

Ivano Salvo and Igor Melatti

Computer Science Department

Lesson 3, October 8th, 2019

Lesson 2d:

Summary of LTL Model Checking

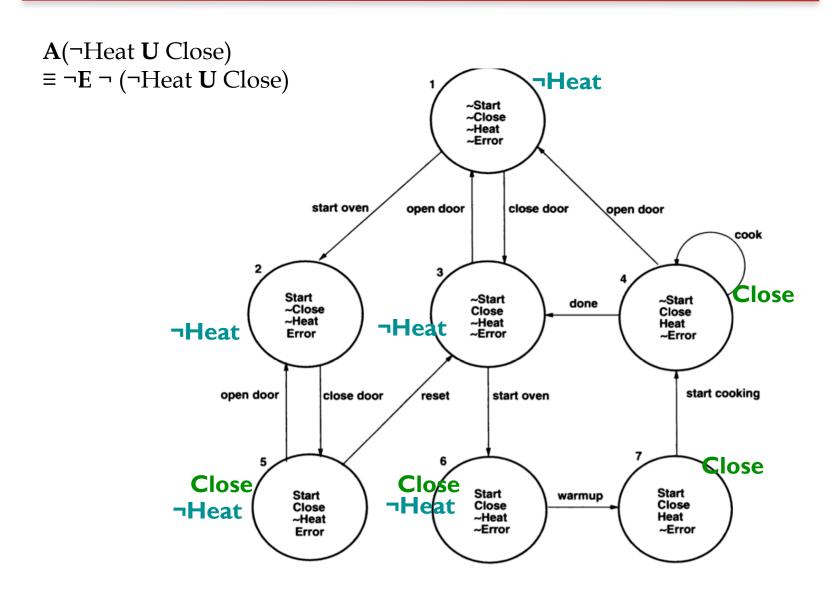
LTL model checking: summary

The problem $\mathcal{M}, s \models \mathbf{A} f$ is transformed in the refutation of $\mathcal{M}, s \models \neg \mathbf{E} \neg f$. To verify $\mathcal{M}, s \models \mathbf{E} f$ where $\mathcal{M} = (S, R, L)$:

- **1.** Build the set of formulas: CL(f).
- **2.** For each state $s \in S$, compute sets K of formulas in CL(f) consistent with L(s).
- **3.** Build the graph $G^{M,f}$, that contain an edge from (s, K) to (s', K') whenever (s, s') is in R, **X** g in K, and g in K'.
- **4.** Find an eventuality sequence by finding strongly connected components of $G^{M,f}$

[An **eventuality sequence** is an infinite path π in $G^{M,f}$ such that if $g_1 \cup g_2 \in K$ for some atom (s, K) then there exists an atom (s', K') reachable from (s, K) along π , such that $g_2 \in K'$].

Example: microwave oven



LTL model checking: example 1

Taking $f \equiv (\neg \text{Heat } \mathbf{U} \text{ Close})$

- Compute the closure of f, $CL(\neg f)$: $\{\neg f, f, X f, \neg X f, X \neg f, \text{ Heat, } \neg \text{Heat, Close, } \neg \text{Close} \}$
- Compute atoms:

Not just subformulas!

• {¬Heat , ¬Close}
$$\subseteq$$
 $L(1)$, $L(2)$ $K_1' = \{\neg Heat , \neg Close, f, X f\}$ $K_1'' = \{\neg Heat , \neg Close, \neg f, \neg X f, X \neg f\}$

• $\{\neg \text{Heat}, \text{Close}\} \subseteq L(3), L(5), L(6)$

Close is not consistent $K_2' = \{\neg \text{Heat}, \text{Close}, f, \mathbf{X} f\}$ with $\neg f$ $K_2'' = \{\neg \text{Heat}, \text{Close}, f, \neg \mathbf{X} f, \mathbf{X} \neg f\}$

> • {Heat , Close} \subseteq L(4), L(7) $K_3' = \{\text{Heat , Close}, f, \mathbf{X} f\}$ $K_3'' = \{\text{Heat , Close}, f, \neg \mathbf{X} f, \mathbf{X} \neg f\}$

Compute the graph G

Example of transitions:

$$(1, K_1'') \rightarrow (2, K_1'')$$
 because $\mathbf{X} f \in K_1', f \in K_1'$, and $(1, 2) \in R$ $(1, K_1'') \rightarrow (2, K_1'')$ because $\mathbf{X} \neg f \in K_1', \neg f \in K_1''$, and $(1, 2) \in R$ There is no transition $(1, K_1') \rightarrow (2, K_1'')$ since $\mathbf{X} f \in K_1'$ but $f \notin K_1''$

Once the full graph is constructed, it is easy to see that there is no atom (s, K) from which there is a path into a self-fullfilling non trivial strong component of $G^{M,f}$.

