

University of Utah

Explicit Algorithms for Probabilistic Model Checking

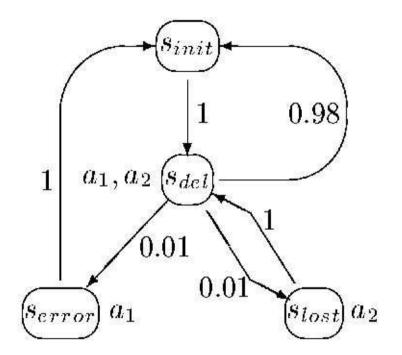
Igor Melatti

• Two explicit algorithms for probabilistic model checking are proposed

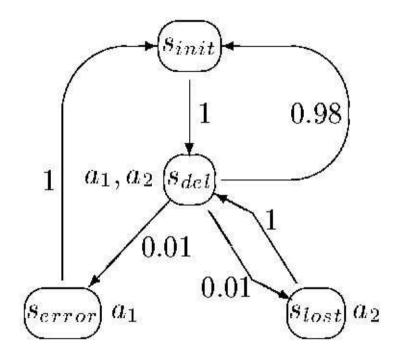
- Two explicit algorithms for probabilistic model checking are proposed
 - Formal description
 - Proof of correctness
 - Implementation (FHP-Mur φ)

- Two explicit algorithms for probabilistic model checking are proposed
 - Formal description
 - Proof of correctness
 - Implementation (FHP-Mur φ)
 - Experimental results
 - * Comparison with state-of-the-art algorithms (PRISM)
 - * Verification of a "real-world" system

- Two explicit algorithms for probabilistic model checking are proposed
 - Formal description
 - Proof of correctness
 - Implementation (FHP-Mur φ)
 - Experimental results
 - * Comparison with state-of-the-art algorithms (PRISM)
 - * Verification of a "real-world" system
- Formal analysis of the proposed Markov Chain description language

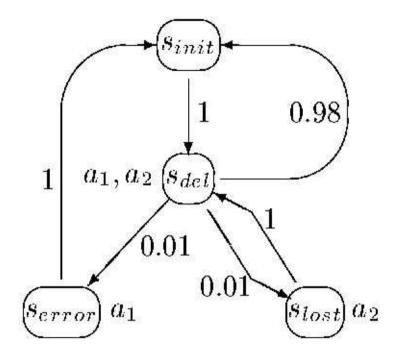


Baier *et al.*, "Symbolic model checking for probabilistic processes", *ICALP'97*, LNCS 1256



Baier *et al.*, "Symbolic model checking for probabilistic processes", *ICALP'97*, LNCS 1256

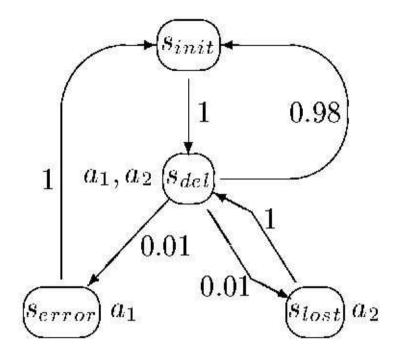
 s_{init} the state in which the sender passes the message to the medium



Baier *et al.*, "Symbolic model checking for probabilistic processes", *ICALP'97*, LNCS 1256

 s_{init} the state in which the sender passes the message to the medium

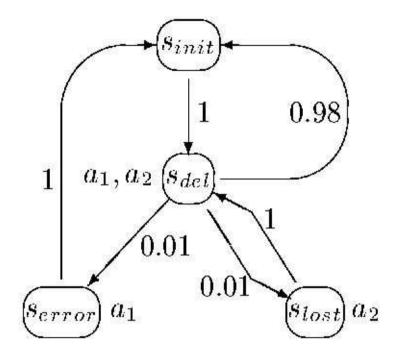
 s_{del} the state in which the medium tries to deliver the message



Baier *et al.*, "Symbolic model checking for probabilistic processes", *ICALP'97*, LNCS 1256

- s_{init} the state in which the sender passes the message to the medium
- s_{del} the state in which the medium tries to deliver the message

 s_{lost} the state reached when the message is lost



Baier *et al.*, "Symbolic model checking for probabilistic processes", *ICALP'97*, LNCS 1256

- s_{init} the state in which the sender passes the message to the medium
- s_{del} the state in which the medium tries to deliver the message
- s_{lost} the state reached when the message is lost
- s_{error} the state reached when the message is corrupted

• A Discrete Time Markov Chain is a triple $\mathcal{M} = (S, \mathbf{P}, q)$ where

• A Discrete Time Markov Chain is a triple $\mathcal{M} = (S, \mathbf{P}, q)$ where

- $S = \{s_0, \ldots, s_n\}$ is a finite set of states and $q \in S$ is the *initial state*

- A Discrete Time Markov Chain is a triple $\mathcal{M} = (S, \mathbf{P}, q)$ where
 - $S = \{s_0, \ldots, s_n\}$ is a finite set of states and $q \in S$ is the *initial state*
 - $\mathbf{P}: S \times S \rightarrow [0,1]$ is a stochastic matrix

* for all
$$s \in S$$
 , $\sum_{t \in S} \mathbf{P}(s,t) = 1$

- A Discrete Time Markov Chain is a triple $\mathcal{M} = (S, \mathbf{P}, q)$ where
 - $S = \{s_0, \ldots, s_n\}$ is a finite set of states and $q \in S$ is the *initial state*
 - $\mathbf{P}: S \times S \rightarrow [0, 1]$ is a stochastic matrix * for all $s \in S$, $\sum_{t \in S} \mathbf{P}(s, t) = 1$
- An execution sequence (or path) in $\mathcal M$ is

 $\pi = r_0 r_1 r_2 \dots$

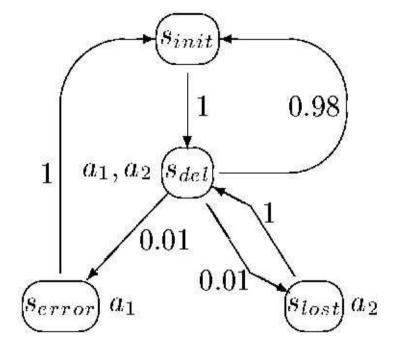
where, for all $i \ge 0$, $r_i \in S$ and $\mathbf{P}(r_i, r_{i+1}) > 0$.

