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Lesson 2A

Defining Specifications



Temporal Logic
First order logic is useful to describe properties of sequential 
programs. Reactive/concurrent systems interact with their 
environment, and hence their sequences of computation (and 
its properties) are of primary importance.

Temporal Logic focuses on sequence of transitions, or better on 
the tree of possible (usually infinite) executions of a system. 
Temporal operators: never, in the future, always, eventually.

Kripke
structure

Tree of
Executions



CTL* formulas are built starting from atomic propositions and 
propositional connectives (⋀, ⋁, ￢, → etc.)

Path quantifiers: A (forall computation paths) and E (for some 
computation path). They quantify over paths starting in a given 
state (state formulas)

Temporal operators (originates path formulas):
X f (“next time”) f holds in the second state of a path
F f (“eventually” or ”in the future”, sometimes denoted by ◇)  

f will hold at some state on the path
G f (“globally”, sometimes denoted by ◻) f holds at every state 

on the path
f U g (“until”) combines two properties. f U g holds if g holds at 

some state on the path and f holds until that point.
F g ≡ true U g

R (“release”) is the dual of U. f R g holds if g holds up to a state 
where f holds. 

Computational Tree Logic: CTL*



State formulas are formulas that depend on a state of a 
transition system

• If p ∊ AP, then p is a state formula
• If f, g are state formulas, then so are ￢ f,  f ⋀ g, f ⋁ g
• If f is a path formula, the A f and E f are state formulas

Path formulas are formulas that depend on a computation path

• If p is a state formula, then p is also a path formula
• If f, g are path formulas, then ￢ f,  f ⋀ g, f ⋁ g, X f, F f, G f, f U

g, and f R g are path formulas

CTL*: syntax



The semantics of CTL* 
formulas are relative 
to a computation tree.

Here some example of 
computation trees and 
CTL* formulas valid in 
such computation 
trees.

Examples



The truth of a CTL* state formula is given in terms of a state s
in a Kripke structure M, notation M, s ⊨ f

CTL* semantics: state formulas



The truth of a CTL* path formula is given in terms of a path 𝜋
in a Kripke structure M, notation M, 𝜋 ⊨ f. 
Notation: 𝜋i denotes the suffix of 𝜋 starting in si

CTL* semantics: path formulas



It is easy to see that (for example) operators ⋁, ￢, X, U, and E
are enough to define formulas equivalent to any CTL* formulas

f ⋀ g ≡ ￢(￢ f ⋁ ￢ g)
f R g ≡ ￢(￢ f U￢ g)

F f   ≡ true U f
G f   ≡ false R f
G f  ≡ ￢F￢ f
A f  ≡ ￢E￢ f

In the following, we analyze two important sub-logic of CTL*:
- Linear Time Logic (LTL)
- Computational Tree Logic (CTL)

Minimal CTL* fragment



Linear time properties depend on traces (system executions).

Safety properties: something bad never happens
Deadlock
Invariants (state properties, eg. mutual exclusion)
Trace properties (e.g. beverage is delivered only after 

the coin has been inserted)

Liveness properties: something good will eventually happen
starvation freedom (the process will eventually enter 

in the critical section)
some event will happen infinitely often.

Liveness and safety properties are dual and both needed to 
specify a reasonable system.

Example: systems that do nothing are for sure safe! But 
probably useless!

Linear Time Properties



Traces and LT properties

Traces are infinite words of sets of atomic propositions. 
Atomic propositions is what we observe of a system state.

traces(M)=⋃ traces(M, 𝑠)�
./01 ⊆(234)5

Traces can be easily obtained by execution paths of a LTS, by 
dropping action names and substituting each state s with its 
labeling L(s) [the same for Kripke structures].

A Linear Time property P is just a subset of (234)5

M ⊨ P   if and only if    traces(M) ⊆P

Obs: For convenience, M is without terminal states, therefore 
we reason about infinite words.

Remember: execution paths start in initial states.



Another typical form of communication is via exchanging
messages. Here, we see a synchronization mechanism where
processes synchronize on some action. H is a set of 
synchronization actions.

Communication: Handshaking

processes evolve simultaneously provided 
they are executing the same action.

[Detour from lesson 1]



For each pair of processes Pi, Pj there exists a set Hi,j of actions
on which they must synchronize.

Generalising to n processes
[Detour from lesson 1]



Example: traffic lights / 2

Two traffic lights and they parallel composition via handshaking.

PS = “The traffic lights are never both green simultaneously”
= (A) G ￢ ( green1 ⋀ green2 )

PL = “The first traffic light will be green infinitely often”
= (A) G F green1

Both PL and PS are satisfied by this system, since traces have the 
form {red1, green2} {red2, green1} {red1, green2} {red2, green1}…

𝛃 𝛃 𝛃



Mutual Exclusion: handshaking
Simplified version: process just have two states: noncrit, crit.
They synchronize with an arbiter on actions {request, release}

In state lock, the arbiter
offers only the interaction
release.