Therefore, no state s is such that $\mathcal{M}, s \models \mathbf{E} \neg f$ and hence all states satisfy $\mathcal{M}, s \models \mathbf{A} g$.

Lesson 3a:

Computation Tree Logic CTL

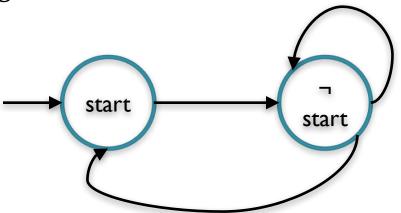
Non Linear Time properties

"For every computation, it is always possible to return to the initial state"

A G F start

does not properly work.

It is **too strong**.



This system intuitively satisfies our intended property, but not the linear property **A G F** start

The solution is a **branching notion** of time, allowing nesting of path quantifiers **A** and **E**: in this case **A G E F** start.

CTL: syntax

State formulas are formulas that depend on a state of a transition system

- If $p \in AP$, then p is a state formula
- If f, g are state formulas, then so are $\neg f$, $f \land g$, $f \lor g$
- If f is a path formula, the $\mathbf{A} f$ and $\mathbf{E} f$ are state formulas

Path formulas are formulas that depend on a computation path

• If f, g are **state** formulas, then $\neg f$, $f \land g$, $f \lor g$, $\mathbf{X} f$, $\mathbf{F} f$, $\mathbf{G} f$, $f \lor g$, and $f \mathbf{R} g$ are path formulas

Similar to CTL*, but each temporal operator (X, F, G, U, R) must be preceded by a path quantifier (E or A)

Examples: (il) legal CTL formulas

Let $AP = \{x = 1, x < 2, x \ge 3\}$ be the set of atomic propositions.

Legal CTL formulas are:

EX (
$$x = 1$$
), **AX** ($x = 1$), $x = 1 \lor x < 2$

Illegal CTL formulas are:

E (
$$x = 1 \land AX x \ge 3$$
)

because $\mathbf{AX} \times \mathbf{a} \geq 3$ is not a path formula

EX (true
$$\mathbf{U} \times \mathbf{v} = 1$$
)

because **EX** nested with a path formula

By contrast, the following are legal CTL formulas:

EX
$$(x = 1 \land \mathbf{AX} \ x \ge 3)$$

EX A (true $\mathbf{U} \times \mathbf{u} = 1$)

Common operators: **EF** $\varphi \equiv "\varphi$ holds potentially"

AF $\varphi \equiv "\varphi$ is inevitable"

EG $\varphi \equiv \varphi'$ holds potentially always

AG $\varphi \equiv$ "invariantly φ "

Minimal Fragment of CTL

From a theoretical point of view, only 3 operators are really needed: **EX**, **EG**, and **EU**:

$$\mathbf{AX} f \equiv \neg \mathbf{EX} \neg f$$

$$\mathbf{EF} f \equiv \neg \mathbf{E} \text{ (true } \mathbf{U} f \text{)}$$

$$\mathbf{AG} f \equiv \neg \mathbf{EF} \neg f$$

$$\mathbf{AF} f \equiv \neg \mathbf{EG} \neg f$$

$$\mathbf{A}(f \mathbf{U} g) \equiv \neg \mathbf{E} (\neg g \mathbf{U} \neg f \land \neg g) \land \neg \mathbf{EG} \neg g$$