- A Discrete Time Markov Chain is a triple $\mathcal{M} = (S, \mathbf{P}, q)$ where
 - $S = \{s_0, \ldots, s_n\}$ is a finite set of states and $q \in S$ is the *initial state*
 - $\mathbf{P}: S \times S \rightarrow [0, 1]$ is a stochastic matrix * for all $s \in S$, $\sum_{t \in S} \mathbf{P}(s, t) = 1$
- An execution sequence (or path) in $\mathcal M$ is

$$\pi = r_0 r_1 r_2 \dots$$

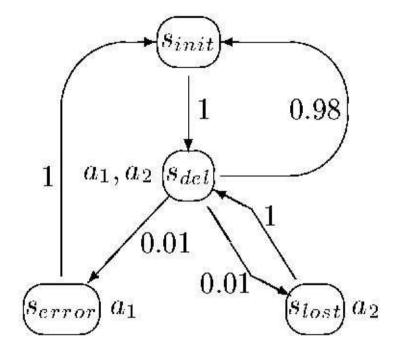
where, for all $i \ge 0$, $r_i \in S$ and $\mathbf{P}(r_i, r_{i+1}) > 0$.

• Probability of a finite path ρ : $\mathbf{P}(\rho) = \prod_{i=0}^{|\rho|-1} \mathbf{P}(\rho(i), \rho(i+1)).$



Markov Chains

•
$$S = \{s_{init}, s_{del}, s_{lost}, s_{error}\}$$

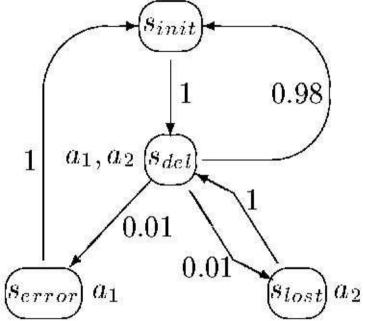


Markov Chains

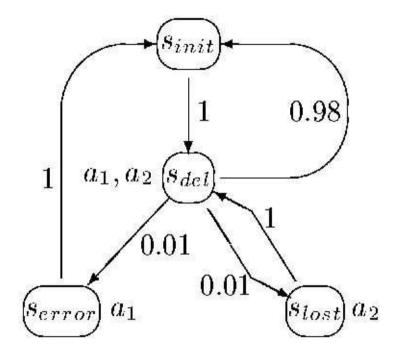
Since

•
$$S = \{s_{init}, s_{del}, s_{lost}, s_{error}\}$$

• $\mathbf{P} = \begin{pmatrix} s_{init} & s_{del} & s_{lost} & s_{error} \\ 0 & 1 & 0 & 0 \\ 0.98 & 0 & 0.01 & 0.01 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$



Markov Chains



•
$$S = \{s_{init}, s_{del}, s_{lost}, s_{error}\}$$

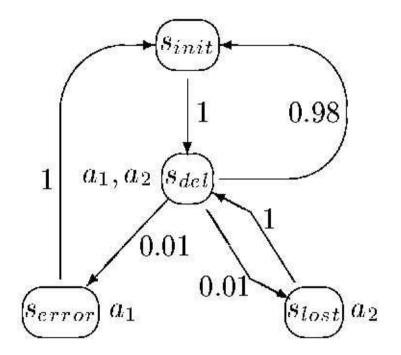
• $\mathbf{P} = \begin{pmatrix} s_{init} & s_{del} & s_{lost} & s_{error} \\ 0 & 1 & 0 & 0 \\ 0.98 & 0 & 0.01 & 0.01 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$

• 2 possible paths and their probabilities:

-
$$\mathbf{P}(s_{init}s_{del}s_{error}s_{init}) =$$

 $1 \cdot \frac{1}{100} \cdot 1 = \frac{1}{100}$
- $\mathbf{P}(s_{init}(s_{del}s_{lost})^k s_{del}s_{init}) =$
 $1 \cdot (\frac{1}{100} \cdot 1)^k \cdot \frac{98}{100} = \frac{98}{10^{2(k+1)}}$

Markov Chains



•
$$S = \{s_{init}, s_{del}, s_{lost}, s_{error}\}$$

• $\mathbf{P} = \begin{pmatrix} s_{init} & s_{del} & s_{lost} & s_{error} \\ 0 & 1 & 0 & 0 \\ 0.98 & 0 & 0.01 & 0.01 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$

• 2 possible paths and their probabilities:

-
$$\mathbf{P}(s_{init}s_{del}s_{error}s_{init}) =$$

 $1 \cdot \frac{1}{100} \cdot 1 = \frac{1}{100}$
- $\mathbf{P}(s_{init}(s_{del}s_{lost})^k s_{del}s_{init}) =$
 $1 \cdot (\frac{1}{100} \cdot 1)^k \cdot \frac{98}{100} = \frac{98}{10^{2(k+1)}}$

• Impossible path: $s_{init}s_{del}s_{error}s_{del}$

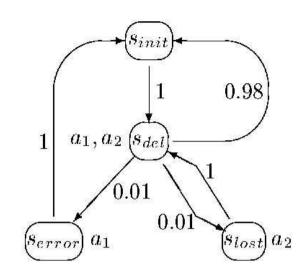
• Markov Chain analysis

- Markov Chain analysis
- Given the description of a Markov Chain, it verifies a PCTL property

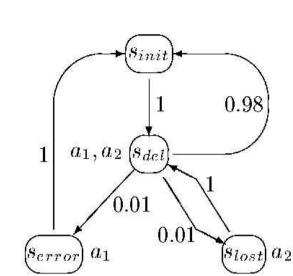
- Markov Chain analysis
- Given the description of a Markov Chain, it verifies a PCTL property
- PCTL: Probabilistic CTL
 - [$tt \mathbf{U} (\neg \phi \land \neg [tt \mathbf{U}\phi]_{\geq 1})$] ≤ 0

- Markov Chain analysis
- Given the description of a Markov Chain, it verifies a PCTL property
- PCTL: Probabilistic CTL
 - [$tt \mathbf{U} (\neg \phi \land \neg [tt \mathbf{U}\phi]_{\geq 1})$] ≤ 0
- BPCTL: Bounded PCTL
 - Proper subset of PCTL
 - All Untils (U) must be bounded

$$- [tt \mathbf{U}^{\leq k_1} (\neg \phi \land \neg [tt \mathbf{U}^{\leq k_2} \phi]_{\geq 1})]_{\leq 0}$$
$$- [tt \mathbf{U}^{\leq k_1} (\phi_{und} \land \neg [tt \mathbf{U}^{\leq k_2} \neg \phi_{err}]_{\geq 1})]_{\leq 0}$$

