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Lesson 6a:

The Fairness problem



• System models often abstracts from details such as, for 
example, scheduler policies.

• Interleaving semantics does not rule out unrealistic
behaviour, for example, those in which some processes do 
not make any progress.

Of course, one can embody a fair process scheduling in the 
model, as in the case of Peterson mutual exclusion algorithm. 

Alternatively, one can assume some fairness properties, and 
perform model checking under such assumptions. 

Fairness



Mutual Exclusion with shared variables: The starvation
freedom property:

“Once access is requested, a process does not have to wait infinitely
long before acquiring access to its critical section”

is violated, just because, abstracting from the scheduling
policy, a legal execution of the system assignes the critical
resource always to the same process.

The property:

“Each of the processes is infinitely often in its critical section”

is violated also by the Peterson protocol, as it does not exclude
that a process would never (or finitely often) request to enter
its critical section.

Example: (un)fair Schedulers



Example: Interleaving Semantics

Two independent traffic lights (lesson 1): Interleaving
semantics allows infinite executions in which only the first 
traffic light commute: {red1, red2}{green1, red2} {red1, 
red2}{green1, red2} {red1, red2}{green1, red2}…



Unconditional Fairness: “every process gets its turn infinitely
often” (without conditions, aka impartiality)

Strong Fairness: “every process that is enabled infinitely often
gets its turn infinitely often” (aka compassion)

Weak Fairness: every process that is continously enabled from 
a certain point on gets its turn infinitely often” (aka justice)

Many other fairness notions have been introduced in literature
and there is no clear consensus about which notion should be 
used in some scenario.

Fairness notions



Fairness def. (action based)

G F 𝜑

G F 𝜑→ G F 𝜓

F G 𝜑→ G F 𝜓

LTL (state based) 
equivalent formulas



Ex: Shared variables program

This process terminates only if unconditional fairness is
assumed…If process Inc or process Reset can execute infinitely
often, the concurrent program does not terminate.

[Brackets ⟨…⟩ means “atomic actions”]

Which notion of fairness we should use? No answer!

Keep in mind: if the fairness constraints are too strong, 
relevant computation can be ruled out. By contrast, if the 
fairness constraints are too weak, we refute a property because
we consider unrealistic behaviour of a system.

Uncond. Fairnes A ⟹ Strong Fairness A ⟹ Weak Fairness A



The dashed execution fragment is strongly fair premises are 
vacously true), but not unconditionally fair for {enter2}. The 
dotted is weakly fair, but not strongly fair. Process 1 requests
access infinitely often, but not continously. 

Mutual Exclusion Reloaded



The strong fairness assumption {{enter1, enter2}} ensure only
that one of the two process enter its critical section infinitely
often. Probably, {{enter1}, {enter2}} is the intended solution!

Example: How to model Fairness



Definition: Let P⊆ (2'()* be an LT property over AP and let F
be a fairness assumption over A. A transition system M fairly 
satisfies P, notation M ⊨F P, if and only if fairTraces(M)⊆P. 

If all executions of M satisfies F, then M ⊨F P iff M ⊨ P. More in 
general, we have that M ⊨ P ⟹ M ⊨F P.

As said before, we also have:

M ⊨weak F P ⟹ M ⊨ strong F P ⟹ M ⊨ uncond F P

Example: Independent Traffic Lights. The fair assumption:

{{switchToGreen1, switchToRed1},{switchToGreen2, switchToRed2}}

rules out unrealistic behaviour, no matter if this is interpreted as strong, 
weak or unconditional fairness constraint.

TrLight1 ⫴ TrLight2 ⊨F F G green ≡“each traffic light is green infin. often”

Fairness: Linear Time Properties



Let us consider again the semaphore based mutual exclusion
protocol. Let us define the following fairness constraints:

Fweak= {{req1},{req2}} Fstrong= {{enter1},{enter2}} Funcond = ∅

The strong fairness assumption Fstrong does not forbid a process
to never release its critical section. 

The weak fairness assumption Fweak implies that a process
requires to enter critical section infinitely often (and hence it has
to leave infinitely often its critical section).

Also Peterson’s protocol ensure that process will enter its critical
section if it requires it infinitely often. But it does not ensure that
processes leave their critical section. To ensure this, we should
impose the weak fairness assumption Fweak= {{req1},{req2}}. 

Example: Mutual Exclusion



Rule of Thumb:

Strong fairness is appropriate to obtain an adequate resolution
of contentions between processes

Weak fairness suffices for sets of actions that represent the 
concurrent execution of independent actions (interleaving)

Example: Let us assume we have n processes represented by 
transition systems Mi = (Si, Ai, →i, APi, Li) and consider the 
parallel composition Mi = M1 ⫴ M2 ⫴ … ⫴ Mn. Let us suppose 
that each pair of processes synchronize on a set of actions Hi,j.

Weak or Strong Fairness



The strong fairness assumption {A1, A2, …, An} means that each
process progress infinitely often (provided that infinitely often a 
process has an enabled action to execute). This assumption is
satisfied, however, only with internal actions and no sync!

