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Lesson 8a:

Symbolic Model Checking
with Fairness Constraints



We have to find a procedure CheckFair that checks a CTL 
formula under a set of fairness constraints F = {P1, …, Pk} (here
we consider only unconditional fairness).

This function depends on functions CheckFairEX, CheckFairEU, 
CheckFairEG, fair versions of those of the past lesson. 

Symbolic model checking for formulas EX f and E [f1 U f2] are 
similar to the explicit case. More precisely, let:

fair(v)=checkFairEG(EG True)

Then:

checkFairEX(f(v)) = checkEX(f(v)∧fair(v))

checkFairEX(f(v), g(v)) = checkEX(f(v), g(v)∧fair(v))

Therefore the problem si again to deal with the problem of 
computing EG f. In symbolic model checking, it is again
convenient to model such formula with fixpoints.

Fairness in Symbolic CTL MC



The set Z of states that satisfies EG f given fairness constraints
F = {P1, …, Pk} is the largest set satisfying the following
properties: 

1. all states in Z satisfy f and

2. for all Pk ∊ F and all states s ∊ Z there exists a sequence of 
states in Z starting at s satisfying Pk.

Therefore, Z must satisfy the following formula:

EG f = 𝜐Z. f ⋀ ∧k=1, …, n EX E[f U (Z ⋀ Pk)]

This is not a CTL formula, since it uses both CTL operators and 
fixpoints (by contrast, it’s a 𝜇-calculus formula, see later).

First, we show correctness of this formula, by showing that EG
f is the fixpoint of the equation: 

Z = f ⋀ ∧i=1, …, n EX E[f U (Z ⋀ Pi)]   (1)

EG f under Fairness Constraints



Lemma: The fair version of EG f is a fixpoint of Eq. (1).

Proof: If s ∊ EG f, there exists a fair path starting in s all of 
whose states satisfy f. Let si ≠ s such that si ∊Pi. Also si is the start 
of a fair path satisfying EG f. By repeatedly apply this
argument, it follows that forall i, s ⊨ f∧ EX E[f U (EG f∧ Pi)] 
and hence s ⊨ f ⋀ ∧i=1, …, n EX E[f U (Z ⋀ Pi)].

If s satisfies Eq. (1), there exists a finite path to s’, such that
s’ ⊨ EG f∧ Pi. Along this path, each state satisfies f and s’ is the 
beginning of a fair path satisfying EG f. ☐

Lemma: The greatest fixpoint of Eq. (1) is included in the fair 
version of EG f.

Proof: Let Z be a fixpoint of Eq. (1), then Z⊆EG f. Again, we
can build a path s1, …, sk in Z such that all states satisfy f and 
s1∊P1, …, sk∊Pk. The last state is in Z and hence there exists a 
path back to some path in P1 etc. So, Z⊆EG f and hence EG f is
the greatest fixpoint. ☐

EG f under Fairness Constraints



From the previous characterization of the fair version of EG f, 
the procedure checkFairEG(f(v)) can compute the set of states
Sat(EG f ) as:

𝜐Z(v). f(v) ⋀ ∧k=1, …, n EX E[f(v) U (Z(v) ⋀ Pk)]

Observe that this implies to compute several nested fixpoint
computation inside EU.

Computing fair EG f



Lesson 8b:

Counterexamples
and witnesses



We remind that the falsification of a formula of the form AG f is
a path in which at some point ¬f holds (counterexample).

Dually, the proof of a formula of the form EF f, is a path in 
which at some point, the formula f holds (witness).  

Therefore, the counterexample for a universal quantified
formula is the witness for the dual existentially quantified
formula.

As usual, we restrict our attention to find witnesses for the 
three basic CTL opearators EX, EG, and EU.

Again we will consider the compressed graph of Strongly
Connected Components of the transition graph of the Kripke
structure: this graph does not contain any proper cycle and 
each infinite path must have a suffix entirely contained in some 
strongly connected component.

Counterexamples and Witnesses



Remeber that:
(✻) EG f = 𝜐Z. f ⋀ ∧k=1, …, n EX E [f U (Z ⋀ Pk)]

We build a sequence of prefixes of a path 𝜋, such that 𝜋 ⊨ EG f, 
until a cycle is found. At each step, we must guarantee that the 
current prefix can be extended to a fair path satisfying EG f.

In the evaluation of (✻), we compute a sequence of fixpoints of 
the formula E [f U (Z ⋀ Pk)]. For each constraint P we obtain a 
sequence of sets of states Q0

P⊆ Q1
P⊆ Q2

P⊆… such that Qi
P is a 

the set of states in Z∧P reachable in i or fewer steps. Therefore
we have for each i and P the sequence Qi

P.

