Formal Methods in Software Development

O

Ivano Salvo and Igor Melatti

Computer Science Department

SAPIENZA UNIVERSITÀ DI ROMA

Lesson 4, October 15th, 2019

Lesson 4a:

Finite Automata and Specifications

(Non-Det.) Finite Automata

A **finite automata** A is a 5-tuple (Σ , Q, δ , Q_0 , F) where:

- Σ is the finite input *alphabet*,
- *Q* is the finite set of *states*,
- $\delta \subseteq Q \times \Sigma \times Q$ is the *transition relation*,
- $Q_0 \subseteq Q$ is the set of *initial states*,
- $F \subseteq Q$ is the set of *accepting states*.

Let *w* be a word in Σ^* of length |w| = n.

A **run** over *w* is a finite sequence of states $q_0q_1...q_n$ such that $q_0 \in Q_0$ is an initial state and $(q_i, w_{i+1}, q_{i+1}) \in \delta$ for all $1 \le i \le n$.

A run is **accepting** if $q_n \in F$.

The automaton A **accepts** *w* if **there exists** an accepting run over *w*.

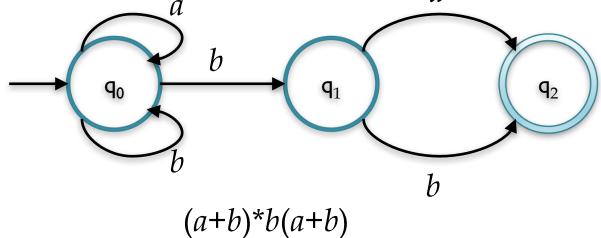
The **language** $\mathcal{L}(\mathcal{A}) \subseteq \Sigma^*$ consists of all the words accepted by \mathcal{A} .

(Non-Det.) Finite Automata

The automaton \mathcal{A} is **deterministic** if δ is a function (for all states *s* and all symbols *a* there exists a unique next state $\delta(s, a)$ and a unique initial state $(|\delta(s, a)| \le 1 \text{ and } |Q_0| \le 1))$.

For each non-deterministic automaton \mathcal{A} there exists an automaton \mathcal{A}' such that $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$. However, the size of \mathcal{A}' **can be exponential** w.r.t. the size of \mathcal{A} .

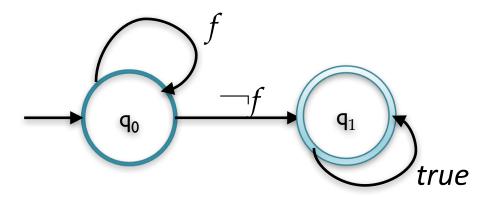
The class of languages accepted by finite automata is the class of **regular languages**, that can be characterized by **regular expressions**.



Regular Safety Properties

Definition. A safety property *P* is **regular** if its set of bad prefixes is a regular language over 2^{AP} .

Example: Every **invariant is a regular property**. Let *f* be the invariant property. The language of bad prefixes is $f^*(\neg f)$ true^{*} (we use a propositional formulas to identify subsets of *AP*).

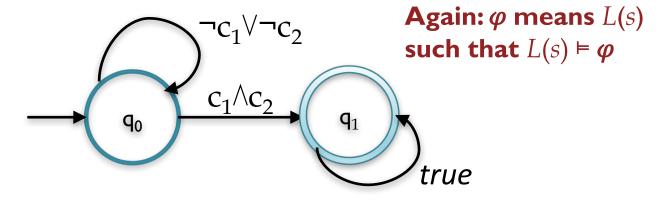


This automaton accepts words that **violates** the invariant *f*.

Remark: Here we assume *f* be a shorthand for $L(s) \models f$.

Regular Safety Properties

Example. The mutual exclusion property can be easily modeled by a NFA as follows.



This automaton accepts **minimal** bad prefixes of the mutual exclusion property.

Theorem. A safety property *P* is regular iff the set of **minimal** bad prefixes for *P* is regular.

Verifying Regular Safety Prop.