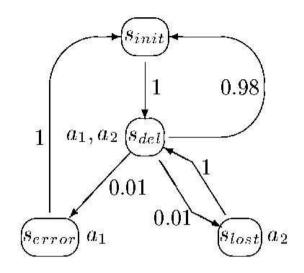


Property: [Try_to_deliver $U^{\leq 100}$ Correctly_delivered] ≥ 0.9



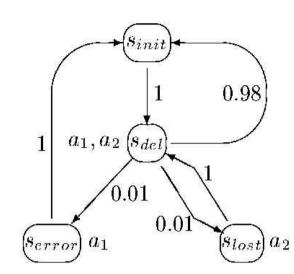
Property: [Try_to_deliver $U^{\leq 100}$ Correctly_delivered] ≥ 0.9

- Try_to_deliver (T in the following) is true if we are in state s_{del} or s_{lost}
- Correctly_delivered (C in the following) is true if we are in state s_{init}
- Initial state is s_{del}



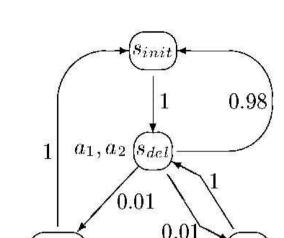
Property: [Try_to_deliver $U^{\leq 100}$ Correctly_delivered] ≥ 0.9

• Is the probability of the paths of the form $T^k C$ ($0 \le k \le 100$) at least 0.9?



Property: [Try_to_deliver $U^{\leq 100}$ Correctly_delivered] ≥ 0.9

- Is the probability of the paths of the form $T^k C$ ($0 \le k \le 100$) at least 0.9?
 - A path of the form T^kC corresponds to an execution of the system in which, after a bounded trials, the message is finally transmitted



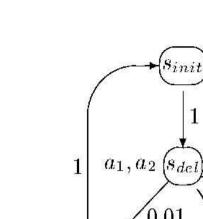
Property: [Try_to_deliver $U^{\leq 100}$ Correctly_delivered] ≥ 0.9

 a_1

• Is the probability of the paths of the form $T^k C$ ($0 \le k \le 100$) at least 0.9?

 $s_{lost} a_2$

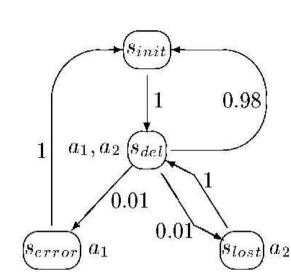
- A path of the form T^kC corresponds to an execution of the system in which, after a bounded trials, the message is finally transmitted
- Thus, we are requiring the probability of a "correct behavior" to be high enough (i.e. ≥ 0.9)



0.98

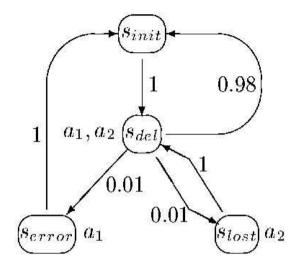
Property: $[Try_to_deliver U^{\leq 100} Correctly_delivered]_{\geq 0.9}$ • In a more mathematic speech, pick a path π at random, the probability that

 $\pi = T^k C$ for some $k \leq 100$ has to be ≥ 0.9



Property: [Try_to_deliver $U^{\leq 100}$ Correctly_delivered] ≥ 0.9

- In a more mathematic speech, pick a path π at random, the probability that $\pi = T^k C$ for some k < 100 has to be ≥ 0.9
- In our framework, $P[T \ U^{\leq 100} \ C] = \sum_{\pi \mid \exists k \leq 100: \ \pi = T^k C} \mathbf{P}(\pi)$ holds



Property: [Try_to_deliver $U^{\leq 100}$ Correctly_delivered] $\geq_{0.9}$

• In a more mathematic speech, pick a path π at random, the probability that $\pi k G$ (

 $\pi = T^k C$ for some $k \leq 100$ has to be ≥ 0.9

- In our framework, $P[T \ U^{\leq 100} \ C] = \sum_{\pi \mid \exists k \leq 100: \ \pi = T^k C} \mathbf{P}(\pi)$ holds
- \bullet Given a BPCTL formula $[\Phi]_{\geq 0.9},$ our algorithms computes $P[\Phi]=\sum_{\pi|\pi\models\Phi}\mathbf{P}(\pi)$

• Existing approaches to probabilistic model checking

- Existing approaches to probabilistic model checking
 - All based on symbolic computations

- Existing approaches to probabilistic model checking
 - All based on symbolic computations
 - ${f P}$ (and the results of the computations on it) is represented with the MTBDD data structure

- Existing approaches to probabilistic model checking
 - All based on symbolic computations
 - ${f P}$ (and the results of the computations on it) is represented with the MTBDD data structure
 - Idea derivated from the OBDD of standard model checking

- Existing approaches to probabilistic model checking
 - All based on symbolic computations
 - ${f P}$ (and the results of the computations on it) is represented with the MTBDD data structure
 - Idea derivated from the OBDD of standard model checking
 - This is ok if \boldsymbol{P} is "regular"

- Existing approaches to probabilistic model checking
 - All based on symbolic computations
 - ${f P}$ (and the results of the computations on it) is represented with the MTBDD data structure
 - Idea derivated from the OBDD of standard model checking
 - This is ok if \boldsymbol{P} is "regular"
 - If it is not, an exponential amount of RAM memory is needed

- Existing approaches to probabilistic model checking
 - All based on symbolic computations
 - ${f P}$ (and the results of the computations on it) is represented with the MTBDD data structure
 - Idea derivated from the OBDD of standard model checking
 - This is ok if \boldsymbol{P} is "regular"
 - If it is not, an exponential amount of RAM memory is needed
 - Our approach tries to avoid this, at least for some classes of Markov Chains

