Formal Methods in Software Development

O

Ivano Salvo and Igor Melatti

Computer Science Department

SAPIENZA UNIVERSITÀ DI ROMA

Lesson **11**, December 10th, 2019

Probabilistic Systems

Real systems are often dependent on phenomena of a stochastic nature. Here, we address **verification of probabilistic systems**.

By contrast, **probabilistic verification** means no complete coverage ("there is no error with a probability of 90%").

* **Randomized algorithms**: several algorithms (distributed) such leader election use tossing coins to break symmetries.

* Modelling **unreliable or unpredictable** behaviours (ex: message loss, system failures): modelling that with nondeterminism can be too coarse. In late stage of model design, probabilistic valuation can take place of nondet.

* **Performance evaluation**: distribution of inputs, messages, etc. are importat to evaluate quantitative aspects such as waiting time, queue length, expected time between failures.

Verifying Probabilistic Systems

We will see:

- Markov chains as generalisation of Kripke structures and in this view we will have a "state based" approach to Markov chains;
- Probabilities in **Linear Time properties** (here probabilities appear at the "semantic level")
- A logic for defining probabilistic properties (here probabilities are in the syntax): **PCTL**.

Quantitative properties: "The probability for delivering a message in the next *t* time units is 98%"

Qualitative properties: A desired event happens almost surely (i.e. with probability 1) or a bad event occurs almost never (i. e. with probability 0): reachability, persistency, repeated reachability.

Lesson 11a:

Markov Chains

Markov Chains: definition

Definition: A (discrete time) **Markov chain** is a tuple $\mathcal{M} = (S, \mathcal{P}, \iota, AP, L)$ where:

S, *AP*, *L* as usual are states, atomic propositions and labelling

 \mathcal{P} : $S \times S \rightarrow [0,1]$ is the **transition probability function**, such that for all $s \in S$, $\sum_{t \in S} \mathcal{P}(s, t) = 1$

 $\iota: S \rightarrow [0,1]$ is the **initial distribution**, such that $\sum_{s \in S} \iota(s) = 1$

 \mathcal{M} is finite if S and AP are finite, and the size of \mathcal{M} is: $|\mathcal{M}| = |S| + |\{(s, t) \in S : \mathcal{P}(s, t) > 0\}|$ (it is the size of the **underlying digraph**)

We will identify \mathcal{P} with the matrix of probability $[\mathcal{P}(s, t)]_{s,t \in S}$ where the row $\mathcal{P}(s, \cdot)$ contains probability to reach successors of *s*, and the column $\mathcal{P}(\cdot, s)$ contains probability to enter state *s* from its predecessors.

States such that $\iota(s)>0$ are **initial states** and it is the probability that system evolution starts in *s*.

Let us consider an error prone **communication protocol**, that with probability 10% can loose a message. The message is sent until it is eventually delivered.

Probability matrix and initial states (start, try, lost, delivered):

$$\mathbf{P} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{10} & \frac{9}{10} \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \qquad \iota_{\text{init}} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Observe that in the underline Kripke structure (without probabilities) we can check LTL or CTL properties, like:

G X^{100} delivered and **E G**¬delivered

Both these two properties does not hold, even though with very low probability. In particular, the second has probability 0!

Probabilistic model checking allow **quantitative properties** to be checked. **Qualitative** properties are a special case, when we ask for an event to have probability 0 or 1.

Simulation of a standard **six-sided die** by a fair coin [Knuth&Yao]. Are all outcomes equally likely? Exercise ©

Simulation of the **Craps Gambling Game**... Player wins on 7, 11 and loses on 2, 3, 12. Otherwise dice are rolled again, until eventually 7 or the point is obtained. 7 player loses, the point wins.

Markov Chains: terminology

Paths(\mathcal{M}) denotes the set of paths, *Paths*_{fin}(\mathcal{M}) finite paths. When \mathcal{M} is clear from the context, and s is a state, we can use *Paths*(s) and *Paths*_{fin}(s) to denote paths starting at s. In a path $s_0s_1...s_n$ we have that

Direct successors of a state *s* are denoted by Post(s). $Post^*(s)$ is the set of states reachable from *s*. Similarly, direct predecessors of *s* are denoted by Pre(s). $Pre^*(s)$ is the set of states backward reachable from *s*. These notions are naturally extended to sets.

