). Pre*(s) is the set of states backward
reachable from s. These notions are naturally extended to sets.

A state s of a MC M is said absorbing if Post*(s)={s}, 
that is 𝒫(s, s)=1 and 𝒫(s, t)=0 when s≠t. 

Markov Chains: terminology



Definition: A 𝜎-algebra is a pair (O, ℰ) where O is a nonempty
set (outcomes) and ℰ ⊆𝒫(O) is the set of events and it contains
the emptyset and it is closed under complementation and 
countable unions. More formally:

• ∅ ∊ ℰ,
• If E ∊ ℰ then O∖E ∊ ℰ,
• If E1, E2 … ∊ ℰ then∪i≥1 Ei ∊ ℰ.
Observations: O ∊ ℰ as the complement of ∅. ℰ is closed under 
countable intersections, since ⋂ i≥1 Ei = O ∖ ∪i≥1 (O∖Ei).
𝒫(O) is always a 𝜎-algebra and also ℰ={∅, O}.

Definition: A probability measure on (O, ℰ) is a function
Pr : ℰ→ [0,1] such that Pr(O)=1, and for a family of pairwise
disjoint sets: Pr(∪i≥1 Ei) = ∑ i≥1 Pr(Ei).
A probability space is the triple (O, ℰ, Pr).

A taste of probability: 𝜎-algebras



Example: Let us consider the experiment of tossing a fair coin
once. The set O of outcomes is {head, tail}. We can consider the 
singletons {head}, {tail} as the set of events. The smallest 𝜎-
algebra containg such events is 𝒫({head, tail}) with 

Pr(∅)=0, Pr({head})=Pr({tail})=1/2, and Pr({head,tail})=1. ☐

When O is countable, then fixing a function 𝜇 : O → [0,1], such
that ∑ e∊O 𝜇(e) = 1 defines a probability measure on (O, 𝒫(O)), 
defined by Pr(E)= ∑ e∊E 𝜇(e). 

Since E∪(O∖E)=O and they are two disjoint sets, Pr(O∖E)=1-
Pr(E). In particular, Pr(∅)=1 − Pr(O)=0.

Probability measures are monotonic: If E⊆F, then
Pr(F)=Pr(E)+Pr(F∖E) ≥ Pr(E). 

For each set P⊆𝒫(O), there exists a smallest 𝜎-algebra ℰP that
contains P. ℰP is called the 𝜎-algebra generated by P, and P is
the basis.

Probability spaces: properties



Definition: The cylinder set of a finite path 𝜋 = s0s1…sn is
Cyl(𝜋) = {𝜋’ | 𝜋’= 𝜋𝜋’’}.

The 𝜎-algebra ℰM associated with a Markov chain M is
generated by all Cyl(𝜋), for 𝜋 finite path in M. 

Pr(Cyl(s0s1…sn)) = 𝜄(s0) ∏0≤i<n 𝒫(si, si+1)

Notation: We will use LTL-like syntax to denote events in the 
probability space (PathM, ℰM, Pr).

For example, if B⊆S, “F B” is the set of paths that reach the set 
B after a finite number of steps and “GF B” is the event of 
visiting B infinitely often. Sometimes we will write 𝜋 ⊨ 𝜑 for 𝜋 ∊
𝜑 and we denote with Pr(s ⊨ 𝜑) the probability of 𝜑 to hold in 
the state s, that is Pr({𝜋 ∊ Path(s) | 𝜋 ⊨ 𝜑}.  

𝜎-algebras and Markov chains



As for classical Model Checking, one of the basic problems is
reachability: here, the problem is to compute the probability of 
reaching a given set of states B⊆S.

Path(F B)=Pathfin(M) ⋂ (S∖B)*B is the set of path that reach B.

Pr(F B) = ∑𝜋∊ Path(F B)Cyl(𝜋)

Example: Let us compute the probability of reaching the state 
delivered in the simple communication protocol: the path has
the form:

𝜋 = start try (lost try)n delivered

from which we derive:

Pr(F delivered)=∑n ≥ 0 (1/10)n 9/10 = 1

that is quite intuitive: any message will be eventually delivered. 
If we put a bound on retransmissions, say 3, we have: 

Pr(F delivered)= 9/10 + 1/10 * 9/10 + 1/100 * 9/10 = 0.999

Reachability problems



Lex xs = Pr(s ⊨ F B). For s∊B, xs = 1. For s ∊ S∖B, we have:

xs = ∑t ∊ S∖B P(s, t)・xt + ∑u ∊ B P(s, u) (✻)

This is a sort of “probabilistic expansion law”. By considering
only states in S’=Pre*(B)∖B, (✻) x = (xs)s∊S’ becomes: x = A x + b, 
where A is (𝒫(s, t))s,t∊S’ and b is the probability of reaching S’ in 
one step which can be rewritten as (I – A) x = b, where I is the 
identity matrix of size |S’|×|S’|.