Let s ∊ EG f . To minimise the length of the counterexample, we
look for the first fairness constraint that can be reached from s, 
looking in Q0

P for all P in F, then in Q1
P and so on. 

Since s ⊨ EG f, we must eventually find such t. Moreover, t has
a path of length i to a state u in EG f∧P and hence it is in EG f. 
We eliminate P and continue from u…

Witnesses for EG f



At the end we come up with a state s’. We need a path from s’
to t to complete a cycle, along states that satisfies f. We need a 
witness of the formula {s’}∧ EX E [f U {t}]. If it is true, we are 
done (see picture).

Witnesses for EG f



Otherwise, we restart the 
procedure with fairness
constraints F starting from s’. 
Since {s’}∧ EX E [f U {t}] is
false, s’ is not in the SCC of t. 
However, s’∊ EG f and we can 
continue the process.

Observe that we descend in 
the compressed acyclic graph! 

So the process must terminate!

Witnesses for EG f



Lesson 8c:

Symbolic LTL 
model checking



The basic idea of LTL symbolic model checking is similar to 
that of on-the-fly LTL model checking. 

We check M, s ⊨ E f building a Kripke structure T=(ST, RT, LT)
from the formula f, in order to represent all paths that satisfies f. 

Then, we build the product Kripke structure M ⊗ T, and check
on M ⊗ T if there exists a state such that s ∊ sat( f ).

Symbolic LTL MC: ideas



The Kripke structure T is on the set of atomic proposition APf
of atomic propositions occurring as sub-formulas of f.

Each state s ∊ ST = 𝒫(el( f )) is a set of elementary propositions. 

The labeling LT(s) is defined so each state is labeled with the set 
of atomic propositions contained in the state. 

Elementary Formulas



To define the transition relation, we need to define teh set of 
states that satisfies a given formula in el( f ) as follows (observe
why we don’t need to add negations in el( f ) ):

Again, we want to define RT in such a way that each formula 
elementary formula in s in satisfied in s. As usual, we must take 
care of X g and ¬X g.

Building the transition relation



f = ¬heat U close. (microwave oven example)

Example

There exists some 
paths that do not 
satisfy f: for 
example the path 
that loops forever 
in state 3, where 
close never holds.



Theorem. Let T be the tableau for the path formula f. Then, for 
every Kripke structure M and every path 𝜋’ of M, if M, 𝜋’ ⊨ f, 
then there is a path 𝜋 in T such that starts in a state of sat( f ) 
such that labels(𝜋’)|APf = labels(𝜋).

Proof: rather technical. Omitted (see Clarke etal.). ☐

Then, having T = (ST, RT, LT) and M = (SM, RM, LM), we build
the product P = (S, R, L) as follows: 

R may fail to be total: we remove states without successors.

P contains exactly those paths 𝜋’’=(si, si’) such that LT(si)=LM(si’)

Properties of T



Theorem. M, s’⊨ E f if and only if there exists s ∊ T such that
(s, s’) ∊ sat(f ) and P, (s, s’) ⊨ EG true under the fairness
constraints {sat (¬(g U h) ∨h |(g U h) occurs in f }.

Proof: rather technical. Omitted (see Clarke etal.). ☐

A path that satisfies the fairness constraint { sat (¬(g U h) ∨h 
|(g U h) occurs in f } has the property that no subformula of the 
form (g U h) holds almost always on a path while h remain
false. 

Formula EG true under fairness constraints can be checked by 
using CTL (symbolic) model checking.

Properties of T



Representation of T: associate to each formula g in el( f ) a boolean
variable vg. M and T can be defined over variables in APf and some 
additional variable for formulas in el( f ). 

States in M has the shape (p, q), with p boolean variables for atomic
proposition APf and q variables that are not mentioned in f. 

States in T has the shape (p, r) with r variables of non atomic
formulas in the tableau of f. 

As usual, transition relations are predicates over two copies, v and 
v’ of state variables. In particular, P = M ⊗ T, we have:

RP(p, q, r, p’, q’, r’)=RT(p, r, p’, r’)∧RT(p, q, p’, q’)

On this Kripke structure, we can use CTL model checking with 
fairness constraints to determine a set of states V=EG true holds. 
Moreover, we have that M , s ⊨ E f if and only if
s is represented by (p, q) and ∃r. (p, q, r) ∊ V and (p, r) ∊ sat( f ). 

LTL Symbolic Model Checking



Lesson 8d:

The 𝜇-calculus



Widespread use of OBDDs has made fixpoint-based algorithms
appealing for many applications.

The 𝜇-calculus explicitely considers fixpoints in its sintax.

Model-checking procedures follow a bottom-up approach
starting from sub-formulas. Fixpoints are computed by using
iteration and convergence of ascending chains of sets of states.