A state *s* of a MC \mathcal{M} is said **absorbing** if $Post^*(s)=\{s\}$, that is $\mathcal{P}(s, s)=1$ and $\mathcal{P}(s, t)=0$ when $s\neq t$.

A taste of probability: σ-algebras

Definition: A σ -algebra is a pair (O, \mathscr{E}) where O is a nonempty set (**outcomes**) and $\mathscr{E} \subseteq \mathcal{P}(O)$ is the set of **events** and it contains the emptyset and it is closed under complementation and countable unions. More formally:

- $\emptyset \in \mathcal{E}$,
- If $E \in \mathcal{E}$ then $O \setminus E \in \mathcal{E}$,
- If $E_1, E_2 \dots \in \mathscr{E}$ then $\bigcup_{i \ge 1} E_i \in \mathscr{E}$.

Observations: $O \in \mathcal{E}$ as the complement of \emptyset . \mathcal{E} is closed under countable intersections, since $\bigcap_{i\geq 1} E_i = O \setminus \bigcup_{i\geq 1} (O \setminus E_i)$. $\mathcal{P}(O)$ is always a σ -algebra and also $\mathcal{E} = \{\emptyset, O\}$.

Definition: A **probability measure** on (O, \mathscr{E}) is a function $Pr : \mathscr{E} \to [0,1]$ such that Pr(O)=1, and for a family of pairwise disjoint sets: $Pr(\bigcup_{i\geq 1} E_i) = \sum_{i\geq 1} Pr(E_i)$. A **probability space** is the triple (O, \mathscr{E}, Pr) .

Probability spaces: properties

Example: Let us consider the experiment of tossing a fair coin once. The set *O* of outcomes is {head, tail}. We can consider the singletons {head}, {tail} as the set of events. The smallest σ -algebra containg such events is $\mathcal{P}(\{\text{head}, \text{tail}\})$ with

 $Pr(\emptyset)=0, Pr(\{\text{head}\})=Pr(\{\text{tail}\})=1/2, \text{ and } Pr(\{\text{head},\text{tail}\})=1.$

When *O* is countable, then fixing a function $\mu : O \rightarrow [0,1]$, such that $\sum_{e \in O} \mu(e) = 1$ defines a probability measure on $(O, \mathcal{P}(O))$, defined by $Pr(E) = \sum_{e \in E} \mu(e)$.

Since $E \cup (O \setminus E) = O$ and they are two disjoint sets, $Pr(O \setminus E) = 1$ -Pr(E). In particular, $Pr(\emptyset) = 1 - Pr(O) = 0$.

Probability measures are **monotonic**: If $E \subseteq F$, then $Pr(F)=Pr(E)+Pr(F \setminus E) \ge Pr(E)$.

For each set $P \subseteq \mathcal{P}(O)$, there exists a **smallest** σ -algebra \mathscr{E}_P that contains P. \mathscr{E}_P is called the σ -algebra **generated** by P, and P is the **basis**.

σ -algebras and Markov chains

Definition: The **cylinder set** of a finite path $\pi = s_0 s_1 \dots s_n$ is $Cyl(\pi) = \{\pi' \mid \pi' = \pi\pi''\}.$

The σ -algebra $\mathscr{E}_{\mathcal{M}}$ associated with a Markov chain \mathcal{M} is generated by all $Cyl(\pi)$, for π finite path in \mathcal{M} .

 $Pr(Cyl(s_0s_1...s_n)) = \iota(s_0) \prod_{0 \le i < n} \mathcal{P}(s_i, s_{i+1})$

Notation: We will use LTL-like syntax to denote events in the probability space (Path_M, $\mathscr{E}_{\mathcal{M}}$, *Pr*).

For example, if $B \subseteq S$, "**F** *B*" is the set of paths that reach the set *B* after a finite number of steps and "**GF** *B*" is the event of visiting *B* infinitely often. Sometimes we will write $\pi \vDash \varphi$ for $\pi \in \varphi$ and we denote with $Pr(s \vDash \varphi)$ the probability of φ to hold in the state *s*, that is $Pr(\{\pi \in Path(s) \mid \pi \vDash \varphi\}$.

Reachability problems

As for classical Model Checking, one of the basic problems is reachability: here, the problem is to compute the probability of reaching a given set of states $B \subseteq S$.