$$\mathbf{A}(f \mathbf{R} g) \equiv \neg \mathbf{E} (\neg f \mathbf{U} \neg g)$$

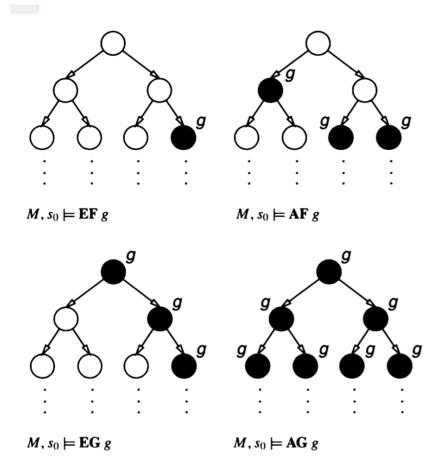
$$\mathbf{E} (f \mathbf{R} g) \equiv \neg \mathbf{A} (\neg f \mathbf{U} \neg g)$$

Attention! that propositional operators (\land , \lor , \neg , etc.) **cannot be applied to path formula**, so it is not true that **EG** $f \equiv \mathbf{E} \neg \mathbf{F} \neg f$ simply because the latter **is not** a CTL formula.

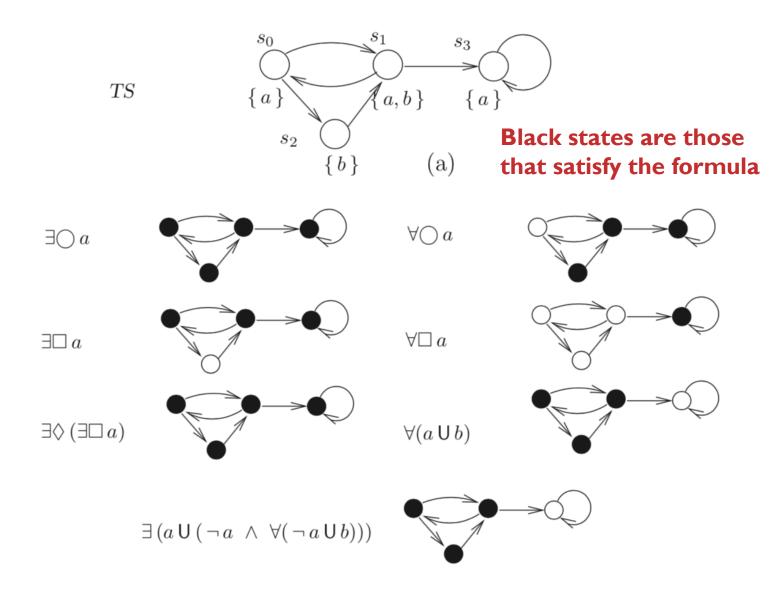
Non Linear Time (LT) examples

The semantics of CTL* formulas are relative to a computation Tree.

Here some example of computation trees and CTL* formulas valid in such computation trees.



Other Examples



A remark on negation

A transition system \mathcal{M} satisfies a CTL formula φ , notation $\mathcal{M} \models \varphi$ if and only if \mathcal{M} , $s \models \varphi$ for all $s \in S_0$, where S_0 is the set of initial states of \mathcal{M} .

Be careful that $\mathcal{M}, s \nvDash \varphi$ implies $\mathcal{M}, s \vDash \neg \varphi$, but **it is not true** that $\mathcal{M} \nvDash \varphi$ implies $\mathcal{M} \vDash \neg \varphi$ (**The same holds for LTL!**).

The problem is the universal quantification over initial states!

Example: Both a and $\neg a$ does not hold here:

Equivalent CTL formulas

A CTL formula f is equivalent to g if and only if for all transition system \mathcal{M} , $\mathcal{M} \models f$ iff $\mathcal{M} \models g$

Expansion Laws for CTL:

A
$$(f \cup g) \equiv g \lor (f \land AX A(f \cup g))$$

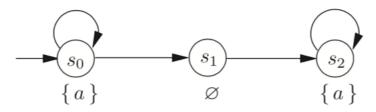
AG $f \equiv f \land AX AG f$
AF $f \equiv f \lor AX AF f$
E $(f \cup g) \equiv g \lor (f \land EX E(f \cup g))$
EG $f \equiv f \land EX EG f$
EF $f \equiv f \lor EX EF f$

LTL versus CTL: eliminating A

Theorem. Let f be a CTL formula and let $f^{\rm LTL}$ be the LTL formula obtained by eliminating all path quantifiers in f. Then: $f \equiv f^{\rm LTL}$ or there does not exist any LTL formula equivalent to f

Lemma. [PERSISTENCE] The CTL formula **A F A G** *a* and the LTL formula **F G** *a* are not equivalent.

