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Chapter 1

Introduction

NUSMV is a symbolic model checker originated from the reengineering, reimplemen-
tation and extension of CMU SMV, the original BDD-based model checker developed
at CMU [McM93]. The NUSMV project aims at the development of a state-of-the-art
symbolic model checker, designed to be applicable in technology transfer projects: it
is a well structured, open, flexible and documented platformfor model checking, and
is robust and close to industrial systems standards [CCGR00].

Version 1 of NUSMV basically implements BDD-based symbolic model check-
ing. Version 2 of NUSMV (NUSMV2 in the following) inherits all the functionalities
of the previous version, and extends them in several directions [CCG+02]. The main
novelty in NUSMV2 is the integration of model checking techniques based on proposi-
tional satisfiability (SAT) [BCCZ99]. SAT-based model checking is currently enjoying
a substantial success in several industrial fields, and opens up new research directions.
BDD-based and SAT-based model checking are often able to solve different classes of
problems, and can therefore be seen as complementary techniques.

Starting from NUSMV2, we are also adopting a new development and license
model. NUSMV2 is distributed with an OpenSource license1, that allows anyone
interested to freely use the tool and to participate in its development. The aim of
the NUSMV OpenSource project is to provide to the model checking community a
common platform for the research, the implementation, and the comparison of new
symbolic model checking techniques. Since the release of NUSMV2, the NUSMV
team has received code contributions for different parts ofthe system. Several research
institutes and commercial companies have expressed interest in collaborating to the
development of NUSMV. The main features of NUSMV are the following:

• Functionalities. NUSMV allows for the representation of synchronous and
asynchronous finite state systems, and for the analysis of specifications expressed
in Computation Tree Logic (CTL) and Linear Temporal Logic (LTL), using
BDD-based and SAT-based model checking techniques. Heuristics are avail-
able for achieving efficiency and partially controlling thestate explosion. The
interaction with the user can be carried on with a textual interface, as well as in
batch mode.

• Architecture. A software architecture has been defined. The different compo-
nents and functionalities of NUSMV have been isolated and separated in mod-

1(seehttp://www.opensource.org )
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ules. Interfaces between modules have been provided. This reduces the effort
needed to modify and extend NUSMV.

• Quality of the implementation. NUSMV is written in ANSI C, is POSIX com-
pliant, and has been debugged with Purify in order to detect memory leaks. Fur-
thermore, the system code is thoroughly commented. NUSMV uses the state
of the art BDD package developed at Colorado University, andprovides a gen-
eral interface for linking with state-of the-art SAT solvers. This makes NUSMV
very robust, portable, efficient, and easy to understand by people other than the
developers.

This document is structured as follows.

• In Chapter 2 [Input Language], page 6 we define the syntax of the input language
of NUSMV.

• In Chapter 3 [Running NuSMV interactively], page 41 the commands of the
interaction shell are described.

• In Chapter 4 [Running NuSMV batch], page 87 we define the batchmode of
NUSMV.

NUSMV is available athttp://nusmv.irst.itc.it .
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Chapter 2

Input Language

In this chapter we present the syntax and semantics of the input language of NUSMV.
Before going into the details of the language, let us give a few general notes about

the syntax. In the syntax notations used below, syntactic categories (non-terminals)
are indicated bymonospace font , and tokens and character set members (terminals)
by bold font. Grammar productions enclosed in square brackets (‘[] ’) are optional
while a vertical bar (‘| ’) is used to separate alternatives in the syntax rules. Sometimes
one of is used at the beginning of a rule as a shorthand for choosing among several
alternatives. If the characters|, [ and] are in bold font, they lose their special meaning
and become regular tokens.

In the following, anidentifier may be any sequence of characters starting with
a character in the set{A-Za-z } and followed by a possibly empty sequence of char-
acters belonging to the set{A-Za-z0-9 $#\-}. All characters and case in an identifier
are significant. Whitespace characters are space (<SPACE>), tab (<TAB>) and new-
line (<RET>). Any string starting with two dashes (‘-- ’) and ending with a newline is
a comment and ignored by the parser.

