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Lesson 5a:

Counteracting the  
State Explotion Problem:
Partial Order Reduction



Basic idea: Having to check M ⊨𝜑, find a (hopefully) smaller 
system M’, such that M ⊨𝜑 if and only if M’ ⊨𝜑. 

This idea is related to the definition of some equivalence ≅
among transition systems or Kripke structures, so that M ≅M’.

As a matter of fact, depending also on the property 𝜑 (and the 
temporal logic at hand), many behaviours of M can be 
irrelevant to the satisfaction of M ⊨𝜑.

Ideally:

• M’ should be much smaller than M.

• The computation of M’ should be much faster than checking 
M ⊨𝜑 . 

Equivalences



One source of the combinatorial explosion of the model size is
interleaving semantics of concurrent processes: since we want
to abstract wrt the computation order (or relative speed of 
execution of parallel processes) the model checker must 
generate all possible interleavings.

Intuition: Most of actions of a process are independent from 
those of other processes that run in parallel with it (for example
access to local variables) and therefore the order of execution
of such action is irrelevant.

By contrast, access to shared variables and synchonization
actions must respect some order of executions.

Interleaving Semantics



Let’s imagine that in some state s, n independent actions 𝛼1, …, 
𝛼n are enabled. This situation produces 2n states and n! paths.

If actions are independent, one single execution (and n states
on it) is representative enough to the whole system behaviour
(model checking using representatives)

Example: Representative

Example with n = 3



The basic idea is for each state s, to determine a set of 
transitions ample(s)⊆enabled(s) = {𝛼 | ∃s’ s→𝛼 s’} 

Reduced Graph: ample set

This algorithm builds 
the system M’ by using 
ample(s) instead of 
enabled(s). Observe that
this algorithm constructs
the reduced graph M‘ 
directly. 

Constructing before M
and then M’ makes no 
sense!



Building the reduced graph using for each state s ample(s) 
instead of enabled(s) is effective only if we find a systematic
way to compute ample(s) in such a way that:

1. when ample(s) is used instead of enabled(s) sufficiently
many behaviours must be present in ample(s) in order to 
ensure that model checking is correct;

2. using ample(s) instead of enabled(s) must prune 
significantly the modelling automata M.

3. The overhead in calculating ample(s) must be reasonably
small.

Ample set: expected properties



We assume systems action deterministic: 𝛼(s) denotes the only
state s’ such that s→𝛼 s’. 

Definition: Two actions 𝛼 and 𝛽 are independent if, for all states s
such that 𝛼, 𝛽 ∊ enabled(s), we have:
• 𝛽 ∊ enabled(𝛼(s))      [The execution of 𝛼 does not disable 𝛽] 
• 𝛼 ∊ enabled(𝛽(s)) [The execution of 𝛽 does not disable 𝛼]
• 𝛼(𝛽(s)) = 𝛽(𝛼(s))       [𝛼 and 𝛽 commute]
Otherwise, 𝛼 and 𝛽 are dependent.

To take advantage of independent
actions, and consider just one
path of execution, we must be
sure that: 
1. the property is not sensible to 
states s1 and s2, and

𝛾 2. discarding s1 or s2 we don’t
discard some relevant behaviors. 

Independent actions



Consider two program graphs P1 and P2. If 𝛼 access local
variables of P1 only and 𝛽 access local variables of P2 only, then
𝛼 and 𝛽 are independent in P1 ⫴ P2.

More precisely: 
If effect(𝛼, 𝜂)(x) = 𝜂(x) for all variables x accessed by P2
If l→g:𝛼l’ in P1 and the guard g not refer variables of P2

enter1 and enter2
are dependent,

(enter1, req2), 
(enter2, req1), 
(rel, req2), 
(rel, req1) are
pairs of 
independent
actions. 

Example: Mutual Exclusion



Definition: An action 𝛼 is invisible (or stutter) with respect to 
a set of atomic propositions AP’⊆AP if for each pair of states s, 
s’ such that s’= 𝛼(s), L(s) ⋂ AP’ =L(s’) ⋂ AP’.

Here, 𝛾 and 𝛽 are invisible actions, whereas 𝛼 is not.

Invisible actions



Definition: Two paths 𝜌=r0r1r2… and 𝜋 =s0s1s2… are stuttering
equivalent (𝜌 ∼st 𝜋) if there exist two infinite sequences of 
integers i0 ≤ i1 ≤ i2 ≤… and j0 ≤ j1 ≤ j2 ≤… such that for all k ≥ 0:

L(𝑟)*) = L(𝑟)*-.) = ⋯ = L(𝑟)*-.01) =
= L(𝑠3*) = L(𝑠3*-.) = ⋯ = L(𝑠3*-.01)

Theorem. Any LTL-X property is invariant under stuttering.

Theorem. Every LTL property that is stuttering closed can be 
expressed in LTL-X.