Proof: Just consider the following Kripke structure.



We have $s_0 \models_{LTL} \mathbf{F} \mathbf{G} a$, since all path starting in s_0 will remain forever in s_0 or in s_2 (that satisfy $\mathbf{G} a$).

By contrast $s_0 \not\models_{\text{CTL}} \mathbf{A} \mathbf{F} \mathbf{A} \mathbf{G} a$, since $s_0^{\omega} \not\models_{\text{CTL}} \mathbf{F} \mathbf{A} \mathbf{G} a$ because of the paths $s_0^* s_1 s_2^{\omega}$ which passes the $\neg a$ -state s_1 . \square

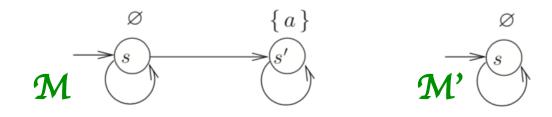
LTL and CTL are not comparable

Theorem.

- 1. There exist LTL formulas for which no equivalent CTL formula exist. For instance: **F G** a or **F** $(a \land \mathbf{X} \ a)$
- 2. There exist CTL formulas for which no equivalent LTL formula exist. For instance: **AF AG** a or **AF** $(a \land AX a)$ or **AG EF** a

Proof (idea): exhibit suitable transition systems \mathcal{M} and \mathcal{M} ' such that $\mathcal{M} \models_{\text{LTL}} g$ and $\mathcal{M}' \nvDash_{\text{LTL}} g$ but such that cannot be distinguished by any CTL formula, that is, for all CTL property g, $\mathcal{M} \models_{\text{CTL}} g$ if and only if $f \mathcal{M}' \models_{\text{CTL}} g$.

Let us consider **AG EF** *a*. This is satisfied by \mathcal{M} above, but not by \mathcal{M} . On the other hand since traces(\mathcal{M}) \subseteq traces(\mathcal{M}), \mathcal{M} satisfies all LTL formulas satisfied by \mathcal{M} . \square



Lesson 3b:

CTL Model Checking

Idea: Compute a set label(s) in such a way that for each subformula g of f, $g \in label(s)$ whenever \mathcal{M} , $s \models g$ holds.

Observation: the number of sub-formulas are linear in the size | f | of a CTL formula f.

Start with the original labeling of states with atomic propositions, i.e. label(s) = L(s).

 $g \equiv \neg h \Rightarrow g \in label(s)$ if and only if $h \notin label(s)$

 $g \equiv h_1 \lor h_2 \Rightarrow g \in label(s)$ if and only if $h_1 \in label(s)$ or $h_2 \in label(s)$

 $g \equiv \mathbf{E} \mathbf{X} h \Rightarrow g \in label(s)$ if and only if $h \in label(s')$ for some $s', s \rightarrow s'$

The interesting cases are $g \equiv \mathbf{E} \mathbf{G} h$ and $g \equiv \mathbf{E} [h_1 \mathbf{U} h_2]$

When $g \equiv \mathbf{E} [h_1 \mathbf{U} h_2]$ the idea is: start from the set of states such that $h_2 \in label(s)$ and then proceed backwards on states such that $h_1 \in label(s)$. Label all these states with g.

```
procedure CheckEU(f_1, f_2)
       T := \{ s \mid f_2 \in label(s) \};
       for all s \in T do label(s) := label(s) \cup \{ \mathbf{E}[f_1 \mathbf{U} f_2] \};
       while T \neq \emptyset do
              choose s \in T:
              T := T \setminus \{s\};
              for all t such that R(t, s) do
                      if \mathbf{E}[f_1 \ \mathbf{U} \ f_2] \not\in label(t) and f_1 \in label(t) then
                             label(t) := label(t) \cup \{ \mathbf{E}[f_1 \mathbf{U} f_2] \};
                             T := T \cup \{t\};
                      end if:
              end for all:
       end while:
                                  It is essentially a (backward) visit
end procedure
                                  of a graph. The complexity is
                                  O(|S| + |R|)
```

When $g \equiv \mathbf{E} \mathbf{G} h$, we must find infinite paths labeled by h. In a finite directed graph, such path must enter a strongly connected component where all states are labeled by h. Roughly speaking:

- 1. Compute the set of states $S' = \{ s \in S \mid h \in label(s) \}$.
- 2. Decompose (S', R') in strongly connected components.
- 3. Add all states s such that $h \in label(s)$ and from which one of such strongly connected components is reachable.