The syntax rule for anidentifier is:

identifier ::
identifier_first_character

| identifier identifier_consecutive_character

identifier_first_character :: one of
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z _

identifier_consecutive_character ::
identifier_first_character

| digit
| one of $ # \ -

digit :: one of 0 1 2 3 4 5 6 7 8 9

An identifier is always distinct from the NUSMV language reserved keywords
which are:

MODULE, DEFINE, CONSTANTS, VAR, IVAR, INIT, TRANS, INVAR,
SPEC, CTLSPEC, LTLSPEC, PSLSPEC COMPUTE, INVARSPEC, FAIRNESS,
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JUSTICE, COMPASSION, ISA, ASSIGN, CONSTRAINT, SIMPWFF, CTLWFF,
LTLWFF, PSLWFF, COMPWFF, IN, MIN, MAX, MIRROR, PRED, PREDICATES,
process,array, of, boolean, integer, real, word, word1, bool, EX,
AX, EF, AF, EG, AG, E, F, O, G, H, X, Y, Z, A, U, S, V, T, BU, EBF, ABF, EBG,
ABG, case, esac, mod, next, init, union, in, xor, xnor, self, TRUE,
FALSE

To represent various values we will useinteger numbers which are any non-
empty sequence of decimal digits preceded by an optional unary minus

integer_number ::
- digit

| digit
| integer_number digit

andsymbolic constants which areidentifiers

symbolic_constant :: identifier

Examples of integer numbers and symbolic constants are 3, -14,
007, OK, FAIL, waiting, stop . The values ofsymbolic constants and
integer numbers do not intersect, with the exceptions of the reservedsymbolic
constants TRUE andFALSE which are equal to theinteger numbers 1 and0 respec-
tively.

2.1 Types Overview
This section provides an overview of the types that are recognised by NUSMV.

2.1.1 Boolean
Theboolean type comprises twointeger numbers 0 and1, or their symbolic equivalents
FALSE andTRUE.

2.1.2 Integer
The domain of theinteger type is simply any whole number, positive or negative. At themo-
ment, there are implementation-dependent constraints on the this type andinteger numbers
can only be in the range−2

32
+ 1 to 2

32 − 1 (more accurately, these values are equivalent to the
C/C++ macrosINT MIN andINT MAX).

2.1.3 Enumeration Types
An enumeration type is a type specified by full enumerations of all the valuesthat the type com-
prises. For example, the enumeration of values may be{stopped, running, waiting,
finished }, {2, 4, -2, 0 }, {FAIL, 1, 3, 7, OK }, etc. All elements of an enumer-
ation have to be unique although the order of elements is not important.

However, in the NUSMV type system, expressions cannot be of actualenumeration types,
but of their simplified and generalised versions only. Such generalisedenumeration types do
not contain information about the exact values constituting the types, but only the flag whether all
values areinteger numbers , symbolic constants or both. Below only generalised
versions ofenumeration types are explained.

Thesymbolic enum type covers enumerations containing onlysymbolic constants .
For example, the enumerations{stopped, running, waiting } and{FAIL, OK } be-
long to thesymbolic enum type.
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There is also aintegers-and-symbolic enum type. This type comprises enumerations
which containboth integer numbers and symbolic constants , for example,{-1,
1, waiting }, {0, 1, OK }, {running, stopped, waiting, 0 }.

Anotherenumeration type isinteger enum. Example of enumerations of integers are{2,
4, -2, 0 } and{-1, 1 }. In the NUSMV type system an expression of the typeinteger
enum is always converted to the typeinteger. Explaining the type of expression we will always
use the typeinteger instead ofinteger enum.

The values in an enumeration may potentially contain only the boolean values, for example,
{0, 1 } or {FALSE, TRUE}. In this case the type will beboolean (see Section 2.1.1 [Boolean
Type], page 7).

To summarise, we actually deal only with twoenumeration types: symbolic enum and
integers-and-symbolic enum. These types are distinguishable and have different operations
allowed on them.

2.1.4 Word
Theword[•] types are used to model arrays of bits (booleans) which allowbitwise logical and
arithmetic operations. These types are distinguishable bytheir width. For example, the type
word[3] represents arrays of three bits, and the typeword[7] represents arrays of seven bits.
Note that the width has to be greater than zero.

2.1.5 Array
Arrays are declared with a lower and upper bound for the index, and the type of the elements in
the array. For example,

array 0..3 of boolean;
array 10..20 of {OK, y, z };
array 1..8 of array -1..2 of word[5];

The typearray 1..8 of array -1..2 of word[5] means an array of 8 ele-
ments (from 1 to 8), each of which is an array of 4 elements (from -1 to 2) that are 5-bit-long
words. The use of arrays in expressions are quite limited. See 2.3.11 for more information.