Stuttering Equivalence



Definition: Two transition systems M and M’ are stuttering
equivalent if and oly if:

• M and M’ have the same set of initial states;

• For each path 𝜋 in M from an initial state s, there exists a 
path 𝜋’ in M’ from s such that 𝜋 ∼st 𝜋’.

• For each path 𝜋’ in M’ from an initial state s, there exists a 
path 𝜋 in M from s such that 𝜋 ∼st 𝜋’.

Corollary: Let M and M’ be stuttering equivalent systems. 
Then, for every LTL-X property 𝜑, M, s ⊨A 𝜑 if and only if M’, s
⊨A 𝜑

Stuttering Equivalent Systems



❖Lemma: Let 𝛼 be independent of {𝛽1, …, 𝛽n, …}. If we have:
If s0→𝛽1

s1 →𝛽4
s2 →𝛽5

…→
𝛽6	

sn →𝛽6
… and 𝛼 ∊ enabled(si), we

have

s0→𝛼 t0 →𝛽1
t1 →𝛽4

t2 →𝛽5
…→

𝛽6	
tn and ti =𝛼(si)

Proof: induction on n, by using def. of independent actions.

❖Lemma: Let 𝛼 be independent of {𝛽1, …, 𝛽n}. If we have:
If s0→𝛽1

s1 →𝛽4
s2 →𝛽5

… and 𝛼 ∊ enabled(si), we have

s0→𝛼 t0 →𝛽1
t1 →𝛽4

t2 →𝛽5
… and ti =𝛼(si)

Proof: Limit on n, by applying the previous Lemma.

❖ Lemma: If 𝛼 is invisible, s0→𝛼 t0 →𝛽1
t1 →𝛽4

t2 →𝛽5
… and s0→𝛽1s1 →𝛽4

s2 →𝛽5
… are stutter equivalent.

Proof: By invisibility of 𝛼, we have L(s0)=L(t0), L(s1)=L(t1) etc. 

Permuting/adding indep. actions



Lesson 5b:

Characterizing
the ample set



Previous Lemmas ensure that if we find a set of actions ample(s) 
independent from thos in enabled(s)\ample(s), we can always
execute first action in ample(s) pruning from the behaviour of a 
system only stuttering equivalent paths. 

Instead of giving a specific algorithm, we first devise 4 
conditions that must be satisfied by the ample set to be sure
that the validity of the property is preserved.

Some of these conditions are computationally prohibitively
hard to be exactly satisfied. Therefore, algorithms to compute 
the ample set are usually based on some heuristics.

Characterising the Ample set



Condition C0: (NON-EMPTINESS CONDITION) ample(s)= ∅ if and 
only if enabled(s) = ∅

Condition C1: (DEPENDENCY CONDITION) Along every path in 
the full state graph that starts at s a transition that is
dependent on ample(s) cannot be executed without a transition
in ample(s) occurring first.

Condition C2: (INVISIBILITY CONDITION) If s is not fully
expanded, then each action in ample(s) is invisible.

Condition C3: (CYCLE CONDITION) A cycle C is not allowed if it
contains some state s such that 𝛼 ∊ enabled(s) but 𝛼 ∉ ample(q) 
for some q ∊ C.

Characterising the Ample set



Lemma: Condition C1 implies that all actions in ample(s) are 
independent from those in enabled(s) ∖ ample(s).

Proof: Let us assume that there exists 𝛽 ∊ enabled(s) ∖ ample(s) 
dependent from 𝛼 ∊ ample(s). Since 𝛽 ∊ enabled(s), there exists a 
path that starts with action 𝛽. But then a transition dependent
on some transition in ample(s) is executed first, thus
contradicting condition C1. ☐

This lemma (together with previous ones on 
permuting/adding independent actions) ensure that we do not
omit any essential path to check correctness.

Dependency Condition



In other words, condition C1 implies that we can start always
with an action in ample(s): other execution orders are 
equivalent. Invisibility condition C2 makes all these paths
commute!

Invisibility condition



Condition C3 is needed to ensure that every action belongs to 
ample(s) for some state s.

Cycle condition

Two systems

Their parallel
Composition
(𝛽 is visible) Satisfies C0, C1

C2, but some behaviours
are missing



Example: Peterson Protocol

𝜑 = G ¬CR0 ∧ ¬CR1



Example: Peterson Protocol

The visible actions w.r.t. AP’={CR0, CR1} are {𝛾0, 𝛾1, 𝛿0 , 𝛿1} since
they change the value of atomic propositions.

𝛽0 and 𝛽0 are invisible and independent each other, so that in 
states s3 and s10 we choose one of them as ample set.

In state s4 the ample set is {𝛾0, 𝜀1} because 𝛾0 is visible and 𝜀1 
being a self-loop would violate condition C3.