{{𝛼} | 𝛼 ∊ Hi,j 0 < i < j ≤ n } forces every sync action to be 
performed infinitely often. 

{Hi,j | 0 < i < j ≤ n } forces every pair of processes to synchronize
infinitely often, maybe on the same action.

{⋃ 𝐻.,0�
23.3045 } just requires that there are infinite synchronization

actions, regardless of which are processes involved.

For internal actions, the weak fairness assumption: {A1\H1, …, 
An\Hn }, where Hi= ⋃ 𝐻0�

.60 , is appropriate, since internal actions
are continously ready to be executed.

Example: Fair Synchronization



Lesson 6b:

Fairness in LTL Model 
Checking



The three notions of fairness we have considered can be 
expressed by LTL formulas of the shape:

Unconditional fairness: G F 𝜑

Strong fairness: G F 𝜑→ G F 𝜓

Weak fairness: F G 𝜑→ G F 𝜓

The only problem is that LTL formulas are built on atomic
propositions that label states: therefore 𝜑 and 𝜓 depend on the 
state labeling and they single out set of states of a transition
system M, i.e. { s | M, s ⊨ 𝜑}.

However, this is not a limitation…

Fairness is expressible in LTL



The strong (action based) fairness assumption Fstrong= 
{{enter1},{enter2}} can be represented by the (state based) LTL 
formula (observe that enter1 can be executed only if P1 is in the 
state wait1 and P2 is not in its critical section):

sfair1 = G F (wait1∧ ¬crit2) → G F crit1

The assumption sfair2 can be defined analogously.

Fstrong does not forbid a process to never leave its critical
section. The (action based) weak assumption = {{req1}, {req2}} 
can be encoded as the (state based) LTL formula (observe that
the action req1 is executable only if P1 is in the state noncrit1)

wfair1 = F G noncrit1 → G F wait1

The assumption wfair2 can be defined analogously.

Mutual Exclusion



Kripke structures have no action labels. One can always keep
information into states.

Let M be a transition system (S, A, →, I, AP, L). We can define
the system M’=(S’, A’, →’, I’, AP’, L’) where:

• A’ = A∪{ begin }, 

• I’ = I × { begin }, 

• S’= I’ ∪(S×A), 

• If s0 →𝛼 s (s0 ∊ I), then (s0, begin)→’𝛼 (s, 𝛼). 
If s→𝛼 s’ then (s, 𝛽) →’𝛼 (s’, 𝛼)

• AP’ = AP ∪{enabled(𝛼), taken(𝛼) | 𝛼 ∊ A} 

• L’(s, 𝛼) = L(s) ∪{taken(𝛼)} ∪{enabled(𝛽) | 𝛽∊Act(s)} and L’(s0, 
begin) = L(s0) ∪{enabled(𝛽) | 𝛽∊Act(s0)}

Action vs State based Fairness 1



Theorem. traces(M) = traces(M’). Moreover, strong fairness for 
a set of actions F⊆ A can be described by the LTL formula:

strongFairF≡ G F enabled(F)→taken(F)

[similar for weak fairness and unconditional fairness]

Theorem. Let M be a transition system without terminal states
and let 𝜑 be a LTL formula and let F be a fairness assumption
that can be modeled by a LTL formula 𝜓. Then:

M ⊨F 𝜑 if and only if M ⊨ 𝜓 → 𝜑

Action vs State based Fairness 2



Best LTL model checking algorithms are exponential on the 
size of the formula 𝜑 to be verified.

If fairness constraints are modeled by complex LTL formula 𝜓, 
the computational cost to solve the model checking problem

M ⊨ 𝜓 → 𝜑

could be huge! 

Be careful about complexity



Lesson 6c:

Fairness in CTL 
& CTL Model Checking

with fairness constraints



We will consider strong fairness constraints of the form:

𝑠𝑓𝑎𝑖𝑟 = > 𝐆	𝐅	𝜑. 	→ 𝐆	𝐅	𝜓.

�

C4.4D

Where 𝜑i and 𝜓i are CTL formulas (without fairness). Observe
that being CTL formulas, 𝜑i and 𝜓i identify a set of states of a 
Kripke structure M: Sat(𝜑i) = { s |M, s ⊨ 𝜑i }.
On the other hand, given a path 𝜋 = s0s1s2…, we have:

𝜋 ⊨LTL G F 𝜑i → G F 𝜓i 

if for all 1≤ i ≤ k, there exists j such that sj ⊨CTL 𝜑i for finitely
many indices j, or sj ⊨CTL 𝜓i for infinitely many indices
(remember that a→b ≡ ¬a ⋁ b).
A path 𝜋 is fair M, if 𝜋 ⊨LTL G F 𝜑i → G F 𝜓i . We denote with: 
• fairPaths(s) the set of fair paths starting in a state s, 
• fairPaths(M) the set of fair paths starting in an initial state s0 

of M.