Mutual Exclusion: handshaking

This system satisfies the mutual exclusion property?
G (￢ crit1 ⋁ ￢ crit2 ) ≡ G ￢( crit1 ⋀ crit2 ) ≡ ￢ F ( crit1 ⋀ crit2 )

Does it satisfy the following liveness properties: 
* each process enter in its critical section:

(F crit1 ) ⋀ (F crit2)

* each process enter infinitely often in the critical section)
(G F crit1 ) ⋀ (G F crit2)



Mutual Exclusion via semaphores

This system satisfies:
G (y = 0 ⟹ crit1 ⋁ crit2)

but again, no liveness, even in weaken forms, such as:
(G F wait1 ⟹ G F crit1) ⋀ (G F wait2 ⟹ G F crit2)

This is satisfied only if some form of fairness is assumed.



M’ is a refinement of M (or it is a realization) of M if traces(M’) 
⊆ traces(M). 

Theorem. traces(M’) ⊆ traces(M) if and only if for any LT 
property P, M ⊨ P implies M’ ⊨ P.

Example.
If we remove the transition from the Mutual Exclusion 
example:

We get a system that gives priority to P2 (if both are waiting, P1
cannot anymore enter its critical section).

This system has less behaviors.

Refinement



Mutual Exclusion via semaphores

Question: does this system satisfies:

G F crit1
Or

G F wait1 ⟹ G F crit1

It safisfies more LT properties! (but not G F crit1 !!)

✕



Equivalent Systems

Two systems M and M’ are trace-equivalent if traces(M’) = traces(M) .

Theorem. M and M’ are trace equivalent if and only they satisfy the same 
set of LT properties.



An invariant is a safety property that depends on a condition F
on states. 

Pinv = { A0 A1 A2… ∊ (234)5 | for all j. Aj ⊨ F }

Observe that:
M ⊨ Pinv iff traces(M)⊆ Pinv

iff L(s) ⊨ F for all s in a path of M
iff L(s) ⊨ F for all reachable states of M

F holds on initial states and it is preserved by system
transitions.

Invariants



Just a visit (DFS or a BFS) of the set of reachable states. During a 
DFS, the states on the stack is an execution (counterexample)

Invariant Checking

If the property fails, a 
counterexample is provided



In sequential programs termination is a desirable property.
Often, concurrent systems are non-terminating and termination 
means a deadlock: the system cannot evolve further.
[Observation: in concurrent system, there exists other notions 
of termination, e.g, offer an interaction after a finite time.]

Invariants: Deadlock

Starting from the 
states <red, red> and 
<green, green>, the 
system does not 
evolve (deadlock).

Process offer 
interactions that do 
not synchronize via 
handshaking.



Deadlock: Dining Philosophers

“Five philosophers are sitting at a round table with a bowl of 
rice in the middle. Their life consist in eating and thinking. To 
take rice, they need two chopsticks. In between two 
neighboring philosophers there is just one chopstick.”



Deadlock prone Dining Phil.

Deadolock: All philosophers possess its left chopstick. 
Deadlock-free: At least one philosopher can eat and think 
infinitely often.

𝐆	¬( : 𝑤𝑎𝑖𝑡?

�

@A?BC

∧ : 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑?

�

@A?BC

)	



Deadlock free Dining Phil.

Solution: A chopstick is available for just one philosopher. 

Two different states
available. 



Definition: P is a safety property if for all traces 𝜎 in (234)5\P 
there exists a set B of finite prefixes such that:

P ∩ {𝜎’|𝜎bad∊ B is a prefix of 𝜎’} = ∅

Proposition. Invariants are safety properties. 
Just consider finite sequences s0 s1 s2… sn such that for all i<n
si⊨ 𝛷 and sn⊭ 𝛷.

Lemma. If P is safety property, a system M satisfy P iff
tracesfin(M) ∩ B = ∅, where B is the set of bad prefixes.

Definition. 
1. pref(𝜎) = {𝜎’ | 𝜎’ is a finite prefix of 𝜎}
2. pref(P)=⋃ pref(𝜎)�

O/4
3. closure(P) = {𝜎 | pref(𝜎)⊆pref(P)}

Theorem. P is a safety property iff P = closure(P).

Beyond Invariants: Safety



Liveness

Definition: P is a liveness property whenever:
pref(P) = (234)∗	

Intuitively: each finite word can be extended to an infinite word 
that satisfies P. 