Idea. Run in parallel the system model \mathcal{M} and the automaton for $\neg f$. $\mathcal{M} \models f$ **iff** traces_{fin}(\mathcal{M}) \cap badPrefixes(P_f) = \varnothing **iff** traces_{fin}(\mathcal{M}) $\cap \mathcal{L}(\neg f) = \varnothing$.

Ingredients:

- build an automata for the intersection of two languages
- checking language emptiness

Definition: [**Product of a Transition System M and a NFA**] Let $\mathcal{M} = (S, A, I, \rightarrow, AP, L)$ and $\mathcal{A} = (\Sigma, Q, \delta, Q_0, F)$, such that $\Sigma = 2^{AP}$ and $Q_0 \cap F = \emptyset$. Then $\mathcal{M} \otimes \mathcal{A} = (S', A, I', \rightarrow', AP', L')$ where:

- $S' = S \times Q$
- $(s, q) \rightarrow'_{a}(s', q')$ whenever $s \rightarrow_{a} s'$ and $\delta(q, L(s'), q')$
- $I' = \{(s, q) \mid s \in I \land \exists q_0 \in Q_0 . (q_0, L(s), q) \}$
- AP'=Q
- $L': S \times Q \rightarrow 2^Q$ is given by $L'(s, q) = \{q\}$

This construction works also for Kripke structures.

Verifying Regular Safety Prop.

Let us define: $\neg F = P_{inv} = \bigwedge_{q_i \in F} \neg q_i$

Theorem. Let \mathcal{A} be a NFA such that $\mathcal{L}(\mathcal{A}) = \mathsf{badPrefixes}(P)$ of some safety property *P* and let \mathcal{M} be a transition system. Then the following are equivalent:

- $\mathcal{M} \vDash P$
- traces_{fin}(\mathcal{M}) $\cap \mathcal{L}(\mathcal{A}) = \varnothing$
- $\mathcal{M} \otimes \mathcal{A} \vDash P_{inv}$

Checking a **regular safety property** has been reduced to a **invariant checking**, that in turn it can be solved by a **reachability**.

Equivalently, **emptiness** of a regular language is a **reachability** problem (check whether accepting states are reachable from some initial state)

The accepted words are **counterexamples**

Lesson 4b:

Finite Automata Over Infinite Words

w-regular Languages

ω-regular languages are a subset of infinite words $Σ^ω$ over a finite alphabet Σ generated by ω-regular expressions.

Example: $(ab)^{\omega} = ababababab...$ Observe that $(ab)^*$ is **an infinite set of finite** words, but $(ab)^{\omega}$ is a **single infinite word**.

The operator $^{\omega}$ lifts to languages. $\mathcal{L}^{\omega} = \{ w_1 w_2 w_3 \dots | w_i \in \mathcal{L} \}$

Definition: An ω -regular expression over Σ has the form:

 $G = E_1 \cdot F_1^{\omega} + \ldots + E_n \cdot F_n^{\omega}$

where $n \ge 1$ and $E_1, F_1, \dots, E_n F_n$ are regular expressions.

 $\mathcal{L}(G) = \mathcal{L}(E_1) \cdot \mathcal{L}(F_1)^{\omega} \cup \dots \cup \mathcal{L}(E_n) \cdot \mathcal{L}(F_n)^{\omega}$

 \mathcal{L} is ω -regular if $\mathcal{L} = \mathcal{L}(G)$ for some ω -regular expression G.

 ω -regular languages are closed under **union**, **intersection** and **complementation**.

Examples: $(a+b)^* \cdot b^{\omega}$ is the language of words with finitely many a's. $(b^*a)^{\omega}$ is the language of words with infinitely many a's.

(Non-Det.) Büchi Automata

A **non-determistic Büchi automata** \mathcal{A} is a 5-tuple (Σ , Q, δ , Q_0 , F) where:

- Σ is the finite input *alphabet*,
- *Q* is the finite set of *states*,
- $\delta \subseteq Q \times \Sigma \times Q$ is the *transition relation*,
- $Q_0 \subseteq Q$ is the set of *initial states*,
- $F \subseteq Q$ is the set of *accepting states*.

