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• Two explicit algorithms for probabilistic model checking are proposed

– Formal description

– Proof of correctness

– Implementation (FHP-Murϕ)

– Experimental results

∗ Comparison with state-of-the-art algorithms (PRISM)

∗ Verification of a “real-world” system

• Formal analysis of the proposed Markov Chain description language

Igor Melatti, Explicit Algorithms for Probabilistic Model Checking –2-d–



University of L’Aquila- 26/05/2008 (morning) Markov Chains

Baier et al., “Symbolic model checking for prob-

abilistic processes”, ICALP’97, LNCS 1256

Igor Melatti, Explicit Algorithms for Probabilistic Model Checking –3–



University of L’Aquila- 26/05/2008 (morning) Markov Chains

Baier et al., “Symbolic model checking for prob-

abilistic processes”, ICALP’97, LNCS 1256

sinit the state in which the sender passes the

message to the medium

Igor Melatti, Explicit Algorithms for Probabilistic Model Checking –3-a–



University of L’Aquila- 26/05/2008 (morning) Markov Chains

Baier et al., “Symbolic model checking for prob-

abilistic processes”, ICALP’97, LNCS 1256

sinit the state in which the sender passes the

message to the medium

sdel the state in which the medium tries to de-

liver the message

Igor Melatti, Explicit Algorithms for Probabilistic Model Checking –3-b–



University of L’Aquila- 26/05/2008 (morning) Markov Chains

Baier et al., “Symbolic model checking for prob-

abilistic processes”, ICALP’97, LNCS 1256

sinit the state in which the sender passes the

message to the medium

sdel the state in which the medium tries to de-

liver the message

slost the state reached when the message is

lost

Igor Melatti, Explicit Algorithms for Probabilistic Model Checking –3-c–



University of L’Aquila- 26/05/2008 (morning) Markov Chains

Baier et al., “Symbolic model checking for prob-

abilistic processes”, ICALP’97, LNCS 1256

sinit the state in which the sender passes the

message to the medium

sdel the state in which the medium tries to de-

liver the message

slost the state reached when the message is

lost

serror the state reached when the message is

corrupted
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– P : S × S → [0, 1] is a stochastic matrix

∗ for all s ∈ S,
∑

t∈S

P(s, t) = 1

• An execution sequence (or path) in M is

π = r0r1r2 . . .

where, for all i ≥ 0, ri ∈ S and P(ri, ri+1) > 0.
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• A Discrete Time Markov Chain is a triple M = (S,P, q) where

– S = {s0, . . . , sn} is a finite set of states and q ∈ S is the initial state

– P : S × S → [0, 1] is a stochastic matrix

∗ for all s ∈ S,
∑

t∈S

P(s, t) = 1

• An execution sequence (or path) in M is

π = r0r1r2 . . .

where, for all i ≥ 0, ri ∈ S and P(ri, ri+1) > 0.

• Probability of a finite path ρ: P(ρ) =
|ρ|−1
∏

i=0

P(ρ(i), ρ(i + 1)).
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• 2 possible paths and their probabilities:

– P(sinitsdelserrorsinit) =

1 · 1

100
· 1 = 1

100

– P(sinit(sdelslost)
ksdelsinit) =

1 · ( 1
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· 1)k · 98
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• 2 possible paths and their probabilities:

– P(sinitsdelserrorsinit) =

1 · 1

100
· 1 = 1

100

– P(sinit(sdelslost)
ksdelsinit) =

1 · ( 1

100
· 1)k · 98

100
= 98

102(k+1)

• Impossible path: sinitsdelserrorsdel
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• Markov Chain analysis

• Given the description of a Markov Chain, it verifies a PCTL property

• PCTL: Probabilistic CTL

– [tt U (¬φ ∧ ¬[tt Uφ]≥1)]≤0

• BPCTL: Bounded PCTL

– Proper subset of PCTL

– All Untils (U) must be bounded

– [tt U
≤k1 (¬φ ∧ ¬[tt U

≤k2φ]≥1)]≤0

– [tt U
≤k1 (φund ∧ ¬[tt U

≤k2¬φerr]≥1)]≤0
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Property: [Try to deliver U≤100 Correctly delivered]≥0.9

• Try to deliver (T in the following) is true if we are in state sdel or slost

• Correctly delivered (C in the following) is true if we are in state sinit

• Initial state is sdel
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Property: [Try to deliver U≤100 Correctly delivered]≥0.9

• Is the probability of the paths of the form T kC (0 ≤ k ≤ 100) at least

0.9?