• Finite Horizon Probabilistic - Mur φ

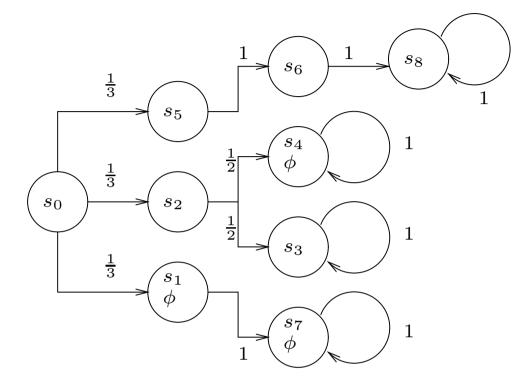
• Explicit probabilistic model checker

- Finite^Horizon^Probabilistic^{-Mur φ}
- Explicit probabilistic model checker
 - explicit verification often outperforms symbolic verification in non-probabilistic model checking

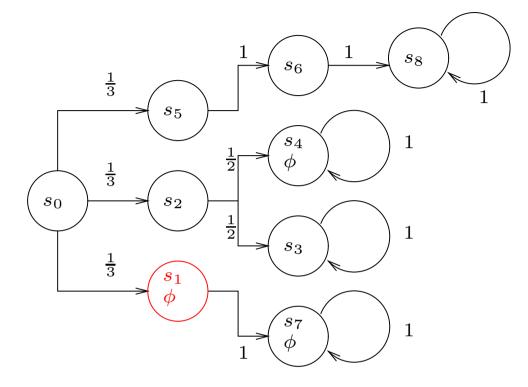
- Explicit probabilistic model checker
 - explicit verification often outperforms symbolic verification in non-probabilistic model checking
 - we will show that this holds also for probabilistic model checking

- Explicit probabilistic model checker
 - explicit verification often outperforms symbolic verification in non-probabilistic model checking
 - we will show that this holds also for probabilistic model checking
- $\mathrm{Mur} \varphi$ modified in the input language and in the verification algorithm

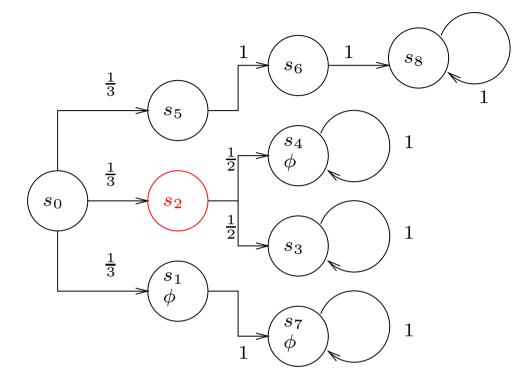
- Finite^Horizon^Probabilistic^{-Mur φ}
- Explicit probabilistic model checker
 - explicit verification often outperforms symbolic verification in non-probabilistic model checking
 - we will show that this holds also for probabilistic model checking
- $\mathrm{Mur} \varphi$ modified in the input language and in the verification algorithm
- Two explicit algorithms developed
 - BF visit: only for finite horizon safety properties
 - * Able to compute error probabilities
 - DF visit: all BPCTL formulas



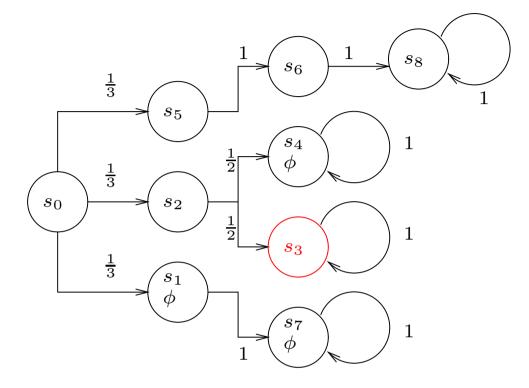
- We want to verify if $s_0 \models [tt \ \mathbf{U}^{\leq 2} \ \phi]_{\geq 0.5}$
- ϕ holds in s_1, s_4, s_7
- $\bullet\,$ The searched probability is: 0



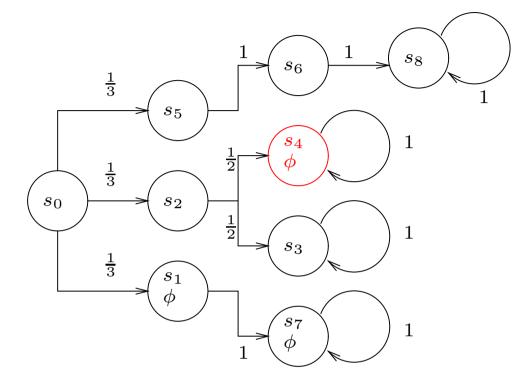
- We want to verify if $s_0 \models [tt \ \mathbf{U}^{\leq 2} \ \phi]_{\geq 0.5}$
- ϕ holds in s_1, s_4, s_7
- The searched probability is: $\frac{1}{3} \times 1$



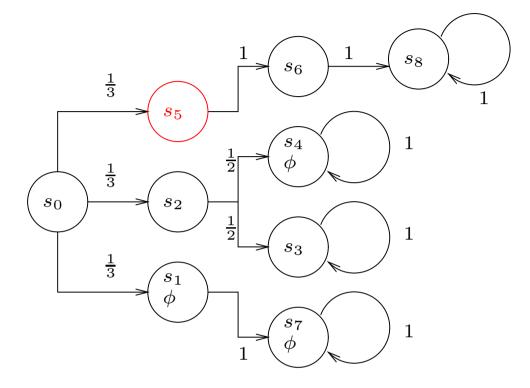
- We want to verify if $s_0 \models [tt \ \mathbf{U}^{\leq 2} \ \phi]_{\geq 0.5}$
- ϕ holds in s_1, s_4, s_7
- The searched probability is: $\frac{1}{3} + \frac{1}{3} \times \ldots$



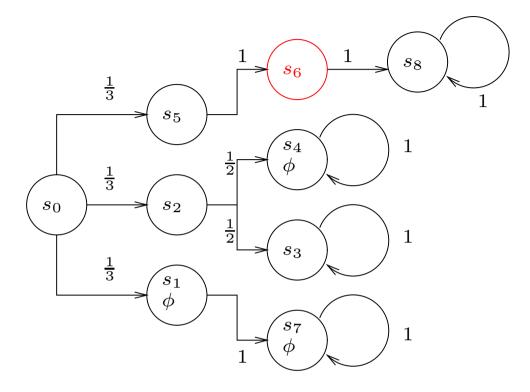
- We want to verify if $s_0 \models [tt \ \mathbf{U}^{\leq 2} \ \phi]_{\geq 0.5}$
- ϕ holds in s_1, s_4, s_7
- The searched probability is: $\frac{1}{3} + \frac{1}{3} \times (\frac{1}{2} \times 0 + \dots$