Let *w* be an **infinite** word in Σ^{ω} . A **run** ρ over *w* is an **infinite** sequence of states $q_0q_1...q_n...$ such that $q_0 \in Q_0$ is an initial state and $(q_i, w_{i+1}, q_{i+1}) \in \delta$ for all $i \in \mathbb{N}$. inf (ρ) is the set of states that occur infinitely often in ρ .

A run is **accepting** if $q_i \in F$ for **infinitely many** *i*.

The automaton \mathcal{A} accepts w if there exists an accepting run ρ over w such that $\inf(\rho) \cap F \neq \emptyset$

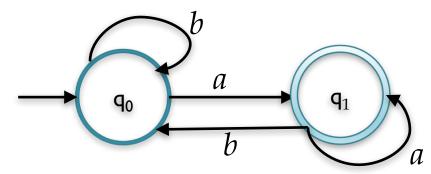
The **language** $\mathcal{L}(\mathcal{A}) \subseteq \Sigma^{\omega}$ consists of all the words accepted by \mathcal{A} .

This definition is exactly the same of NFA, but the semantics of accepted words change!

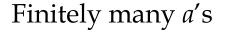
Büchi Autom. and *w*-regular lang.

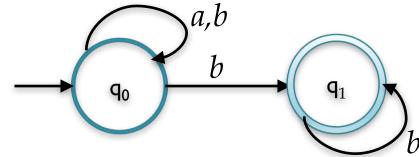
Theorem. The class of languages accepted by NBA's is exactly the class of ω -regular languages.

Examples: Infinitely many *a*'s



deterministic





non-deterministic b in q_0 : two trans.

The automaton "knows" when the sequence of finitely many *a*'s stops

NBA for $\mathcal{L}_1 + \mathcal{L}_2$ with $\mathcal{L}_p \mathcal{L}_2 \omega$ -reg

Theorem. If \mathcal{L}_1 and \mathcal{L}_2 are ω -regular, then $\mathcal{L}_1 \cup \mathcal{L}_2$ is ω -regular. **Proof**: Given an automaton $\mathcal{A}_1 = (\Sigma, Q_1, \delta_1, I_1, F_1)$ accepting \mathcal{L}_1 and an automaton $\mathcal{A}_2 = (\Sigma, Q_2, \delta_2, I_2, F_2)$ accepting \mathcal{L}_2 we build the automata

 $\mathcal{A} = \mathcal{A}_1 + \mathcal{A}_2 = (\Sigma, Q_1 \cup Q_2, \delta, I_1 \cup I_2, F_1 \cup F_2)$

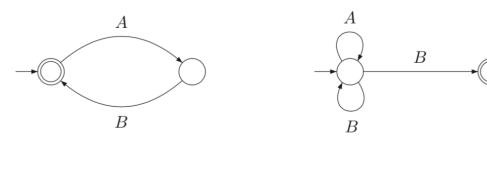
where $(q, a, q') \in \delta$ if $(q, a, q') \in \delta_1$ or $(q, a, q') \in \delta_2$.

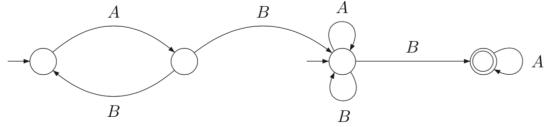
It is easy to see that $A_1 + A_{2a}$ accepts $\mathcal{L}_1 \cup \mathcal{L}_2$. (Exercise S). \Box

NBA for $\mathcal{L}_1 \cdot \mathcal{L}_2$, \mathcal{L}_1 reg. \mathcal{L}_2 ω -reg

Taking the NFA A_1 accepting L_1 , the basic trick is adding a transition to an initial state of the NBA A_2 accepting L_2 , whenever there is a transition to a final state of A_1 . Observe that final states are those of the NBA A_2 . Observe that possible infinite runs inside A_1 are not accepting.