– A path of the form T kC corresponds to an execution of the system in

which, after a bounded trials, the message is finally transmitted

– Thus, we are requiring the probability of a “correct behavior” to be high

enough (i.e. ≥ 0.9)
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Property: [Try to deliver U≤100 Correctly delivered]≥0.9

• In a more mathematic speech, pick a path π at random, the probability that

π = T kC for some k ≤ 100 has to be ≥ 0.9

• In our framework, P [T U≤100 C] =
∑

π|∃k≤100: π=TkC

P(π) holds

• Given a BPCTL formula [Φ]≥0.9, our algorithms computes P [Φ] =
∑

π|π|=Φ

P(π)
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• Existing approaches to probabilistic model checking

– All based on symbolic computations

– P (and the results of the computations on it) is represented with the

MTBDD data structure

– Idea derivated from the OBDD of standard model checking

– This is ok if P is “regular”

– If it is not, an exponential amount of RAM memory is needed

– Our approach tries to avoid this, at least for some classes of Markov

Chains
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• FiniteHorizonProbabilistic-Murϕ

• Explicit probabilistic model checker

– explicit verification often outperforms symbolic verification in

non-probabilistic model checking

– we will show that this holds also for probabilistic model checking

• Murϕ modified in the input language and in the verification algorithm

• Two explicit algorithms developed

– BF visit: only for finite horizon safety properties

∗ Able to compute error probabilities

– DF visit: all BPCTL formulas
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• We want to verify if s0 |= [tt U
≤2 φ]≥0.5

• φ holds in s1, s4, s7

• The searched probability is: 0

• Finally, we have 1
3

+ 1
3
× 1

2
+ 1

3
= 1

2
, so the property is verified
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• We want to verify if s0 |= [tt U
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• φ holds in s1, s4, s7
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• We want to verify if s0 |= [tt U
≤2 φ]≥0.5

• φ holds in s1, s4, s7

• The searched probability is: 1
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× 0 + . . .

• Finally, we have 1
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• We want to verify if s0 |= [tt U
≤2 φ]≥0.5

• φ holds in s1, s4, s7

• The searched probability is: 1
3

+ 1
3
× 1

2
+ 1

3
× 0

• Finally, we have 1
3

+ 1
3
× 1

2
= 1

2
≥ 0.5, so the property is verified
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• We want to verify if s0 |= F , being F ≡ [Φ U
≤k Ψ]≤0.5

• The cache stores 4-tuples {s, F , h, p}

– p is the probability of Φ U
≤h Ψ
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1
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. . .

s3

• When the DF visit of s3 is completed, {s3, F , k− 3, p3} is inserted in the

cache

– p3 is the probability value computed by the DF on s3

– k is decremented of 3 because s3 is reached in 3 steps from s0
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s2

• When the DF visit of s3 is completed, {s3, F , k− 3, p3} is inserted in the

cache

– p3 is the probability value computed by the DF on s3

– k is decremented of 3 because s3 is reached in 3 steps from s0

• Analogously, {s2, F , k − 2, p2} is inserted in the cache
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• In this way, the DF visit of s4 can directly compute p4 = p3 × 1

– p3 is not computed, but it is found on the cache

• Then, {s4, F , k − 2, p4} is inserted in the cache
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• Analogously, when the DF visit of s5 starts, the nested DF visit of s4 is

skipped

– p4 is not computed, but it is found on the cache

• The result of the DF visit of s6 will be multiplied by 1
2

and then added to
1
2
× p4
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s4

φ

• We want to verify if s0 |= F

– F ≡ [tt U
≤2 Φ]≤0

– Φ ≡ [tt U
≤2 φ]≥1

– φ(s4) = 1, ∀s 6= s4. φ(s) = 0.
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• We want to verify if s0 |= F ,

– F ≡ [tt U
≤2 Φ]≤0

– Φ ≡ [tt U
≤2 φ]≥1

– φ(s4) = 1, ∀s 6= s4. φ(s) = 0.

• s3 is visited for the first time as a successor of s1

– The 4-tuple < s3,Φ, 1, 1.0 > is stored on the cache
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• s3 is visited for the second time as a successor of s0

– The required 4-tuple < s3,Φ, 2, p > is not on the cache

– However, there is the 4-tuple < s3,Φ, 1, 1.0 > (so, with a smaller

horizon)

– The stored probability 1.0 is already in the right relation with the proba-

bility bound given in Φ ≡ [tt U
≤2 φ]

≥ 1
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• s3 is visited for the second time as a successor of s0

– The required 4-tuple < s3,Φ, 2, p > is not on the cache

– However, there is the 4-tuple < s3,Φ, 1, 1.0 > (so, with a smaller

horizon)

– The stored probability 1.0 is already in the right relation with the proba-

bility bound given in Φ ≡ [tt U
≤2 φ]

≥ 1

– So, the second DF visit on s3 is avoided
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Experimental results were carries out on two kind of systems:

Probabilistic dining philosophers Pnueli-Zuck (PZ) and Lehmann-Rabin

(LR) protocols

• In the version found on the PRISM distribution, PRISM works better

• If they are modified in order to verify quality-of-service properties,

FHP-Murϕ works better

Hybrid systems Verification of a turbogas control system, assuming a

probability distribution on the user demand

• Probabilistic Safety Verification

• Probabilistic Robustness Verification
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University of L’Aquila- 26/05/2008 (morning) Experimental Results: PZ and LR Protocols

NPHIL MAX WAIT Result Murϕ Mem (MB) PRISM Mem (MB) Murϕ Time (s) PRISM Time (s)

Modified Pnueli-Zuck

5 3 false 5.0e+2 9.168246e+02 1.28381900e+04 1.196793e+03

5 4 false 5.0e+2 N/A 1.27377300e+04 N/A

Modified Lehmann-Rabin

3 4 true 5.0e+2 7.014830e+01 5.00634000e+03 5.359870e+02

4 3 true 5.0e+2 N/A 1.11480680e+05 N/A

Property verified:

• If a philosopher risks to die, then it will eat soon

• [tt U
≤k1 (φund ∧ ¬[tt U

≤k2¬φerr]≥1)]≤0.