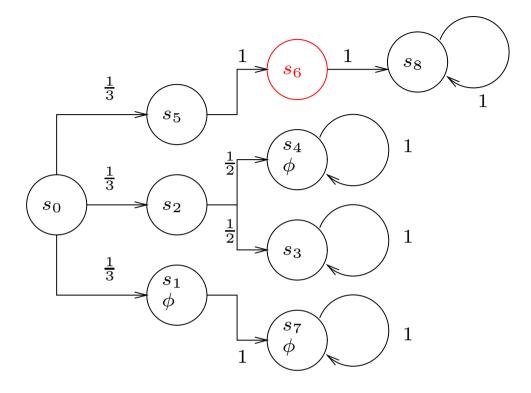
- We want to verify if $s_0 \models [tt \ \mathbf{U}^{\leq 2} \ \phi]_{\geq 0.5}$
- ϕ holds in s_1, s_4, s_7
- The searched probability is: $\frac{1}{3} + \frac{1}{3} \times (\frac{1}{2} \times 0 + \frac{1}{2} \times 1)$



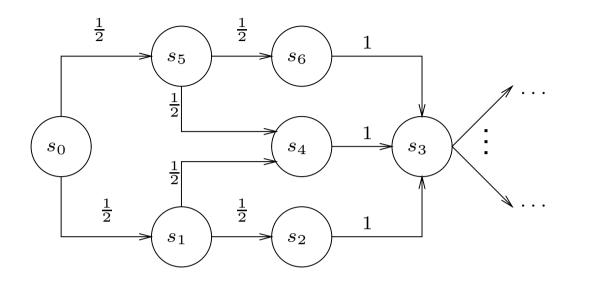
- We want to verify if $s_0 \models [tt \ \mathbf{U}^{\leq 2} \ \phi]_{\geq 0.5}$
- ϕ holds in s_1, s_4, s_7
- The searched probability is: $\frac{1}{3} + \frac{1}{3} \times \frac{1}{2} + \frac{1}{3} \times \dots$



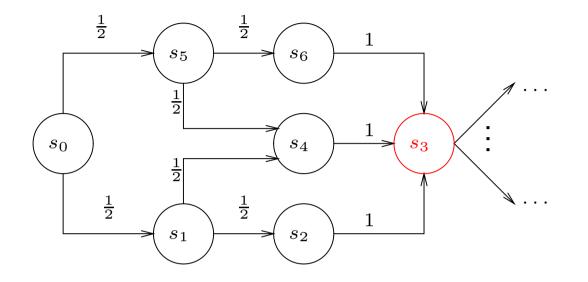
- We want to verify if $s_0 \models [tt \ \mathbf{U}^{\leq 2} \ \phi]_{\geq 0.5}$
- ϕ holds in s_1, s_4, s_7
- The searched probability is: $\frac{1}{3} + \frac{1}{3} \times \frac{1}{2} + \frac{1}{3} \times 0$



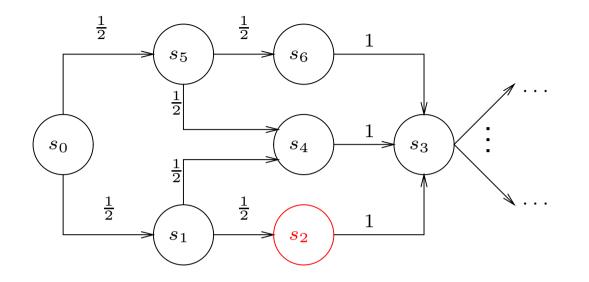
- We want to verify if $s_0 \models [tt \ \mathbf{U}^{\leq 2} \ \phi]_{\geq 0.5}$
- ϕ holds in s_1, s_4, s_7
- The searched probability is: $\frac{1}{3} + \frac{1}{3} \times \frac{1}{2} + \frac{1}{3} \times 0$
- Finally, we have $\frac{1}{3} + \frac{1}{3} \times \frac{1}{2} = \frac{1}{2} \ge 0.5$, so the property is verified



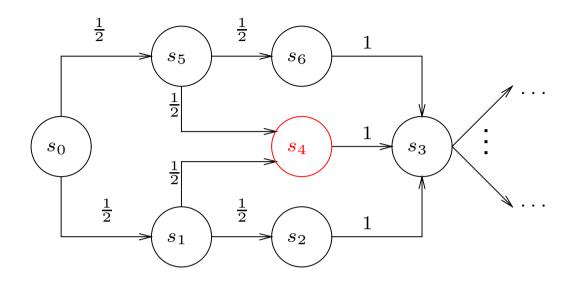
- We want to verify if $s_0 \models F$, being $F \equiv [\Phi \ \mathbf{U}^{\leq k} \ \Psi]_{\leq 0.5}$
- The cache stores 4-tuples $\{s, F, h, p\}$
 - p is the probability of $\Phi \ \mathbf{U}^{\leq h} \ \Psi$



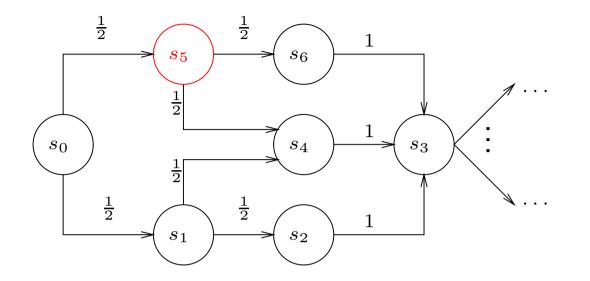
- When the DF visit of s_3 is completed, $\{s_3, F, k-3, p_3\}$ is inserted in the cache
 - p_{3} is the probability value computed by the DF on \boldsymbol{s}_{3}
 - k is decremented of 3 because s_3 is reached in 3 steps from s_0



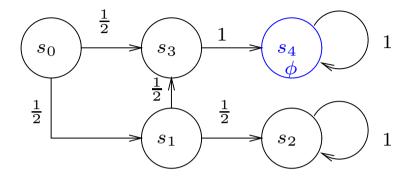
- When the DF visit of s_3 is completed, $\{s_3, F, k-3, p_3\}$ is inserted in the cache
 - p_3 is the probability value computed by the DF on s_3
 - k is decremented of 3 because s_3 is reached in 3 steps from s_0
- Analogously, $\{s_2, F, k-2, p_2\}$ is inserted in the cache