Here an example with $\mathcal{L}_1 = (ab)^*$, $\mathcal{L}_2 = (a+b)^*ba^{\omega}$ and $\mathcal{L}_1 \cdot \mathcal{L}_2 = (ab)^*(a+b)^*ba^{\omega}$





NBA accepting \mathcal{L}^{ω} , \mathcal{L} regular

Insert a new initial (and accepting state) q_{new} and: 1. put a transition from q_{new} to any successor of initial states; 2. put a transition to q_{new} from any accepting state.

Show that the resulting NBA accept \mathcal{L}^{ω} . (Excercise S)

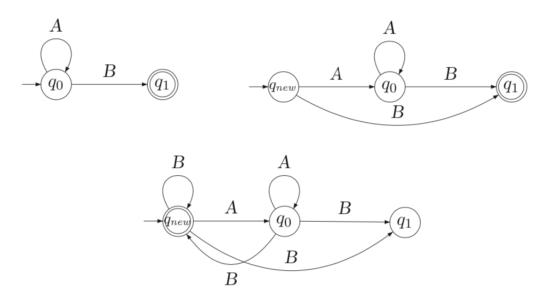


Figure 4.12: From an NFA accepting A^*B to an NBA accepting $(A^*B)^{\omega}$.

As usual, we want automata with a total transition relation (non-blocking). If a computation gets stuck, it's not a problem for theory, it is just a non-accepting computation (the same for non-deterministic NFAs).

Proposition: For each NBA A there exists a non-blocking equivalnet NBA A' equivalent to A.

Proof: Just add a sink (or trap) state q_{trap} and transitions to whenever a transition is not defined in some state.

More or less, the same trick works for Kripke structures and NFAs.

Remark: \mathcal{A} equivalent to \mathcal{A}' means that $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$

Büchi Autom.: non-determinism

Theorem. There is **no** non-deterministic Büchi automata that accept the language $(a+b)^*b^{\omega}$.

Proof: Assume that there exists such automaton.

The word b^{ω} belongs to the language. There exists an accepting state q_1 such that $\delta^*(q_0, b^{n_1}) = q_1(\delta$ is a function!).

The word $b^{n_1}ab^{\omega}$ belongs to the language. There exists an accepting state q_2 such that $\delta^*(q_0, b^{n_1}ab^{n_2}) = q_2$.

The word $b^{n_1}ab^{n_2}ab^{\omega}$ belongs to the language. There exists an accepting state q_2 such that $\delta^*(q_0, b^{n_1}ab^{n_2}ab^{n_3}) = q_3$ and so on.

But there are finitely many states. Therefore there must be that some $q_i = q_j$ and hence $\delta^*(q_0, b^{n_1}ab^{n_2} \dots ab^{n_i}) = \delta^*(q_0, b^{n_1}ab^{n_2} \dots ab^{n_j})$, but this implies that there is an accepting run for the word $b^{n_1}ab^{n_2} \dots ab^{n_i}(ab^{n_{i+1}} \dots ab^{n_j})^{\omega}$ that contains infinitely many *a*'s. Contradiction.

The need for non-determinism

Properties of the form **"eventually forever"** has exactly the shape of the ω -regular language $(a+b)^*b^{\omega}$.

Definition: A **persistence property** is a linear time property $P \subseteq 2^{AP}$ such that for some propositional formula φ :

$$P = \{A_0 A_1 A_2 \dots \in (2^{AP})^{\omega} \mid \exists i \ge 0 \forall j \ge i. A_j \vDash \varphi \}$$

A persistence property can be modeled in LTL as **F G** φ . Alternatively, $\neg \varphi$ holds finitely many times.

Remark: $\exists i \ge 0 \forall j \ge i$ is sometimes written \forall^{∞} and can be read "almost always"

Generalised Büchi Automata

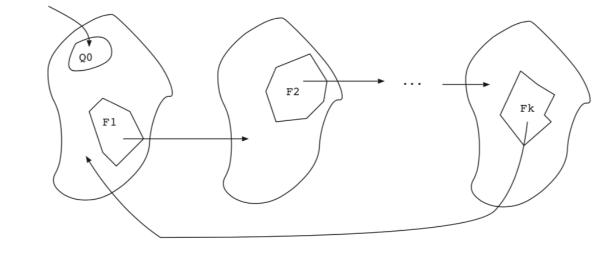
A **generelised Büchi automata** \mathcal{A} is a 5-tuple (Σ , Q, δ , Q_0 , \mathcal{F}) where Σ , Q, δ , Q_0 are as for NBA, and $\mathcal{F} = \{F_1, ..., F_n\}$ is a possibly empty subset of 2^Q.