Strong Fairness in CTL



Formulas of the form G F 𝜑→ G F 𝜓 are not in CTL, because:
1. The formula G F 𝜑 has two consecutive temporal operators
2. The boolean connective → is applied to two path formulas

In CTL we must change the semantics of E and A stipulating
that they quantify over fair paths.

We define a new ⊨F semantic satisfaction judgement:

Fairness is not expressible in CTL

Observe that 1. influence indirectly also the semantics of 
temporal operators X or U!!!



Theorem. The CTL model checking problem with fairness can 
be reduced to:
1. The CTL model checking problem without fairness, and
2. The problem of computing Satfair(E G a) for some a ∊ AP.

Proof: This approach is quite straightforward for the 
propositional logic fragment, for example Satfair(a) if a ∊ L(s) and 
there exists a fair path starting in s, that is M, s ⊨fair E G true.
Similarly, of course, for M, s ⊨fair E X f : there must be a fair path
starting in s such that s1 ⊨ f and M, s1 ⊨fair E G true.
As for M, s ⊨fair E [f1 U f2] there must be a fair path starting in s
such that there exist M, sn ⊨fair f2 and M, si ⊨fair f1 M, for all 1≤ i ≤ 
n and sn ⊨fair E G true (observe that only the infinite suffix is
relevant for fairness).  
Obviously, in the iterative CTL algorithm, M, s ⊨fair E G f is
applied when f has been processed, and hence the problem is to 
check M, s ⊨ E G af with af atomic proposition.☐

CTL model checking with fairness



Let afair be a fresh atomic proposition such that:
afair ∊ L(s) if and only if s ∊ Satfair(E G true) ≡ M, s ⊨fair E G true

Then:
Satfair(E X a) ≡ Sat(E X a ∧ afair)

Satfair(E [a U a’]) ≡ Sat(E [a U a’∧ afair])

And those on the right-hand side are pure CTL formulas that
can be computed by the usual CTL algorithm (see lesson 3).

Therefore, we are left with the problem of computing
Satfair(E G a)

That, in particular, can be used to compute afair ∊ L(s) ≡ s ∊
Satfair(E G true). 

Summing up…



Lemma. Let sfair = ⋀ 𝐆	𝐅	𝑎. 	→ 𝐆	𝐅	𝑏.�
C4.4D be a fair constraint. 

Then M, s ⊨sfair EG a if and only if there exists a finite path s0s1…sn
and a cycle s’0s’1…s’r such that:
i. s=s0 and s’0= s’r

ii. si ⊨ a for all 0 ≤ i ≤ n and s’j ⊨ a for all 0 ≤ j ≤ r 
iii. For all 0 ≤ i ≤ k Sat(ai) ⋂ {s’0, s’1, …, s’r } = ∅ or

Sat(bi) ⋂ {s0, s1, …, sn } ≠ ∅
Proof (if): Clearly s0s1…sn(s’0s’1…s’r )𝜔 is a fair path according to 
sfair satisfying EG a.
(Only if) M, s ⊨sfair EG a implies that there exists an infinite fair 
path 𝜋 = s0s1s2 … such that 𝜋 ⊨sfair G a and 𝜋 ⊨ sfair. Two cases:
1. 𝜋 ⊨ G F ai. This implies exists s’ ⊨ bi visited infinitely often in 𝜋. 

Let n and r be the first and second occurrence of s’. Clearly {s0, s1, 
…, sn } and {sn, sn+1, …, sr } satisfies iii.
2. 𝜋 ⊭ G F ai. Then there exists m such that sm, sm+1, …∉ Sat(bi). 

There are finitely many states, there is a cycle sn, sn+1, …, sr (n>m) 
such that Sat(ai) ⋂ {sn, sn+1, …, sr} = ∅. ☐

Checking M, s ⊨fair EG a (1)



The previous Lemma can be used as follows. Consider the graph
Ga whose nodes Va = {s | M, s ⊨ a } and edges Ea = {(s, s’) ∊ R| s ∊
Va, s’ ∊ Va }. 
Each infinite path in Ga is a path in M satisfying G a. 
Conversely, each path in M satisfying G a is a path in Ga.
M, s ⊨sfair EG a if and only if there exists a nontrivial SCC C in Ga
reachable from s and a set of nodes D⊆C such that for all 0 ≤ i ≤ 
k, D ⋂ Sat(ai) = ∅ or D ⋂ Sat(bi) ≠ ∅. 

Satfair(EG a) = {s | exists C reachable from s in Ga}

Unconditional Fairness: in this case, ai is true for all i. Observe
that in this case, fair path corresponds to accepting runs of a 
Generalised Büchi automaton. 

Checking M, s ⊨fair EG a (2)



G1 satisfy unconditional fairness constraint G F b1∧ G F b2 
because there is the SCC {s2, s3, s4}. 
By contrast, G2 does not satisfy G F b1∧ G F b2 because there is
the SCC {s2, s3, s4} that contains b2 and the SCC {s1} that contains
only b1, but no one of them contains both b1 and b2.

Example: unconditional fairness

G1

G2



Lesson 6

That’s all Folks…

…Questions?