Proposition. The only Linear Property that is both a safety and 
a liveness is (234)5.
Proof: If P is a liveness, pref(P) = (234)∗	 and clearly, closure
(234)∗	=(234)𝝎. If P is a safety, closure(P)=P.❏

Lemma. For all linear time properties P and P’:
• closure(P ⋃ P’)=closure(P) ⋃ closure(P’)
• P⊆closure(P)



Liveness & Safety

Theorem [DECOMPOSITION THEOREM]
For any linear property P, there exists a safety property Psafe
and a liveness property Plive such that P = Psafe∩ Plive. 

Proof: Any linear property P can be written as:
P = closure(P) ∩ (P ⋃ ((234)5 \ closure(P))

Clearly closure(P) is a safety, and hence Psafe = closure(P) and 
we show that Plive = (P ⋃ ((234)5 \ closure(P)) is a liveness.
closure (Plive) = closure (P ⋃ ((234)5 \ closure(P))

= closure (P) ⋃ closure((234)5 \ closure(P))
⊇ closure(P) ⋃ ((234)5 \ closure(P))
= (234)5

This implies that closure (Plive) = (234)5 and hence Plive is a 
liveness property.❏



Liveness & Safety: summing up



Lesson 2B:

LTL Model Checking



Linear Time Logic (LTL)

LTL is a fragment of CTL* where formulas have the form A f 
with f a path formula. Differently from CTL* path formulas are 
just atomic propositions (no nested occurrences of A o G)

• If p ∊ AP, then p is also a path formula
• If f, g are path formulas, then ￢ f,  f ⋀ g, f ⋁ g, X f, F f, G f, f U

g, and f R g are path formulas

To a LTL formula 𝜑, it is associated a LT property, defined by 
the set of paths 𝜋 such that 𝜋 ⊨ 𝜑 (see semantics of CTL* -- LTL 
is a sublogic of path formulas)

M ⊨ 𝜑⇔ for all s ∊ S0, M, s ⊨ 𝜑



LTL: Semantics



Ex. of neXt: modulo 4 counter

This system satisfies the property:
G ( y →(X ￢y ⋀ X X￢y ⋀ X X X￢y)) 



Expansion Law:
f U g ≡ g ⋁ ( f ⋀ X ( f U g))
F f = f  ⋁ X F f
G f  = f ⋀ X G f

Idempotency Law:
F F f    ≡ F f
G G f  ≡ G f
f U ( f U g) ≡ f U g
(f U g) U g ≡ f U g

Absorption Law:
G F G f  ≡ F G f
F G F f   ≡ G F f

Some useful algebraic laws

These are crucial in LTL 
model checking algorithm:
Recursive definition of words 
that satisfies such formulas.



LTL Model Checking 1

Several algorithms. Today, we see a tableaux construction. 

It suffices (thanks to duality) to check properties of the form 
E f (A f  ≡ ￢E￢ f ). Moreover (again thanks to duality), we 
consider only operators X and U.

Definition [Closure of f ] CL( f ) is the smallest set containing f
and satisfying:

• ￢ g ∊ CL( f ) iff g ∊ CL( f ) 
• If g1 ⋁ g2 ∊ CL( f )  then g1, g2 ∊ CL( f )
• If X g ∊ CL( f ) then g ∊ CL( f )
• If ￢ X g ∊ CL( f ) then X￢ g ∊ CL( f )
• If g1 U g2 ∊ CL( f ) then g1, g2, X (g1 U g2 )∊ CL( f )



LTL Model Checking 2

Definition An atom is a pair (s, K), where s is a state and K is a 
maximal set of formulas in CL( f ) consistent with L(s), that is
(we identify : g with ￢￢ g)

• for each atomic proposition p, p ∊ K iff p ∊ L(s)
• for each g ∊ CL( f ) then g ∊ K iff￢ g ∉ K 
• for each g1 ⋁ g2 ∊ CL( f ), g1 ⋁ g2 ∊ K iff g1 ∊ K or g2 ∊ K
• for each ￢ X g ∊ CL( f ), ￢ X g ∊ K iff X￢ g ∊ K
• for each g1 U g2 ∊ CL( f ), g1 U g2 ∊ K iff g2 ∊ K or g1 ∊ K and 

X(g1 U g2) ∊ K

Definition Given a LTL model checking problem M, s ⊨ E f , the 
atom graph GM, f is built with atoms as the set of vertices.
There is an edge from (s, K) to (s’, K’) iff (s, s’) is transition in M, 
and for each formula X g ∊ CL( f ), X g ∊ K iff g ∊ K’. 



LTL Model Checking 3
Definition An eventuality sequence is an infinite path p in G 
such that if g1 U g2 ∊ K for some atom (s, K) then there exists an 
atom (s’, K’) reachable from (s, K) along p, such that g2 ∊ K’. 