 F_1, \ldots, F_n are called *accepting sets*.

The automaton \mathcal{A} accepts w if there exists an accepting run ρ over w such that for all sets $F_i \in \mathcal{F}$ we have $\inf(\rho) \cap F_i \neq \emptyset$.

Theorem. For each GNBA \mathcal{A} there exists a NBA \mathcal{A}' such that $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$.

Proof:



Intersection of *w*-regular lang.

Theorem. If \mathcal{L}_1 and \mathcal{L}_2 are ω -regular, then $\mathcal{L}_1 \cap \mathcal{L}_2$ is ω -regular.

Proof: Given an automaton $\mathcal{A}_1 = (\Sigma, Q_1, \delta_1, I_1, F_1)$ accepting \mathcal{L}_1 and an automaton $\mathcal{A}_2 = (\Sigma, Q_2, \delta_2, I_2, F_2)$ accepting \mathcal{L}_2 we build a **generalised automata** $\mathcal{A} = (\Sigma, Q, \delta, I, F)$ accepting \mathcal{L} . We define $\mathcal{A} = \mathcal{A}_1 \otimes \mathcal{A}_1 = (\Sigma, Q_1 \times Q_2, \delta, I_1 \times I_2, \{F_1 \times Q_2, Q_1 \times F_2\})$, where $((q_1, q_2), a, (q'_1, q'_2)) \in \delta$ iff $(q_1, a, q'_1) \in \delta_1$ and $(q_2, a, q'_2) \in \delta_2$.

We will use this trick in verification, building an **automata for the model, one for specifications** (or better, for bad behaviours) and **we will check if their intersection is empty**.

This strategy will also lead to an **alternative algorithm for LTL model checking**. There is an algorithm (based again on atoms) that allow to build an automata from an LTL formula.

Lesson 4c:

Automata Theory and Model Checking

ω-Regular Properties

Definition: A linear time property *P* over *AP* is ω -regular if *P* is an ω -regular language over the alphabet 2^{AP} .

Examples:

* **Invariants** are *ω*-regular. If φ is a property over *AP* defining the invariant, φ^{ω} is a *ω*-regular language.

Regular safety properties are ω -regular.

 $(2^{AP})^{\omega} \setminus P_{safe} = \mathsf{badPrefixes}(P_{safe}) \cdot (2^{AP})^{\omega}$

[Remember that ω -regular are closed under complementation]

* Many **liveness** properties are typical examples of ω-regular (**not regular**) properties.

 $((\neg crit)^* crit)^{\omega} =$ "a process enters critical section infinitely often"

 $((\neg wait)^* wait \cdot true^* \cdot crit)^{\omega} + ((\neg wait)^* wait \cdot true^* \cdot crit)^* (\neg wait)^{\omega}$ = "whenever a process is waiting, it will enter its critical section eventually later" (starvation freedom)

Checking *w*-regular properties

Similar to regular safety properties. However, here we have **to check language emptiness** for a (generalised) **non deterministic Büchi automata**.

Again, the idea is related to strongly connected components of a directed graph.