Path(**F** *B*)=Path_{*fin*}(\mathcal{M}) \cap (*S**B*)^{*}*B* is the set of path that reach *B*.

$$Pr(\mathbf{F} B) = \sum_{\pi \in \operatorname{Path}(\mathbf{F} B)} Cyl(\pi)$$

Example: Let us compute the probability of reaching the state delivered in the simple communication protocol: the path has the form:

```
\pi = start try (lost try)<sup>n</sup> delivered
```

from which we derive:

```
Pr(\mathbf{F} \text{ delivered}) = \sum_{n \ge 0} (1/10)^n 9/10 = 1
```

that is quite intuitive: any message will be eventually delivered. If we put a bound on retransmissions, say 3, we have:

 $Pr(\mathbf{F} \text{ delivered}) = 9/10 + 1/10 * 9/10 + 1/100 * 9/10 = 0.999$

Computing probabilities

Lex $x_s = Pr(s \models \mathbf{F} B)$. For $s \in B$, $x_s = 1$. For $s \in S \setminus B$, we have:

$$x_s = \sum_{t \in S \setminus B} P(s, t) \cdot x_t + \sum_{u \in B} P(s, u) \qquad (*)$$

This is a sort of "probabilistic expansion law". By considering only states in $S'=Pre^*(B) \setminus B$, (*) $x = (x_s)_{s \in S'}$ becomes: $x = \mathbf{A} x + \mathbf{b}$, where \mathbf{A} is $(\mathcal{P}(s, t))_{s,t \in S'}$ and \mathbf{b} is the probability of reaching S' in one step which can be rewritten as $(\mathbf{I} - \mathbf{A}) x = \mathbf{b}$, where \mathbf{I} is the identity matrix of size $|S'| \times |S'|$.

Example [Communication Protocol]: let *B* = {delivered} and *S*'={start, try, lost}. We can easily obtain the following equations:

$$x_{\text{start}} = x_{\text{try}}$$
 $x_{\text{try}} = 1/10 \ x_{\text{lost}} + 9/10$ $x_{\text{lost}} = x_{\text{try}}$

that correspond to the system (the solution is 1 for all states):

$$\begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -\frac{1}{10} \\ 0 & -1 & 1 \end{pmatrix} x = \begin{pmatrix} 0 \\ 9 \\ \frac{10}{10} \\ 0 \end{pmatrix}$$

Algorithm

First compute the set *S*′. This can be done simply by a backward visit starting from *B*.

Then generate the matrix **A** and the vector **b** and solve the linear system $(\mathbf{I} - \mathbf{A})x = \mathbf{b}$. This system can have more than one solutions if $\mathbf{I} - \mathbf{A}$ is singular.

The solution we are interested is the **least solution** in [0,1].

To avoid this problem, we considered an **iterative method** (instead of direct methods) for a more general problem **constrained reachability**, that is for until properties

Iterat. Constrained Reachability

Let $B,C \subseteq S$. We consider the problem of reaching *B* via a finite path fragment in *C*, that is *C* **U** *B*. For $n \ge 0$, the event *C* **U**^{$\le n$} *B* is the same, but it is required that *B* is reached in at most *n* steps.

We partition *S* as follows:

- $S \setminus (C \mathbf{U} B) \subseteq S_0 \subseteq \{ s \in S \mid Pr(s \models C \mathbf{U} B) = 0 \}$
- $B \subseteq S_1 \subseteq \{ s \in S \mid Pr(s \models C \cup B) = 1 \}$
- $S_?=S \setminus (S_0 \cup S_1)$

Theorem: The vector $(x_s)_{s \in S?}$ is the least fixed point of the operator $\Upsilon : [0,1]^n \rightarrow [0,1]^n$ defined by: $\Upsilon(y) = Ay + b$, where n is the cardinality of $S_?$, **A** is the probability transition restricted on states in $S_?$, and **b** is the vector of probability of enter *B* in one step. Furthermore, if x^0 is **0** and $x^{n+1} = \Upsilon(x^n)$, we have:

- $x_s^n = Pr(s \models C \mathbf{U}^{\leq n} S_1),$
- $x_s^0 \le x_s^1 \le x_s^2 \le \dots$,
- $x = \lim_{n \to \infty} x^n$

Iterative Algorithm

The previous theorem suggests an iterative algorithm to compute x_s . $x^0 = 0$ and $x^{n+1} = \Upsilon(x^n)$. Since this sequence converges, we can stop when $|x^{n+1} - x^n| < \varepsilon$, for some small tolerance ε .