Theorem M , s ⊨ E f  ⇔ there exists an eventuality sequence 
starting at atom (s, K) such that f ∊ K.
Proof (sketch): 
(If) Assume (s0, K0) (s1, K1) (s2, K2)… is an eventuality sequence
with (s, K)=(s0, K0). By def, p = s0 s1 s2… is a path in M.
To make induction hypothesis work, we prove that for every g ∊
CL( f ) and for all i ≥ 0, p i ⊨ g iff g ∊ Ki. The proof proceeds by 
induction on sub-formulas of f.
If g=￢ h, p i ⊨ g ⇔ p i ⊭ h ⇔ h ∉ Ki (IND)⇔ g ∊ Ki (by maximality)

If g=X h then p i ⊨ g ⇔ p i+1 ⊨ h (IND) h ∊ Ki+1. Since (si, Ki) (si+1, 
Ki+1) h ∊ Ki+1 ⇔ X h ∊ Ki.



LTL Model Checking 4
Proof (cntd.):
If g=h1 U h2 we have h2 ∊ Kj for some j ≥ i and h1, X g ∊ Kk for i≤k<j.
This implies h1 ∊ Kk and h2 ∊ Kj and hence p i ⊨ g. 

Conversely, if p i ⊨ g, there exists j ≥ i such that p j ⊨ h2 and p k ⊨ h1
Kk for i≤k<j. (HH) h2 ∊ Kj and h1 ∊ Kk. By absurd, g ∉ Ki implies that 
X g ∉ Ki (def of atom) and hence (def of atom) X￢ g ∊ Ki (def of 
transition relation)  ￢ g ∊ Ki+1 and ￢ g ∊ Ki+1 and so on until g ∉ Kj
against the fact that h2 ∊ Kj.

(only if) Assuming that M , s ⊨ E f there exists a path p = s0 s1 s2 …
in M such that p ⊨ f. Define Ki = { g ∊ CL( f ) | p i ⊨ g }.
One can show that:
1. (si, Ki ) is an atom;
2. (si, Ki ) (si+1, Ki+1) is a transition in G.
3. The sequence (s0, K0 ) (s1, K1 ) (s2, K2 )… is an eventuality

sequence. ❏



LTL Model Checking 5
Definition: A non trivial strongly connected component C in G is 
self-fullfilling if for every atom (s, K) and for every h1 U h2 ∊ K
there exists an atom (s’, K’) in C such that h2 ∊ K’.
Theorem. There exists an eventuality sequence in G starting at an 
atom (s, K) iff there exists a self-fulfilling strongly connected 
component in G reachable from (s, K) .
Proof (sketch): (If) Take an eventuality sequence and consider the 
set of atoms C’ that appear infinitely often in it. C’⊆C, C
strongly connected component. Take (s, K) in C and g = h1 U h2 ∊
K. There must be a path from (s, K) to C’. If h2 appear in the path, 
ok. Otherwise, g is in every atom on the path and in an atom of 
C’. Since C’ comes from an eventuality sequence, h2 is in some 
atom of C’⊆C, thus C is self-fullfilling. 
(Only if) Take a path from (s, K) to C. Clearly in C any
subformula of the form h1 U h2 is followed by an atom containing
h2 . The only problem is along the path, but we can reason as in 
the (If) part. ❏--



LTL Model Checking: Algorithm
Theorem M, s ⊨ E f if and only if there exists an atom (s, K) such 
that f ∊ K and a path from (s, K) to a self-fullfilling SCC. 

The size of the graph G is (|S|+|R|)⋅2 S .
Using Tarjan algorithm for SCC, this is also the complexity of this 
algorithm for LTL model checking.

Bad News: It is exponential in the size of the formula f.

Good News: Usually the transition system is huge, but the 
formula is small. 

Is there any polynomial algorithm for LTL model checking? 
Probably, no (unless P=NP).

--



LTL Model Checking Complexity
The LTL model checking problem is PSPACE-complete.
Here we prove just that LTL model checking is NP-hard.

We reduce a Hamiltonian path problem for a graph G=(V, E) 
to the LTL model checking problem M, s ⊨ E f where:
• M is the Kripke structure (S, R, L) where:

* S is V∪{s, t}
* R is E ∪{(s, v)|v ∊ V } ∪ {(v, t)|v ∊ V }
* L(vi)={ pi } and L(s) = L(t) = ∅.

• s is a state in M, and 
• f is the formula: 

E (F p1 ⋀… ⋀ F pn ⋀
⋀ G (p1 →X G￢ p1) ⋀… ⋀ G (pn →X G￢ pn)

M, s ⊨ E f holds if and only if there exists an Hamiltonian path 
in G.

There exists a path that contains all nodes

Each node occurs just once