A naïve approach requires a complexity 𝒪(nk) to evaluate a 𝜇-
calculus formula, where n is the number of states and k is the 
nesting of fixpoint to be evaluated.   

More sophisticated algorithms are 𝒪(nd) where d is the number
of alternation greatest/leatest fixpoint.

The 𝜇-calculus



Formulas of the 𝜇-calculus are relative to a transition system. 

Here we consider a transition system of the form M=(S, T, L), 
similar to Kripke structures, but where the transition relation T 
is partioned into a family of actions 𝛼⊆ S×S.

Let us consider a set of relational variables, Vars={Q, Q1, Q2, …}

• p ∊ AP then p is a formula

• A relational variable Q ∊ Vars is a formula

• If f and g are formulas, then f∨g, f∧g, and ¬f are formulas.

• If f is a formula, 𝛼 ∊ T, then [𝛼] f and ⟨𝛼⟩ f are formulas.

• If Q ∊ Vars and f is a formula then 𝜇Q. f and 𝜐Q. f are formulas

Syntax of the 𝜇-calculus



A formula f is interpreted as the set of states in which f is true.

We write such set ⟦ f ⟧M, e in the transition system M and in the 
environment e, where e is a map from variables to subsets of S.

⟦ p ⟧M, e= { s | p ∊ L(s)} ⟦ Q ⟧M, e= e(Q)

⟦ ¬f ⟧M, e= S ∖ ⟦ f ⟧M, e

⟦ f∨g ⟧M, e= ⟦ f ⟧M, e∪ ⟦ g ⟧M, e ⟦ f∧g ⟧M, e= ⟦ f ⟧M, e ⋂ ⟦ g ⟧M, e

⟦ [𝛼] f ⟧M, e= {s|∀t. (s, t) ∊ 𝛼 and t ∊ ⟦ f ⟧M, e}

⟦ ⟨𝛼⟩ f ⟧M, e= {s|∃t. (s, t) ∊ 𝛼 and t ∊ ⟦ f ⟧M, e}

⟦ 𝜇Q. f ⟧M, e= lfp 𝜏, where 𝜏(Z)=⟦ f ⟧M, e [Q← Z]

⟦ 𝜐Q. f ⟧M, e= gfp 𝜏, where 𝜏(Z)=⟦ f ⟧M, e [Q← Z]

Semantics of the 𝜇-calculus



Negation must be restricted to atomic propositions.

Each logical operator, except negation, is monotonic: f→f’ 
implies f∨g → f’∨g, f∧g→ f’ ∧g, [𝛼] f→[𝛼] f’, and ⟨𝛼⟩ f→⟨𝛼⟩ f’.

Using deMorgan’s laws and duality, we can always push
negation to atomic propositions: 

¬[𝛼] f ≡ ⟨𝛼⟩¬f, ¬⟨𝛼⟩ f ≡ [𝛼]¬f, 
¬𝜇Q. f ≡ 𝜐Q. ¬f(¬Q), ¬𝜐Q. f ≡ 𝜇Q. ¬f(¬Q). 

Observe that bound variables are under a even number of 
negations, they will be negation free at the end of this process!

Remember that in this finite world:

⟦ 𝜇Q. f ⟧M, e=∪i 𝜏i(false) and ⟦ 𝜐Q. f ⟧M, e=⋂i 𝜏i(true)

Monotonicity



There is a naïve recursive algorithm to compute the set of states
⟦ f ⟧M, e recursively on the syntactic structure of f: 

Evaluating fixpoint formulas

Recursive calls



Evaluating fixpoint formulas

Least fixpoint
computation

Greatest fixpoint
computation

Can trigger nested
fixpoint computations
with different values for
variables! 𝒪(nk), n number
of states, k nesting



The overall complexity is 𝒪(|M|・|f|・|S|k), being 𝒪(|M|・
|f|) the cost of a single iteration.

Observation: it is not necessary to reinitialize from false (or true) 
nested least (or greatest) fixpoint computations of the same type
of its outermost fixpoint.

Example: Let us consider the formula: 𝜇Q1.g1(Q1, 𝜇Q2.g2(Q1, Q2)). 
Let 𝜏(Q1)=𝜇Q2.g2(Q1, Q2) be a monotonic predicate transformer. 
When evaluating the outermost fixpoint, we start with Q1

0=false
and then computing 𝜏(Q1

0): this is done by iteration of the inner
fixpoint, computing a sequence Q2

0,0⊆ Q2
0,1⊆…⊆Q2

0,𝜔 and so 
we get the first approximation Q1

1=g1(Q1
0, Q2

0,𝜔).