2.1.6 Set Types
set types are used to identify expressions representing a set ofvalues. There are fourset types
: boolean set, integer set, symbolic set, integers-and-symbolic set. Theset types can be
used in a very limited number of ways. In particular, a variable cannot be of aset type. Only
range constant andunion operator can be used to create an expression of aset type, and
only in, case and assignment1 expressions can have imediate operands of aset type.

Everyset type has a counterpart among other types. In particular,

the counterpart of aboolean set type isboolean,

the counterpart of ainteger set type isinteger,

the counterpart of asymbolic set type issymbolic enum,

the counterpart of aintegers-and-symbolic set type isintegers-and-symbolic enum.

Some types such asword[•] do not have aset type counterpart.

2.1.7 Type Order
Figure 2.1 depicts the order existing between types in NUSMV.

1For more information on these operators see pages 11, 17, 17,17 and 23, respectively.
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boolean
↓

integer symbolic enum
↓ ↓

integers-and-symbolic enum

word[1]

word[2]

word[3]
. . .

boolean set
↓

integer set symbolic set
↓ ↓

integers-and-symbolic set

Figure 2.1: The ordering on the types in NUSMV

It means, for example, thatboolean is less thaninteger, integer is less thanintegers-and-
symbolic enum, etc. Theword[•] types are not comparable with any other type or between
each other. Any type is equal to itself.

Note that enumerations containing onlyinteger numbers have the typeinteger (unless
the only elements are1 and0 in which case the type isboolean).

2.2 Expressions
The previous versions of NuSMV (prior to 2.4.0) did not have the type system and as such ex-
pressions were untyped. In the current version all expressions are typed and there are constraints
on the type of operands. Therefore, an expression may now potentially violate the type system,
i.e. be erroneous.

To maintain backward compatibility, there is a new system variable called
backward compatibility (and a correponding-old command line option) that
disables a few new features of version 2.4 to keep backward compatibility with old version of
NUSMV. In particular, if this system variable is set then type violations caused by expressions
of old types (i.e.enumeration type,boolean andinteger) will be ignored by the type checker,
instead, warnings will be printed out. See description at page 42 for further information.

If additionally, the system variabletype checking warning on is unset, then even
these warnings will not be printed out.

2.2.1 Implicit Type Conversion
In certain expressions NUSMV can implicitly convert operands from one type to another. Such
implicit conversion can be performed from a smaller type to abigger one (in accordance with the
ordering depicted in Figure 2.1). This means, for example, thatword[•] types cannot be implic-
itly converted to other types or each other implicitly, while the typeboolean can be implicitly
converted tointeger or integers-and-symbolic enum.

Also in some expressions operands may be converted from one type to itsset type counter-
part (see 2.1.6). For example,integer can be converted tointeger set type.

2.2.2 Constant Expressions
A constant can be a boolean, integer, symbolic, word or range constant.

constant ::
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boolean_constant
| integer_constant
| symbolic_constant
| word_constant
| range_constant

Boolean Constant

A boolean constant is one of theinteger numbers 0 and1 or their symbolic equiv-
alentsFALSE andTRUE. The type of aboolean constant is boolean.

boolean_constant :: one of
0 1 FALSE TRUE

Integer Constant

An integer constant is aninteger number with the exception of0 and1 which are
taken to beboolean constants . The type of aninteger constant is integer.

integer_constant :: integer_number

Symbolic Constant

A symbolic constant is syntactically anidentifier and indicates a unique value.

symbolic_constant :: identifier

The type of asymbolic constant is symbolic enum. See Section 2.3.14 [Namespaces],
page 29 for more information about howsymbolic constants are distinguished from other
identifiers , i.e. variables, defines, etc.

Word Constant

Word constants begin with digit 0, followed by one of the charactersb/B (binary), o/O
(octal),d/D (decimal) orh/H (hexadecimal) which gives the base that the actual constantis in.
Next comes an optional decimal integer giving the number of bits, then the character, and lastly
the constant value itself. The type of aword constant is word[N], whereN is the width of
the constant. For example:

0b5 10111 has typeword[5]
0o6 37 has typeword[6]
0d11 9 has typeword[11]
0h12 a9 has typeword[12]

The number of bits can be skipped, in which case the width is automatically calculated from
the number of digits in the constant and its base. It may be necessary to explicitly give leading
zeroes to make the type correct — the following are all equivalent declarations of the integer
constant11 as a word of typeword[8]:

0d8 11
0b8 1011
0b 00001011
0h 0b
0h8 b

The syntactic rule of theword constant is the following:
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word_constant ::
0 word_base [word_width] _ word_value

word_width ::
integer_number -- a number greater than zero

word_base ::
b | B | o | O | d | D | h | H

word_value ::
hex_digit

| word_value hex_digit
| word_value

hex_digit :: one of
0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

Note that

• The width of a word must be a number strictly greater than 0.