Example [Communication Protocol]:  let B = {delivered} and 
S’={start, try, lost}. We can easily obtain the following equations:

xstart = xtry xtry = 1/10 xlost+ 9/10 xlost = xtry

that correspond to the system (the solution is 1 for all states):

1 −1 0

0 1 −
1
10

0 −1 1

𝑥 =
0
9
10
0

Computing probabilities



First compute the set S’. This can be done simply by a 
backward visit starting from B. 

Then generate the matrix A and the vector b and solve the 
linear system (I – A)x = b. This system can have more than one
solutions if I – A is singular.

The solution we are interested is the least solution in [0,1].

To avoid this problem, we considered an iterative method
(instead of direct methods) for a more general problem
constrained reachability, that is for until properties

Algorithm



Let B,C⊆S. We consider the problem of reaching B via a finite 
path fragment in C, that is C U B. For n ≥ 0, the event C U≤n B is
the same, but it is required that B is reached in at most n steps.

We partition S as follows:

• S \(C U B) ⊆ S0⊆{ s ∊ S | Pr(s ⊨ C U B)=0 }

• B ⊆ S1⊆ { s ∊ S | Pr(s ⊨ C U B)=1}

• S?=S ∖ (S0∪S1)

Theorem: The vector (xs)s ∊ S? is the least fixed point of the 
operator 𝚼 : [0,1]n→ [0,1]n defined by: 𝚼(y) = Ay + b, where n is
the cardinality of S?, A is the probability transition restricted on 
states in S?, and b is the vector of probability of enter B in one
step. Furthermore, if x0 is 0 and xn+1= 𝚼(xn), we have:
• xs

n = Pr(s ⊨ C U≤n S1), 
• xs

0 ≤ xs
1 ≤ xs

2 ≤ …, 
• x=limn→∞ xn

Iterat. Constrained Reachability



The previous theorem suggests an iterative algorithm to 
compute xs. x0 = 0 and xn+1 = 𝚼(xn). Since this sequence
converges, we can stop when | xn+1 - xn|< 𝜀, for some small 
tolerance 𝜀. 

Remark: Sets S0 and S1 are not uniquely identified. For 
example, S0 = S \(C U B) and S1 = B suffices. However, the
largest S0 and S1, the faster is the convergence (smaller matrices, 
etc.) A reasonable choice is:

S0 = { s ∊ S | Pr(s ⊨ C U B)=0 } and S1 = { s ∊ S | Pr(s ⊨ C U B)=1 }.

Bounded Until Properties. Taking S0 = S ∖ C U B and S1 = B and 
S? = C ∖ B we have that xn(s) = Pr(s ⊨ C U≤n B).

Remark: The nth power of A contains probabilities to reach a 
state in exactly n steps. More precisely, An(s, t) is the sum of 
probabilities of all paths of the form s=s0s1…sn=t. 

In other words: An(s, t)=Pr(s ⊨ S U=n t)

Iterative Algorithm



If B=∅, S0=S1= ∅ and C = S?= S then A=𝒫, then 𝒫n(s, t) is the 
probability of being in the state t after n steps starting in s, that
is Pr(s ⊨ S U=n t).

The probability of M of being in state t after n steps is the 
transiet probability of state t, defined by 𝜃n(t)=∑s ∊ S 𝒫n(s, t) 𝜄(s) 
and 𝜃n=𝒫n・𝜄.

𝜃n can be used to compute F≤n B and C U≤n B.

Let us consider M’ where we substitute all outgoing arrows
from b ∊ B with self loops of probability 1.

Let us consider M’’ where we substitute in M’ all arrows
exiting from c ∊ S\(C U B) with self-loop of probability 1.

We have: PrM(s ⊨ F≤n B) = PrM’ (s ⊨ F=n B) and PrM(s ⊨ C U≤n B) = 
PrM’” (s ⊨ C U=n B). 

Transient probabilities
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Qualitative properties



Qualitative properties require some event to happen with 
probability 1 or, dually, check if some event occurs with 
probability 0.

Most of qualitative properties can be established just looking at
the underlying digraph, because in a finite Markov chain
almost surely paths eventually enter in a Bottom Strongly
Connected Component (BSCC).