- In this way, the DF visit of s_4 can directly compute $p_4 = p_3 \times 1$
 - p_3 is not computed, but it is found on the cache
- Then, $\{s_4, F, k-2, p_4\}$ is inserted in the cache



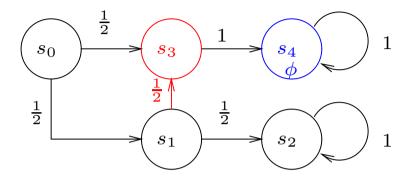
- \bullet Analogously, when the DF visit of s_5 starts, the nested DF visit of s_4 is skipped
 - p_4 is not computed, but it is found on the cache
- The result of the DF visit of s_6 will be multiplied by $\frac{1}{2}$ and then added to $\frac{1}{2} \times p_4$



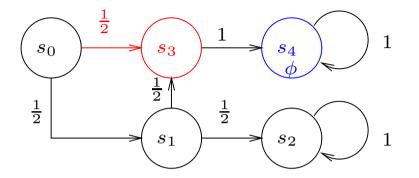
• We want to verify if $s_0 \models F$

-
$$F \equiv [tt \ \mathbf{U}^{\leq 2} \ \Phi]_{\leq 0}$$

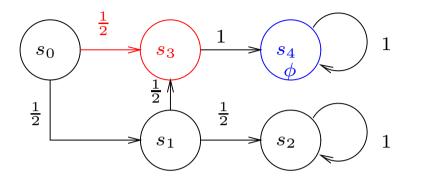
- $\Phi \equiv [tt \ \mathbf{U}^{\leq 2} \ \phi]_{\geq 1}$
- $\phi(s_4) = 1, \forall s \neq s_4. \ \phi(s) = 0.$



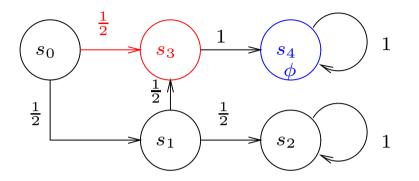
- We want to verify if $s_0 \models F$,
 - $F \equiv [tt \ \mathbf{U}^{\leq 2} \ \Phi]_{\leq 0}$
 - $\Phi \equiv [tt \mathbf{U}^{\leq 2} \phi]_{\geq 1}$ $\phi(s_4) = 1, \forall s \neq s_4. \ \phi(s) = 0.$
- s_3 is visited for the first time as a successor of s_1
 - The 4-tuple $< s_3, \Phi, 1, 1.0 >$ is stored on the cache



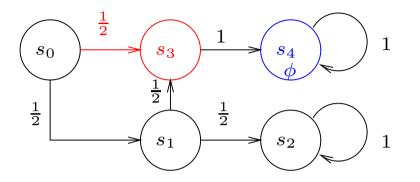
• s_3 is visited for the second time as a successor of s_0



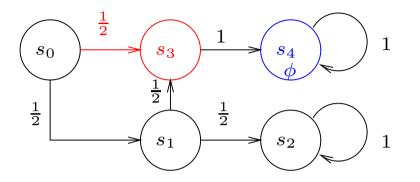
- s_3 is visited for the second time as a successor of s_0
 - The required 4-tuple $< s_3, \Phi, 2, p >$ is not on the cache



- s_3 is visited for the second time as a successor of s_0
 - The required 4-tuple $< s_3, \Phi, 2, p >$ is not on the cache
 - However, there is the 4-tuple $< s_3, \Phi, 1, 1.0 >$ (so, with a smaller horizon)



- s_3 is visited for the second time as a successor of s_0
 - The required 4-tuple $< s_3, \Phi, 2, p >$ is not on the cache
 - However, there is the 4-tuple $< s_3, \Phi, 1, 1.0 >$ (so, with a smaller horizon)
 - The stored probability 1.0 is already in the right relation with the probability bound given in $\Phi \equiv [tt \ \mathbf{U}^{\leq 2} \ \phi]_{[\geq 1]}$



- s_3 is visited for the second time as a successor of s_0
 - The required 4-tuple $< s_3, \Phi, 2, p >$ is not on the cache
 - However, there is the 4-tuple $< s_3, \Phi, 1, 1.0 >$ (so, with a smaller horizon)
 - The stored probability 1.0 is already in the right relation with the probability bound given in $\Phi \equiv [tt \ \mathbf{U}^{\leq 2} \ \phi]_{[\geq 1]}$
 - So, the second DF visit on \boldsymbol{s}_3 is avoided

Probabilistic dining philosophers Pnueli-Zuck (PZ) and Lehmann-Rabin

(LR) protocols

Probabilistic dining philosophers Pnueli-Zuck (PZ) and Lehmann-Rabin

- (LR) protocols
- In the version found on the PRISM distribution, PRISM works better

Probabilistic dining philosophers Pnueli-Zuck (PZ) and Lehmann-Rabin

(LR) protocols

- In the version found on the PRISM distribution, PRISM works better
- If they are modified in order to verify *quality-of-service* properties, FHP-Mur φ works better

Probabilistic dining philosophers Pnueli-Zuck (PZ) and Lehmann-Rabin (LR) protocols

- In the version found on the PRISM distribution, PRISM works better
- If they are modified in order to verify *quality-of-service* properties, FHP-Mur φ works better

Hybrid systems Verification of a turbogas control system, assuming a probability distribution on the user demand

Experimental results were carries out on two kind of systems:

Probabilistic dining philosophers Pnueli-Zuck (PZ) and Lehmann-Rabin (LR) protocols

- In the version found on the PRISM distribution, PRISM works better
- If they are modified in order to verify *quality-of-service* properties, FHP-Mur φ works better

Hybrid systems Verification of a turbogas control system, assuming a probability distribution on the user demand

• Probabilistic Safety Verification

Experimental results were carries out on two kind of systems:

Probabilistic dining philosophers Pnueli-Zuck (PZ) and Lehmann-Rabin (LR) protocols

- In the version found on the PRISM distribution, PRISM works better
- If they are modified in order to verify *quality-of-service* properties, FHP-Mur φ works better

Hybrid systems Verification of a turbogas control system, assuming a probability distribution on the user demand