Lemma. Let $S' = \{ s' \in S \mid \mathcal{M}, s' \models h \}$. Then Let $\mathcal{M}, s \models \mathbf{E} \mathbf{G} h$ if and only if the following conditions are satisfied:

1.
$$s \in S'$$

2. There exists a path from s to a strongly connected component $C \subseteq S'$ and of \mathcal{M}' .

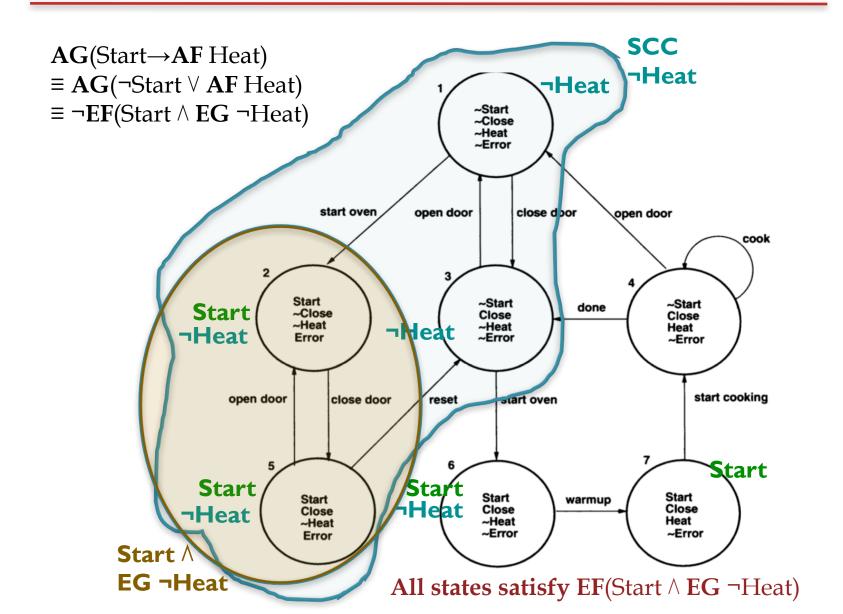
Proof: (**If**) Let π be an infinite path starting at s satisfying **G** h. Clearly, $s \models h$. Since π is an infinite, it has the shape $\pi_0\pi_1$ and in π_1 each state occurs infinitely often. Both states in π_0 and π_1 belongs to $C \subseteq S'$. Since each state appears infinitely often, there is a path between any pairs of state in C that is C is a SCC.

(**Only If**) There is a finite path π_0 from s to $t \in C$ in S'. Then we can find a finite path π_1 from t back to t. The path π_0 π_1^{ω} satisfies G h. \square

Theorem. Given a Kripke structure $\mathcal{M}=(S,R,L)$ and a CTL formula f, determining if $\mathcal{M} \models_{\text{CTL}} g$ can be decided in time $O((|S|+|R|) \cdot |f|)$.

```
procedure CheckEG(f_1)
       S' := \{ s \mid f_1 \in label(s) \};
       SCC := \{ C \mid C \text{ is a nontrivial SCC of } S' \};
       T := \bigcup_{C \in SCC} \{ s \mid s \in C \};
       for all s \in T do label(s) := label(s) \cup \{ EG f_1 \};
       while T \neq \emptyset do
               choose s \in T;
               T:=T\setminus\{s\};
               for all t such that t \in S' and R(t, s) do
                      if EG f_1 \notin label(t) then
                              label(t) := label(t) \cup \{ \mathbf{EG} \ f_1 \};
                              T:=T\cup\{t\};
                      end if;
               end for all;
       end while;
end procedure
```

Example: microwave oven



Detour: Hamiltonian path in CTL

Taken a graph G=(V, E), we define a Kripke structure $\mathcal{M} = (S, R, L)$ where:

- $S=E \cup \{b\}$ b is needed to make R total
- $R=E \cup \{v \rightarrow b \mid v \in E\}$
- $L(v) = \{v\}$

We define $f = \bigvee_{(i_1,\dots,i_n) \text{ permutation of } (1,\dots,n)} g(v_{i_1},\dots,v_{i_n})$ and g inductively as follows:

$$g(v_i) = v_i$$

 $g(v_{i_1}, ..., v_{i_n}) = v_{i_1} \land \mathbf{E} \mathbf{X} g(v_{i_2}, ..., v_{i_n}) \text{ if } n > 1$

It is easy to see that $g(v_{i_1}, ..., v_{i_n})$ holds if and only if $v_{i_1}, ..., v_{i_n}$ is a Hamiltonian path in G.

Therefore, $\mathcal{M} \models f$ if and only if G has a Hamiltonian path.

Obviously, this reduction is not polynomial!

Lesson 3c:

CTL* Model Checking

Idea of CTL* Model Checking

Idea: use CTL and LTL model checking procedures on subformulas.

Substitute any maximal state sub-formulas with fresh atomic propositions. Like CTL algorithm, the CTL* algorithm works in stages.

Level 0: atomic propositions

Level *i***+1**: all state sub-formulas *g* such that all state sub-formulas of *g* are of level *i* or less and *g* is not contained in any lower level.

Example: $AG((\neg Close \land Start) \rightarrow A (G \neg Heat \lor F \neg Error))$

Only **E** quantifier: $\neg \mathbf{EF}((\neg \mathbf{Close} \land \mathbf{Start} \land \mathbf{E} (\mathbf{F} \ \mathbf{Heat} \land \mathbf{G} \ \mathbf{Error}))$

Level 0: Close, Start, Heat, Error

Level 1: ¬Close, **E** (**F** Heat ∧ **G** Error)

Level 2: $EF((\neg Close \land Start \land E (F Heat \land G Error))$

Level 3: $\neg \mathbf{EF}((\neg \mathsf{Close} \land \mathsf{Start} \land \mathbf{E} (\mathsf{F} \mathsf{Heat} \land \mathbf{G} \mathsf{Error}))$

CTL* Model Checking: algorithm

Algorithm 27 CTL* model checking algorithm (basic idea)

```
Input: finite transition system TS with initial states I, and CTL^* formula \Phi Output: I \subseteq Sat(\Phi)
```

```
for all i \leq |\Phi| do
  for all \Psi \in Sub(\Phi) with |\Psi| = i do
     \mathbf{switch}(\Psi):
                 true : Sat(\Psi) := S;
                     : Sat(\Psi) := \{ s \in S \mid a \in L(s) \};
                 a_1 \wedge a_2 : Sat(\Psi) := Sat(a_1) \cap Sat(a_2);
                      : Sat(\Psi) := S \setminus Sat(a);
                 \neg a
                 \exists \varphi : determine Sat_{LTL}(\neg \varphi) by means of an LTL model-checker;
                             : Sat(\Psi) := S \setminus Sat_{LTL}(\neg \varphi)
     end switch
     AP := AP \cup \{a_{\Psi}\};
                                                                     (* introduce fresh atomic proposition *)
     replace \Psi with a_{\Psi}
     forall s \in Sat(\Psi) do L(s) := L(s) \cup \{a_{\Psi}\}; od
  od
od
return I \subseteq Sat(\Phi)
```

CTL*: example and complexity

Example: $\neg EF((\neg Close \land Start \land E (F Heat \land G Error))$ **Level 1**: The level 1 formula $\neg Close$ is added to L(1) and L(2)**E** (F Heat \land G Error) is pure LTL, but there is no state satisfying this formula.

Level 2: **E** (**F** Heat \land **G** Error) is replaced by a fresh atomic proposition *a*. LTL-model checking is then applied to the formula **EF**((\neg Close \land Start \land *a*), that is unsatisfiable, so all states are labeled with \neg **EF**((\neg Close \land Start \land **E** (**F** Heat \land **G** Error)).

Theorem: There exists a CTL* model checking algorithm with complexity $O(|\mathcal{M}|2^{|f|})$

Theorem: CTL* model checking is PSPACE-complete.