The next inner fixpoint computation of 𝜏(Q1
1), will start from 

Q2
1,0= Q2

0,𝜔 =𝜏(Q1
0) rather than Q2

1,0=false. In general we start the 
inner fixpoint in the ith iteration of the outer fixpoint, from Q2

i,0=
Q2

i-1,𝜔.

Optimizations



This works because of the following corollary of Knarster-Tarski
fixpoint theorem:

Corollary: 𝜏 monotonic and W⊆𝜇𝜏, then 𝜏i(W)⊆𝜇𝜏.

Since we never restart the inner computations, we need 𝒪(kn) 
instead of 𝒪(nk). 

As a consequence, if the alternation depth of a formula f is d, the 
algorithm can compute fixpoint in 𝒪((|f|・n)d), because |f| is
an upperbound of the number of nested fixpoint of the same
kind.

The algorithm is similar to the naïve version, except it stores
intermediate approximations in an array (see next slide), whose
size is the total number of fixpoint computations.

Optimizations



Optimized fixpoint computation

reset only greatest fixpoint computations. 

reset only least fixpoint
computations. 

Least fixpoint
computation

Greatest fixpoint
computation



States are represented by a vector x of boolean variables.

As usual, there exists an OBDD, Op(x) for each atomic
proposition p ∊ AP. 

Each transition relation 𝛼 is an OBBD O𝛼(x, x’).

The function assoc[Qi] plays the role of environments in OBDD 
representation and return the OBDD corresponding to the set 
of states associated to the relational variable Qi.

We will define a function ℬ(f, assoc) that taking a 𝜇-calculus
formula f and an association list assoc that assign an OBDD to 
each free relational variables of f, returns an OBDD 
corresponding to the semantics of f, that is ⟦ f ⟧M, e

Repr. 𝜇-calculus with OBDDs



ℬ(p, assoc) = Op(x) ℬ(Qi, assoc) = assoc(Qi) 

ℬ(¬f, assoc) = ¬ ℬ(f, assoc) 

ℬ(f∧g, assoc) = ℬ(f, assoc) ∧ ℬ(g, assoc)

ℬ(f∨g, assoc) = ℬ(f, assoc) ∨ ℬ(g, assoc)

ℬ(⟨𝛼⟩ f, assoc) = ∃x’ [O𝛼(x, x’)∧ ℬ(f, assoc)(x’)]

ℬ([𝛼] f, assoc) = ∀x’ [O𝛼(x, x’)∧ ℬ(f, assoc)(x’)]

where O(x’) is the OBDD in which occurrence of each
variable xi is substituted by its primed version x’i.

ℬ(𝜇Q. f, assoc) = fix(f, assoc, Ofalse, Q)

ℬ(𝜐Q. f, assoc) = fix(f, assoc, Otrue , Q)

where fix is the OBDD version of usual gfp/lfp
iterative computation

Repr. 𝜇-calculus with OBDDs



function fix(f, assoc, ℬ, Q)
Ores = ℬ;
repeat

Oold = Ores

Ores = ℬ (f, assoc⟨Q:= Oold ⟩)
until Oold == Ores

return Oold == Ores

where assoc⟨Q:= Oold ⟩ creates a new variable Q and associate 
the OBDD Oold with Q.

Fix computation with OBDDs



𝒯(p) = p

𝒯(¬f ) = ¬𝒯(f )

𝒯(f∧g) = 𝒯(f )∧ 𝒯(g)

𝒯(EX f ) = ⟨𝛼⟩ 𝒯(f )

𝒯(E [f U g]) = 𝜇Y. 𝒯(g)∨(𝒯(f ) ∧⟨𝛼⟩ Y)

𝒯(EG f ) = 𝜐Y. 𝒯(f )∧⟨𝛼⟩ Y

Example: The CTL formula EG (E [p U q]) is translated into the 
𝜇-calculus expression 𝜐Y. (𝜇Z. (q∨(p∧⟨𝛼⟩ Z)) ∧ ⟨𝛼⟩ Y).

Theorem: Let M=(S, T, L) be a Kripke structure and 𝛼 be the 
transition relation T. Let f be a CTL formula. Then, for all s ∊ S:

M, s ⊨ f ⇔ s ∊ ⟦𝒯(f )⟧M

Translating CTL into 𝜇-calculus



The model checking problem for the 𝜇-calculus has been
proven to be in NP ⋂ co-NP. This essentially comes from the 
following facts: 

1. in the 𝜇-calculus we can easily negate formulas;

2. the problem is in NP because it is polynomial to check if a 
given guess for a fixpoint is indeed a fixpoint.

Clarke etal. conjectures that there exists no polynomial
algorithm… but it’s very difficult to prove this statement. On 
the other hand, if it would be NP-complete, then NP=co-NP 
which is unlikely to be true.

Complexity Considerations



Lesson 8

That’s all Folks…

…Questions?