Remark: Sets S_0 and S_1 are **not uniquely** identified. For example, $S_0 = S \setminus (C \cup B)$ and $S_1 = B$ suffices. However, the largest S_0 and S_1 , the faster is the convergence (smaller matrices, etc.) A reasonable choice is:

 $S_0 = \{ s \in S \mid Pr(s \models C \cup B) = 0 \} \text{ and } S_1 = \{ s \in S \mid Pr(s \models C \cup B) = 1 \}.$

Bounded Until Properties. Taking $S_0 = S \setminus C \cup B$ and $S_1 = B$ and $S_2 = C \setminus B$ we have that $x^n(s) = \Pr(s \models C \cup S^{\leq n} B)$.

Remark: The *n*th power of **A** contains probabilities to reach a state in exactly *n* steps. More precisely, $\mathbf{A}^{n}(\mathbf{s}, \mathbf{t})$ is the sum of probabilities of all paths of the form $s=s_0s_1...s_n=t$.

In other words: $\mathbf{A}^{n}(s, t) = \Pr(s \models S \mathbf{U}^{=n} t)$

Transient probabilities

If $B=\emptyset$, $S_0=S_1=\emptyset$ and $C=S_2=S$ then $A=\mathcal{P}$, then $\mathcal{P}^n(s, t)$ is the probability of being in the state *t* after *n* steps starting in *s*, that is $Pr(s \models S \mathbf{U}^{=n} t)$.

The probability of \mathcal{M} of being in state *t* after *n* steps is the **transiet probability of state** *t*, defined by $\theta_n(t) = \sum_{s \in S} \mathcal{P}^n(s, t) \iota(s)$ and $\theta_n = \mathcal{P}^n \cdot \iota$.

 θ_n can be used to compute $\mathbf{F}^{\leq n} B$ and $C \mathbf{U}^{\leq n} B$.

Let us consider \mathcal{M}' where we substitute all outgoing arrows from $b \in B$ with self loops of probability 1.

Let us consider \mathcal{M}'' where we substitute in \mathcal{M}' all arrows exiting from $c \in S \setminus (C \cup B)$ with self-loop of probability 1.

We have: $Pr_{\mathcal{M}}(s \models \mathbf{F}^{\leq n} B) = Pr_{\mathcal{M}'}(s \models \mathbf{F}^{=n} B)$ and $Pr_{\mathcal{M}}(s \models \mathbf{C} \mathbf{U}^{\leq n} B) = Pr_{\mathcal{M}'''}(s \models \mathbf{C} \mathbf{U}^{=n} B)$.

Lesson 11b:

Qualitative properties

Qualitative properties

Qualitative properties require some event to happen with probability 1 or, dually, check if some event occurs with probability 0.

Most of qualitative properties can be established just looking at the underlying digraph, because in a *finite* Markov chain *almost surely* paths eventually enter in a Bottom Strongly Connected Component (BSCC).

Persistence Properties. The event **GF** *B* is measurable. This event can be written as a countable intersections of countable unions of cylinder sets (prove this equality is an easy ex):

GF
$$B = \bigcap_{n \ge 0} \bigcup_{m \ge n} Cyl("m+1^{th} \text{ state is in } B")$$

Persistence properties of the form **FG** *B* are measurable as the complement of **GF** *B*. As a matter of fact, **FG** $B = S \setminus (\mathbf{GF} S \setminus B)$.

Probabilistic Choice & Fairness

In a Markov chain, if a state *t* is visited infinitely often, then almost surely all finite path fragments starting in *t* will be taken infinitely often. Here "almost surely" has to be read as conditional probability: an event *E* **holds almost surely under another event** *D*, if $Pr(D) = Pr(E \cap D)$.

Theorem: Let \mathcal{M} a MC, and $s, t \in S$. Then:

 $Pr(s \models \mathbf{GF} t) = Pr(\wedge_{\pi \in \operatorname{FinPath}(t)} \mathbf{GF} \pi)$

In particular, the above theorem says that **each transition** (t, t') such that $\mathcal{P}(t, t') > 0$ will be taken almost surely. In this sense, **probabilistic choice is strongly fair**.