- Probabilistic Safety Verification
- Probabilistic Robustness Verification

NPHIL	MAX_WAIT	Result	Mur $arphi$ Mem (MB)	PRISM Mem (MB)	Mur $arphi$ Time (s)	PRISM Time (s)			
Modified Pnueli-Zuck									
5	3	false	5.0e+2	9.168246e+02	1.28381900e+04	1.196793e+03			
5	4	false	5.0e+2	N/A	1.27377300e+04	N/A			
Modified Lehmann-Rabin									
3	4	true	5.0e+2	7.014830e+01	5.00634000e+03	5.359870e+02			
4	3	true	5.0e+2	N/A	1.11480680e+05	N/A			

Property verified:

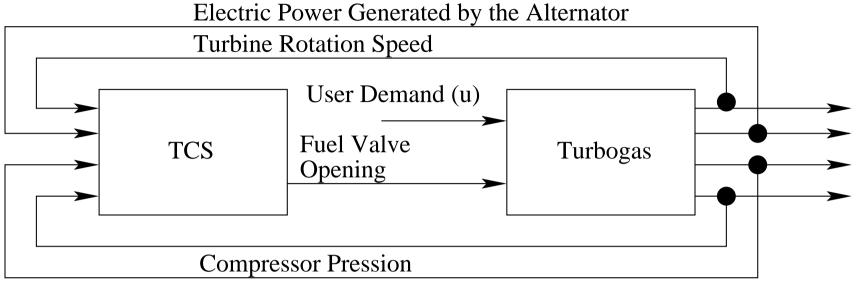
- If a philosopher risks to die, then it will eat soon
- $[tt \mathbf{U}^{\leq k_1} (\phi_{und} \land \neg [tt \mathbf{U}^{\leq k_2} \neg \phi_{err}]_{\geq 1})]_{\leq 0}.$

NPHIL, MAX_WAIT: protocol parameters

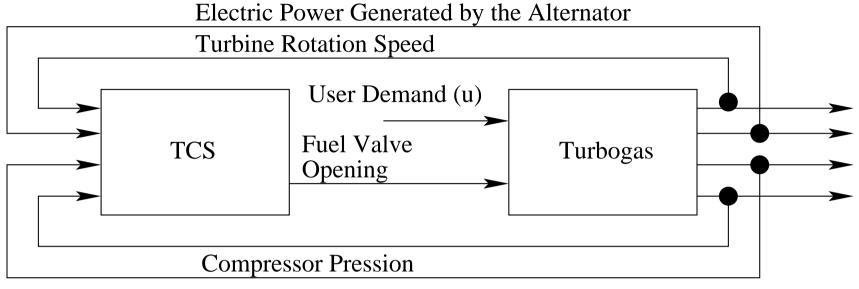
 ICARO: 2MW Electric Co-generative Power Plant, in operation at the ENEA Research Center of Casaccia (Italy)

- ICARO: 2MW Electric Co-generative Power Plant, in operation at the ENEA Research Center of Casaccia (Italy)
- The most important module is the Turbogas Control System (TCS)
 - It is also the most complex one

- ICARO: 2MW Electric Co-generative Power Plant, in operation at the ENEA Research Center of Casaccia (Italy)
- The most important module is the Turbogas Control System (TCS)
 - It is also the most complex one
- It is an hybrid system: it has both continuous (e.g., power and user demand) and discrete variables (execution modality)
 - This kind of systems are hard to analyze with OBDD-based model checkers
 - Thus, there is no hope to verify TCS with PRISM

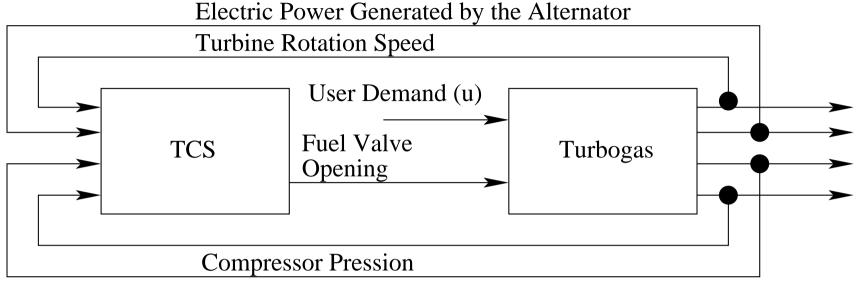


Exhaust Smokes Temperature



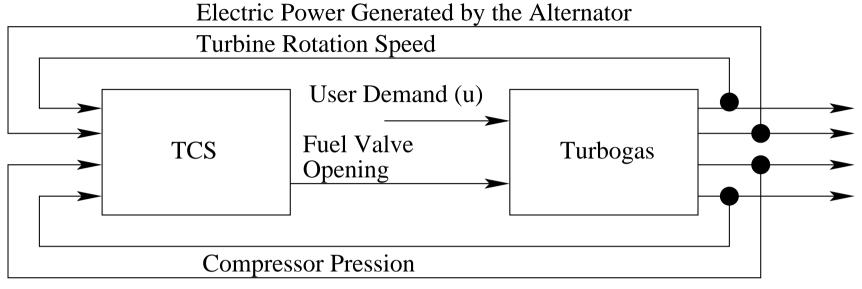
Exhaust Smokes Temperature

• TCS is an electronic circuit, its detail are known



Exhaust Smokes Temperature

- TCS is an electronic circuit, its detail are known
- The turbogas is modeled by a set of ODEs



Exhaust Smokes Temperature

- TCS is an electronic circuit, its detail are known
- The turbogas is modeled by a set of ODEs
- The user demand is modeled as a nondeterministic disturbance
 - Its variation is bounded by a verification parameter (MAX_D_U)

- To automatically verify TCS, we added finite precision real numbers to ${\rm Mur}\varphi$

- To automatically verify TCS, we added finite precision real numbers to ${\rm Mur}\varphi$
- Then, the ODEs are discretized with a sampling step of 10 ms and translated in the Mur φ input language

- To automatically verify TCS, we added finite precision real numbers to ${\rm Mur}\varphi$
- Then, the ODEs are discretized with a sampling step of 10 ms and translated in the Mur φ input language
- The property to be verified is that the main TCS parameters are maintained close to their setpoints values by the controller
 - This has to hold for every value of the user demand