Definition: [**Product of a Transition System** \mathcal{M} **and a NBA**] Let $\mathcal{M} = (S, A, I, \rightarrow, AP, L)$ and $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ be a nonblocking NBA, such that $\Sigma = 2^{AP}$. Then $\mathcal{M} \otimes \mathcal{A} = (S', A, I', \rightarrow', AP', L')$ where:

- $S' = S \times Q$
- $(s, q) \rightarrow'_a(s', q')$ whenever $s \rightarrow_a s'$ and $\delta(q, L(s'), q')$
- $I' = \{(s, q) \mid s \in I \land \exists q_0 \in Q_0 . (q_0, L(s), q) \}$
- AP' = Q
- $L': S \times Q \rightarrow 2^Q$ is given by $L'(s, q) = \{q\}$

Verifying *w*-regular Properties

Let us define: $\neg \varphi = \bigwedge_{q_i \in Q} \neg q_i$ and $P_{\text{pers}} = \mathbf{F} \mathbf{G} \neg \varphi$

Theorem. Let \mathcal{M} be a finite transition system and let P an ω -regular property over AP and let \mathcal{A} be a nonblocking NBA such that $\mathcal{L}_{\omega}(\mathcal{A}) = (2^{AP})^{\omega} \setminus P$. Then the following are equivalent:

- $\mathcal{M} \vDash P$
- traces(\mathcal{M}) $\cap \mathcal{L}_{\omega}(\mathcal{A}) = \varnothing$
- $\mathcal{M} \otimes \mathcal{A} \vDash P_{\text{pers}}(\mathcal{A})$

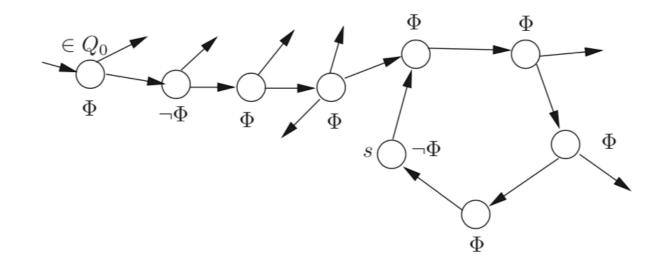
Checking a *ω*-regular property has been reduced to a checking a persistence properties.

Equivalently, **emptiness** of a ω -regular language is a problem of detecting **cycles**: checking whether accepting states belong to a cycle reachable from some initial state.

In this case, **counterexamples** have the form $u \cdot v^{\omega}$

Counterexamples

In this case, **counterexamples** have the form $u \cdot v^{\omega}$, where for some q in v, $L(q) \vDash \neg \phi$.



Checking a persistence property

Once again a SCC decomposition of the graph $\mathcal{M} \otimes \mathcal{A}$ would solve the problem. traces $(\mathcal{M}) \cap \mathcal{L}_{\omega}(\mathcal{A}) = \emptyset$ if and only if there is a SCC *C* that contains a state not satisfying φ and *C* is reachable from an initial state.

This algorithm is optimal, in the sense that it is linear with the size of $\mathcal{M} \otimes \mathcal{A}$.

However, **in practice** cycle checking can be performed more efficiently without decomposing the whole system $\mathcal{M} \otimes \mathcal{A}$ into strongly connected components.

Many model checkers implement a **nested double DFS search**. This approach has several advantages:

- When a counterexample is found, **only a small part** of *M* ⊗ *A* is visited.
- *M* is described by a program, and **states can be generated** during the nested DFS (**on-the-fly model checking**).

Double Nested DFS

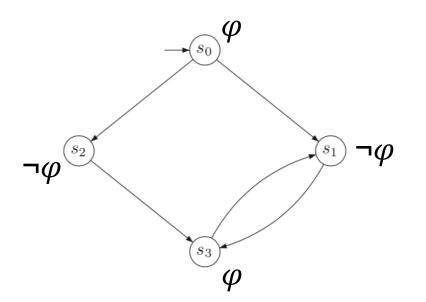
procedure dfs2(q)State on the stack of dfs1 up to q_1 is the
finite prefix u, whereas states on the
stack of dfs2 are the cycle v.if q' on dfs1 stack then terminate(True);
else if q' not flagged then dfs2(q');
end if;Observe that visited states by dfs1 and dfs2
are global information. This is essential to
keep complexity linear and to avoid to visit
several times the same state.

Running the Double DFS Search

Start the DFS with s_0 . Consider the order of visit $s_0 s_2 s_3 s_1$.