Theorem: Let \mathcal{M} be a MC, and $s \in S$. Then: $Pr(\{\pi \in Path(s) \mid inf(\pi) \in BSCC(\mathcal{M})\} = 1$

In every MC, almost surely, a path ends in a BSCC of *M*.

Almost sure reachability

The problem of **almost sure reachability** amounts to determine the set of states that reach a given set of goal states *B* almost surely.

Theorem: Let \mathcal{M} be a finite MC, $s \in S$, and $B \subseteq S$. Then the following statements are equivalent:

- $Pr(s \models \mathbf{F} B) = 1$
- $Post^*(t) \cap B \neq \emptyset$ for each $t \in Post^*(s)$
- $s \in S \setminus Pre^*(S \setminus Pre^*(B))$

This theorem gives a purely graph-theoretic characterisation of almost-sure reachability. Observe that from *s* such that $Pr(s \models \mathbf{F} B) = 1$ we cannot go outside $Pre^*(B)$.

Algorithm: Build the MC \mathcal{M}_B where all states in B are made absorbing. Then use two backward reachability on \mathcal{M}_B to compute the set of states $S \\ Pre^*(S \\ Pre^*(B))$ [the first from B and the second from $S \\ Pre^*(B)$]

Qualit. constrained reachability

The problem of **qualitative constrained reachability** amounts to determine the sets of states S_0 and S_1 such that: $S_0 = \{ s \in S \mid Pr(s \models C \cup B) = 0 \}$ and $S_1 = \{ s \in S \mid Pr(s \models C \cup B) = 1 \}$.

 S_0 corresponds to the set of states satisfying $\neg \mathbf{E}$ ($C \mathbf{U} B$) and can be computed by a backward reachability from B.

As for S_1 , we reduce the problem to an almost sure reachablity in a slightly modified Markov chain \mathcal{M}' . We make absorbing all states in B and in S \setminus (*C* U *B*).

- $\Pr_{\mathcal{M}}(s \vDash C \mathbf{U} B) = \Pr_{\mathcal{M}'}(s \vDash \mathbf{F} B) \text{ for all } s \in C \setminus B$
- $\Pr_{\mathcal{M}}(s \models C \mathbf{U} B) = \Pr_{\mathcal{M}'}(s \models \mathbf{F} B) = 1 \text{ for all } s \in B$
- $\Pr_{\mathcal{M}}(s \models C \mathbf{U} B) = \Pr_{\mathcal{M}'}(s \models \mathbf{F} B) = 0 \text{ for all } s \in S \setminus (C \setminus B)$

This give a polynomial algorithm (the transformation from \mathcal{M} to \mathcal{M}' is clearly linear in the size of \mathcal{M}).

Qualitative repeated reachability

Corollary: Let \mathcal{M} be a finite MC, $s \in S$, and $B \subseteq S$. Then the following are equivalent:

- $Pr(s \models \mathbf{G} \models \mathbf{F} B) = 1$
- $T \cap B \neq \emptyset$ for each BSCC *T* reachable from *s*.
- $s \models \mathbf{AG EF } B$.

Corollary: Let \mathcal{M} be a finite MC, $s \in S$, and $B \subseteq S$ and let U be the union of all BSCC T of \mathcal{M} such that $T \cap B \neq \emptyset$. Then:

 $Pr(s \models \mathbf{G} \models \mathbf{F} B) = Pr(s \models \mathbf{F} U)$

Counterexample: infinite MC

In infinite Markov chains, the probability of visit a state infinitely often could be always 0. We can have that $Pr(s \models \mathbf{F} B) > 0$ and $Pr(s \models \mathbf{GF} B) = 0$.

Let us consider the one-dimensional random walk below, where $p \in [0,1[$ and $\mathcal{P}(n, n+1) = p$, $\mathcal{P}(n, n-1) = 1 - p$ (n > 0), and $\mathcal{P}(0, 0)=1 - p$.

For $p \le 1/2$, we have that $Pr(n \models \mathbf{F} \ 0) = Pr(n \models \mathbf{GF} \ 0) = 1$, whereas if p>1/2 it is more likely to move to the right than to the left and one can show that $Pr(n \models \mathbf{F} \ 0) < 1$ and $Pr(n \models \mathbf{GF} \ 0) = 0$.

Lesson 10

That's all Folks...

... Questions?