Persistence Properties. The event GF B is measurable. This
event can be written as a countable intersections of countable
unions of cylinder sets (prove this equality is an easy ex):

GF B = ⋂n ≥ 0∪m ≥ n Cyl(“m+1th state is in B”)

Persistence properties of the form FG B are measurable as the 
complement of GF B. As a matter of fact, FG B = S∖ (GF S∖B).

Qualitative properties



In a Markov chain, if a state t is visited infinitely often, then
almost surely all finite path fragments starting in t will be taken
infinitely often. Here “almost surely” has to be read as
conditional probability: an event E holds almost surely under 
another event D, if Pr(D) = Pr(E ⋂ D). 

Theorem: Let M a MC, and s,t ∊ S. Then:
Pr(s ⊨ GF t) = Pr(∧𝜋 ∊ FinPath(t) GF 𝜋)

In particular, the above theorem says that each transition (t, t’) 
such that 𝒫(t, t’)>0  will be taken almost surely. In this sense, 
probabilistic choice is strongly fair.

Theorem: Let M be a MC, and s ∊ S. Then:
Pr({𝜋 ∊ Path(s) | inf(𝜋) ∊ BSCC(M)} = 1

In every MC, almost surely, a path ends in a BSCC of M.

Probabilistic Choice & Fairness



The problem of almost sure reachability amounts to determine
the set of states that reach a given set of goal states B almost
surely.

Theorem: Let M be a finite MC, s ∊ S, and B⊆S. Then the 
following statements are equivalent:
• Pr(s ⊨ F B) = 1
• Post*(t) ⋂ B ≠ ∅ for each t ∊ Post*(s)
• s ∊ S ∖ Pre*(S ∖ Pre*(B))  

This theorem gives a purely graph-theoretic characterisation of 
almost-sure reachability. Observe that from s such that Pr(s ⊨ F
B) = 1 we cannot go outside Pre*(B). 

Algorithm: Build the MC MB where all states in B are made 
absorbing. Then use two backward reachability on MB to 
compute the set of states S ∖ Pre*(S ∖ Pre*(B)) [the first from B
and the second from S ∖ Pre*(B) ] 

Almost sure reachability



The problem of qualitative constrained reachability amounts
to determine the sets of states S0 and S1 such that: 
S0 = { s ∊ S | Pr(s ⊨ C U B)=0 } and S1 = { s ∊ S | Pr(s ⊨ C U B)=1}.

S0 corresponds to the set of states satisfying ¬E (C U B) and can 
be computed by a backward reachability from B.

As for S1, we reduce the problem to an almost sure reachablity
in a slightly modified Markov chain M’. We make absorbing all
states in B and in S∖ (C U B). 
• PrM(s ⊨ C U B) = PrM’(s ⊨ F B) for all s ∊ C ∖ B
• PrM(s ⊨ C U B) = PrM’(s ⊨ F B) = 1 for all s ∊ B
• PrM(s ⊨ C U B) = PrM’(s ⊨ F B) = 0 for all s ∊ S∖ (C ∖ B)

This give a polynomial algorithm (the transformation from M
to M’ is clearly linear in the size of M).

Qualit. constrained reachability



Corollary: Let M be a finite MC, s ∊ S, and B⊆S. Then the 
following are equivalent:
• Pr(s ⊨ G F B) = 1
• T ⋂ B ≠ ∅ for each BSCC T reachable from s.
• s ⊨ AG EF B.

Corollary: Let M be a finite MC, s ∊ S, and B⊆S and let U be 
the union of all BSCC T of M such that T ⋂ B ≠ ∅. Then:

Pr(s ⊨ G F B) = Pr(s ⊨ F U)

Qualitative repeated reachability



In infinite Markov chains, the probability of visit a state 
infinitely often could be always 0. We can have that
Pr(s ⊨ F B) > 0 and Pr(s ⊨ GF B) = 0.

Let us consider the one-dimensional random walk below, 
where p ∊ ]0,1[ and 𝒫(n, n+1) = p, 𝒫(n, n-1) = 1 - p (n>0), 
and 𝒫(0, 0)=1 – p.

For p ≤ 1/2, we have that Pr(n ⊨ F 0) = Pr(n ⊨ GF 0) = 1,  
whereas if p>1/2 it is more likely to move to the right than to 
the left and one can show that Pr(n ⊨ F 0) < 1 
and Pr(n ⊨ GF 0) = 0.

Counterexample: infinite MC
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That’s all Folks…

…Questions?