The cycle $s_1 \rightarrow s_3 \rightarrow s_1$ is found when analysing s_1 . Here the inner DFS starts, because $s_1 \nvDash \varphi$ and all its successors have been already analysed. The counterexample is $s_0 s_2 s_3 (s_1 s_3 s_1)^{\omega}$

The order is essential. If we start the inner DFS in s_2 , we fail to find a cycle with a state already onto the stack, but we mark as visited s_3 and s_1 and therefore we later fail to find $(s_1 s_3 s_1)^{\omega}$.



Correctness of Double DFS /1

Lemma. Let *q* be a node that does not appear in any cycle. Then a DFS backtrack from *q* after all nodes reachable from *q* have been visited.

Theorem. The Double Nested DFS search returns a counterexample if and only if traces(\mathcal{M}) $\cap \mathcal{L}_{\omega}(\mathcal{A}) \neq \varnothing$.

Proof: It is almost trivial to show that if the double DFS returns true, a cycle is found.

It is less obvious to show that if a cycle exists, the double DFS finds it. Or equivalently, if it returns false, no cycle exists.

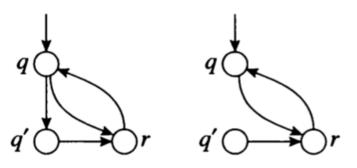
Let us suppose that there exists a cycle from q to a state on the stack of the first DFS that goes trough a state r **already flagged** by the second DFS. Let q and r the first states for which this happens and let q' be the root of the second DFS that flagged r.

There are two cases.

Correctness of Double DFS/2

If q' is reachable from q, then there exists a cycle that would have been found examining $q': q' \rightarrow r \rightarrow q \rightarrow q'$ (see picture, left)

If q' is not reachable from q, then if q' appears on a cycle, this was missed in a previous iteration, before starting the second DFS from q, contrary to the fact that q is the first state. Thus if q' does not occur on a cycle, by the Lemma, we have discovered and backtracked from q, before starting the DFS from q'. Again, against our assumptions (see picture, right). \Box



Lesson 4d:

On the Fly LTL Model Checking

LTL model checking via NBA

Theorem. For any LTL formula φ over *AP*, there exists a NBA \mathcal{A}_{φ} wiht Words(φ)= $\mathcal{L}_{\omega}(\mathcal{A}_{\varphi})$ which can be constructed in time and space $2^{\mathcal{O}(|\varphi|)}$.

The proof is rather technical and tedious, but the ingredients are exactly the same of the algorithm based on tableaux, see lesson **2**. In particular,

* automata states represent maximal consistent sets of $Cl(\varphi)$, * transition relation is related to presence of subformula of the form $X \psi$ in $Cl(\varphi)$, and

***** accepting states are related to the presence of some $\psi_1 U \psi_2$ in Cl(φ). (Remember that **U** (and its negation) need to consider infinite paths).

Once one has $\mathcal{M} \otimes \mathcal{A}_{\neg \varphi}$ we just need **to check language emptiness**. *Remark*: even though NBAs are closed under complementation, it is convenient to build $\mathcal{A}_{\neg \varphi}$ rather than complementing \mathcal{A}_{φ} .

On-the-fly LTL model checking

Usually, the model \mathcal{M} is described by a high-level language.

The generation of reachable states of \mathcal{M} can proceed in parallel with the construction of the automaton $\mathcal{A}_{\neg \varphi}$ (remembere that states of $\mathcal{M} \otimes \mathcal{A}_{\neg \varphi}$ are pairs).

The product automaton $\mathcal{M} \otimes \mathcal{A}_{\neg \varphi}$ is constructed **on demand**.

A new vertex is only considered if no accepting cycle has been found in the fragment of $\mathcal{M} \otimes \mathcal{A}_{\neg \varphi}$ already explored.

When generating the successor states in $A_{\neg \varphi}$ we only need to consider those **successors matching the current state in** *M*.

On-the-fly technique **is particurlarly effective** when a **refutation is early found**: in this case a counterexample is returned and large parts of $\mathcal{M} \otimes \mathcal{A}_{\neg \varphi}$ are not generated.

Lesson 4 That's all Folks...

... Questions?