NPHIL, MAX WAIT: protocol parameters
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• ICARO: 2MW Electric Co-generative Power Plant, in operation at the

ENEA Research Center of Casaccia (Italy)

• The most important module is the Turbogas Control System (TCS)

– It is also the most complex one

• It is an hybrid system: it has both continuous (e.g., power and user

demand) and discrete variables (execution modality)

– This kind of systems are hard to analyze with OBDD-based model

checkers

– Thus, there is no hope to verify TCS with PRISM

Igor Melatti, Explicit Algorithms for Probabilistic Model Checking –29-c–



University of L’Aquila- 26/05/2008 (morning) A Turbogas Control System

Compressor Pression

Fuel Valve
Opening

User Demand (u)

Turbine Rotation Speed
Electric Power Generated by the Alternator

TCS Turbogas

Exhaust Smokes Temperature
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Compressor Pression

Fuel Valve
Opening

User Demand (u)

Turbine Rotation Speed
Electric Power Generated by the Alternator

TCS Turbogas

Exhaust Smokes Temperature

• TCS is an electronic circuit, its detail are known

• The turbogas is modeled by a set of ODEs

• The user demand is modeled as a nondeterministic disturbance

– Its variation is bounded by a verification parameter (MAX D U)
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• To automatically verify TCS, we added finite precision real numbers to

Murϕ

• Then, the ODEs are discretized with a sampling step of 10 ms and

translated in the Murϕ input language

• The property to be verified is that the main TCS parameters are

maintained close to their setpoints values by the controller

– This has to hold for every value of the user demand

• As a result, if the user demand varies too much rapidly (i.e. MAX D U is

too high), the controller fails
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• The TCS and Turbogas behaviors, obviously, remain deterministic

• On the other hand, the user demand now have a probabilistic distribution

– Let

p(u, i) =























0.4 + β
(u−M

2
)|u−M

2
|

M2 if i = −1

0.2 if i = 0

0.4 + β
( M

2
−u)|u−M

2
|

M2 if i = +1
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– Then

u(t + 1) =























max(u(t) − α, 0) with prob. p(u(t),−1)

u(t) with prob. p(u(t), 0)

min(u(t) + α,M) with prob. p(u(t),+1)
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• We compute which is the error probability in at most k steps

– finite horizon safety property
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University of L’Aquila- 26/05/2008 (morning) TCS: Probabilistic Safety Verification

• We compute which is the error probability in at most k steps

– finite horizon safety property

• MAX D U has a value that force the non-probabilistic verification to fail

MAX D U Reachable States Finite Horizon CPU Time Probability

25 3018970 1600 68562.570 7.373291768e-05

35 2226036 1400 50263.020 1.076644427e-04

45 1834684 1300 41403.150 9.957147381e-05

50 83189 900 2212.360 3.984375e-03
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• Verification of a robustness property

• Informally: if the system reaches an undesired state, then it is able to

return to a more safe state in a few time

• A state is undesired if the critical parameters are near to their critical values

– if the system remains too much time in an undesired state, it will crash

• More formally: there is a low probability of reaching an undesired state s,

such that there is not an high probability of reaching (in a few number of

steps) a non-undesired state from s

• The formula is [tt U
≤k1 (¬φund ∧ ¬[tt U

≤k2φund]≥1)]≤0

• k1 is sufficient to reach an undesired state

• k2 = k1

100

Igor Melatti, Explicit Algorithms for Probabilistic Model Checking –34-f–



University of L’Aquila- 26/05/2008 (morning) TCS: Probabilistic Robustness Verification

MAX D U Visited States k1 CPU Time (s) Probability

35 1.159160e+05 800 3.702400e+03 4.104681e-03

45 4.098000e+04 700 1.313900e+03 1.792883e-02

50 4.067700e+04 700 1.307850e+03 3.825000e-02

Results on a machine with 2 processors (both INTEL Pentium III 500Mhz) and 2GB of RAM.

Murϕ options used: -m500 (use 500 MB of RAM)
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More features for FHP-Mur ϕ and then comparison with PRISM

• Continuous Markov Chains (with CSL logic)

– Approximable to Discrete Time Markov Chain with an exponential

distribution

– The smaller the sampling step

∗ the lowest the approximation error

∗ the higher the execution time

Improving performances

• Try to apply symmetry reduction (to be investigated)
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