Example: Peterson Protocol



Lesson 5c:

Computing 
the ample set



Theorem: Checking condition C1 for a state s and a set of 
actions A⊆enabled(s) is at least as hard as checking
reachability for the full state space.

Proof: Let us consider the problem of checking if a state r is
reachable from a an initial state s0 in a transition system M. We
build M’ such that C1 is violated iff r is reachable from s0.

Let M’ be M plus 2 new transitions {𝛼, 𝛽}: 𝛼 and 𝛽 are 
dependent each other and independent wrt original transitions
in M. 𝛼 is enabled in r only and 𝛽 elsewhere. Now, we consider
the problem of checking C1 with {𝛽} as a candidate ample(s0). 

If C1 is violated, we can execute 𝛼 before 𝛽. But 𝛼 is enabled
only in r. Therefore there exists a path from s0 to r in the 
original graph (we do not execute 𝛽). 

Assuming r reachable from s0, we can violate C1 in the same
way, going from s0 to r in the original graph and then executing
𝛼 (before 𝛽).☐

Computing Dependency Cond.



Condition C3 is also global, but refers to the reduced graph. So 
it can be enforced first building the reduced graph and then
correcting it.

Lemma: A sufficient condition for C3 is that at least one state 
along each cycle is fully expanded.

Proof: Assume, by contradiction, there is a cycle with a fully
expanded state that does not satisfy C3. 

Then there exists 𝛼 enabled somewhere that does not belong to 
any ample set. This implies that 𝛼 is independent from all
actions in the ample set and therefore if it is enabled in some 
state it will remain enabled in all states of the cycle (Lemma on 
independency). 

But then there exists one state that is fully expanded and 
necesseraly 𝛼 is included in such ample set. Contradiction.☐

Ensuring Cycle Condition



Heuristics to enforce efficiently C3 depend on the search
strategy.

In a DFS, there is a cycle if we find a back edge. Thus we can 
consider the following (stronger) condition:

Condition C’3: If s is not fully expanded, then no transition in 
ample(s) reaches a state on the search stack. 

We select ample(s) so that it does not include a backward edge.

In BFS, search proceeds by levels and a necessary (but not
sufficient) condition to detect a cycle is to visit an edge that
leads to a state in the current or in a previous level.

Therefore, using such edges can lead to fully expands too many
states.

Ensuring Cycle Condition



Because of complexity negative results, some heuristics enforcing
conditions C0-C3 are applied: correctness is guaranteed, probably
without achieving the maximum reduction.

Some notations:

• pre(𝛼)={𝛽 | ∃s. 𝛼 ∉ enabled(s) and 𝛼 ∊ enabled(𝛽(s))}

• dep(𝛼)={𝛽 | 𝛼 and 𝛽 are dependent actions}

• Ti is the set of actions of process Pi. Ti(s) = Ti ⋂ enabled(s). 

• currenti(s) is the set of actions enabled in some state s’ such that
pci(s’)=pci(s). Observe that Ti(s) ⊆currenti(s).

We do not need pre(𝛼) and dep(𝛼) to be exact: an over-
approximation ensures correctness!

Heuristics for Ample Sets



pre(𝛼) contains:

• Actions of the process that execute 𝛼 and that can change the 
program counter to a value from which 𝛼 can execute;

• Actions that can modify shared variables involved in the 
enabling guard of 𝛼.

• Transitions that send/receive data in a queue q such that also
𝛼 send/receive data in the queue q.

dep(𝛼) contains:

• Pairs of transitions that share a variable and at least one
transition modifies such variable.

• Pairs of transitions belonging to the same process. Observe
that handshaking are considered joint transitions of two
processes;

• Two send actions or two receive actions using the same queue.

Precedent / Dependent actions



Ti(s) is the natural candidate to be ample(s):

Since actions of the same process are interdependent, either all or 
none of them are in ample(s).

We take a process such that Ti(s) ≠ ∅ (thus ensuring C0).

The main problem is to verify if condition C1 is satisfied. There
are two cases. In both of them, some actions independent from 
those in Ti(s) are executed eventually enabling some action 𝛼
dependent on Ti(s). There are two cases:

1. 𝛼 belongs to some process Pj ≠ Pi. This can be efficiently
checked by checking dep(Ti(s)).

2. 𝛼 belongs to Pi. 𝛼 ∊ Ti(s’). From s to s’ the path is independent, 
so actions from other processes are executed. Therefore
pci(s)=pci(s’). Therefore 𝛼 must be in currenti(s)\Ti(s).  
Therefore some action in pre(currenti(s)\Ti(s)) is included in 
some other process Pj ≠ Pi.

Computing the ample set



Computing the ample set

Almost trivial

Checking an (overapproximation)
of C2



Computing the ample set

As for C3, we simply check 
if successors of s along 𝛼 close a cycle

If we find some Ti(s) with the
desired properties we return it
as a result, otherwise we take 
the full enabled(s)



Lesson 5

That’s all Folks…

…Questions?