- To automatically verify TCS, we added finite precision real numbers to ${\rm Mur}\varphi$
- Then, the ODEs are discretized with a sampling step of 10 ms and translated in the Mur φ input language
- The property to be verified is that the main TCS parameters are maintained close to their setpoints values by the controller
 - This has to hold for every value of the user demand
- As a result, if the user demand varies too much rapidly (i.e. MAX_D_U is too high), the controller fails

• The TCS and Turbogas behaviors, obviously, remain deterministic

- The TCS and Turbogas behaviors, obviously, remain deterministic
- On the other hand, the user demand now have a probabilistic distribution

- The TCS and Turbogas behaviors, obviously, remain deterministic
- On the other hand, the user demand now have a probabilistic distribution

- Let
$$p(u,i) = \begin{cases} 0.4 + \beta \frac{(u-\frac{M}{2})|u-\frac{M}{2}|}{M^2} & \text{if } i = -1\\ 0.2 & \text{if } i = 0\\ 0.4 + \beta \frac{(\frac{M}{2}-u)|u-\frac{M}{2}|}{M^2} & \text{if } i = +1 \end{cases}$$

- The TCS and Turbogas behaviors, obviously, remain deterministic
- On the other hand, the user demand now have a probabilistic distribution

$$p(u,i) = \begin{cases} 0.4 + \beta \frac{(u-\frac{M}{2})|u-\frac{M}{2}|}{M^2} & \text{if } i = -1 \\ 0.2 & \text{if } i = 0 \\ 0.4 + \beta \frac{(\frac{M}{2}-u)|u-\frac{M}{2}|}{M^2} & \text{if } i = +1 \end{cases}$$

- Then

– Let

$$u(t+1) = \begin{cases} \max(u(t) - \alpha, 0) & \text{with prob. } p(u(t), -1) \\ u(t) & \text{with prob. } p(u(t), 0) \\ \min(u(t) + \alpha, M) & \text{with prob. } p(u(t), +1) \end{cases}$$

- We compute which is the error probability in at most k steps
 - finite horizon safety property

- We compute which is the error probability in at most k steps
 - finite horizon safety property
- MAX_D_U has a value that force the non-probabilistic verification to fail

- We compute which is the error probability in at most k steps
 - finite horizon safety property
- MAX_D_U has a value that force the non-probabilistic verification to fail

MAX_D_U	Reachable States	Finite Horizon	CPU Time	Probability
25	3018970	1600	68562.570	7.373291768e-05
35	2226036	1400	50263.020	1.076644427e-04
45	1834684	1300	41403.150	9.957147381e-05
50	83189	900	2212.360	3.984375e-03

• Verification of a robustness property

- Verification of a robustness property
- Informally: if the system reaches an undesired state, then it is able to return to a more safe state in a few time

- Verification of a robustness property
- Informally: if the system reaches an undesired state, then it is able to return to a more safe state in a few time
- A state is *undesired* if the critical parameters are near to their critical values
 - if the system remains too much time in an undesired state, it will crash

- Verification of a robustness property
- Informally: if the system reaches an undesired state, then it is able to return to a more safe state in a few time
- A state is *undesired* if the critical parameters are near to their critical values
 - if the system remains too much time in an undesired state, it will crash
- More formally: there is a low probability of reaching an undesired state s, such that there is not an high probability of reaching (in a few number of steps) a non-undesired state from s

- Verification of a robustness property
- Informally: if the system reaches an undesired state, then it is able to return to a more safe state in a few time
- A state is *undesired* if the critical parameters are near to their critical values
 - if the system remains too much time in an undesired state, it will crash
- More formally: there is a low probability of reaching an undesired state s, such that there is not an high probability of reaching (in a few number of steps) a non-undesired state from s
- The formula is $[tt \ \mathbf{U}^{\leq k_1} \ (\neg \phi_{und} \land \neg [tt \ \mathbf{U}^{\leq k_2} \phi_{und}]_{\geq 1})]_{\leq 0}$

- Verification of a robustness property
- Informally: if the system reaches an undesired state, then it is able to return to a more safe state in a few time
- A state is *undesired* if the critical parameters are near to their critical values
 - if the system remains too much time in an undesired state, it will crash
- More formally: there is a low probability of reaching an undesired state s, such that there is not an high probability of reaching (in a few number of steps) a non-undesired state from s
- The formula is $[tt \ \mathbf{U}^{\leq k_1} \ (\neg \phi_{und} \land \neg [tt \ \mathbf{U}^{\leq k_2} \phi_{und}]_{\geq 1})]_{\leq 0}$
- k_1 is sufficient to reach an undesired state

- Verification of a robustness property
- Informally: if the system reaches an undesired state, then it is able to return to a more safe state in a few time
- A state is *undesired* if the critical parameters are near to their critical values
 - if the system remains too much time in an undesired state, it will crash
- More formally: there is a low probability of reaching an undesired state s, such that there is not an high probability of reaching (in a few number of steps) a non-undesired state from s
- The formula is $[tt \ \mathbf{U}^{\leq k_1} \ (\neg \phi_{und} \land \neg [tt \ \mathbf{U}^{\leq k_2} \phi_{und}]_{\geq 1})]_{\leq 0}$
- k_1 is sufficient to reach an undesired state
- $k_2 = \frac{k_1}{100}$

MAX_D_U	Visited States	k_1	CPU Time (s)	Probability
35	1.159160e+05	800	3.702400e+03	4.104681e-03
45	4.098000e+04	700	1.313900e+03	1.792883e-02
50	4.067700e+04	700	1.307850e+03	3.825000e-02

Results on a machine with 2 processors (both INTEL Pentium III 500Mhz) and 2GB of RAM. Mur φ options used: -m500 (use 500 MB of RAM)

- Continuous Markov Chains (with CSL logic)
 - Approximable to Discrete Time Markov Chain with an exponential distribution
 - The smaller the sampling step
 - \ast the lowest the approximation error
 - \ast the higher the execution time

- Continuous Markov Chains (with CSL logic)
 - Approximable to Discrete Time Markov Chain with an exponential distribution
 - The smaller the sampling step
 - \ast the lowest the approximation error
 - \ast the higher the execution time

Improving performances

- Continuous Markov Chains (with CSL logic)
 - Approximable to Discrete Time Markov Chain with an exponential distribution
 - The smaller the sampling step
 - \ast the lowest the approximation error
 - \ast the higher the execution time

Improving performances

• Try to apply symmetry reduction (to be investigated)