• Decimalword constants mustbe declared with the width specifier, since the number
of bits needed for an expression like0d 019 is unclear.

• Digits are restricted depending on the base the constant is given in.

• Digits can be separated by the underscore character (””) to aid clarity, for example
0b 0101 1111 1100 which is equivalent to0b 010111111100 .

• The number of bits inword constant has an implementation limit which for most
systems is 64 bits.

Range Constant

A range constant specifies a set of consecutive integer numbers. For example,a con-
stant-1..5 indicates the set of numbers-1, 0, 1, 2, 3, 4 and5. Other examples of
range constant can be1..10 , -10..-10 , 1..300 . The syntactic rule of therange
constant is the following:

range_constant ::
integer_number .. integer_number

with an additional constraint that the first integer number must be less than or equal to the second
integer number. The type of arange constant is integer set.

2.2.3 Basic Expressions
A basic expression is the most common kind of expression usedin NUSMV.

basic_expr ::
constant -- a constant

| variable_identifier -- a variable identifier
| define_identifier -- a define identifier
| ( basic_expr )
| ! basic_expr -- logical or bitwise NOT
| basic_expr & basic_expr -- logical or bitwise AND
| basic_expr | basic_expr -- logical or bitwise OR
| basic_expr xor basic_expr -- logical or bitwise exclusive OR
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| basic_expr xnor basic_expr -- logical or bitwise NOT exclusive OR
| basic_expr -> basic_expr -- logical or bitwise implication
| basic_expr <-> basic_expr -- logical or bitwise equivalence
| basic_expr = basic_expr -- equality
| basic_expr != basic_expr -- inequality
| basic_expr < basic_expr -- less than
| basic_expr > basic_expr -- greater than
| basic_expr <= basic_expr -- less than or equal
| basic_expr >= basic_expr -- greater than or equal
| - basic_expr -- integer unary minus
| basic_expr + basic_expr -- integer addition
| basic_expr - basic_expr -- integer subtraction
| basic_expr * basic_expr -- integer multiplication
| basic_expr / basic_expr -- integer division
| basic_expr mod basic_expr -- integer remainder
| basic_expr >> basic_expr -- bit shift right
| basic_expr << basic_expr -- bit shift left
| basic_expr :: basic_expr -- word concatenation
| basic_expr [ integer_number : integer_number ]

-- word bits selection
| word1 ( basic_expr ) -- boolean to word[1] convertion
| bool ( basic_expr ) -- word[1] to boolean convertion
| basic_expr union basic_expr -- union of set expressions
| { set_body_expr } -- set expression
| basic_expr in basic_expr -- inclusion in a set expression
| case_expr -- a case expression
| basic_next_expr -- a next expression

The order of parsing precedence for operators from high to low is:

!
[ : ]
::
- (unary minus)

* /
+ -
mod
<< >>
union
in
= != < > <= >=
&
| xor xnor
<->
->

Operators of equal precedence associate to the left, except-> that associates to the right. The
constants and their types are explained in Section 2.2.2 [Constant Expressions], page 9.

Variables and Defines

A variable identifier and define identifier are expressions which identify a
variable or a define, respectively. Their syntax rules are:

define_identifier :: complex_identifier
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variable_identifier :: complex_identifier

The syntax and semantics ofcomplex identifiers are explained in Section 2.3.11 [Ref-
erences to Module Components], page 27. All defines and variables referenced in expressions
should be declared. All identifiers (variables, defines, symbolic constants, etc) can be used prior
to their definition, i.e. there is no constraint on order suchas in C where a declaration of a vari-
able should always be placed in text above the variable use. See more information about define
and variable declarations in Section 2.3.2 [DEFINE Declarations], page 21 and Section 2.3.1
[Variable Declarations], page 19.

A define is a kind of macro. Every time a define is met in expressions, it is substituted by the
expression associated with this define. Therefore, the typeof a define is the type of the associated
expression in the current context.

variable identifier represents state and input variables. The type of a variableis
specified in its declaration. For more information about variables, see Section 2.3 [Defini-
tion of the FSM], page 19, Section 2.3.1 [State Variables], page 20 and Section 2.3.1 [Input
Variables], page 20. Since asymbolic constant is syntactically indistinguishable from
variable identifiers anddefine identifiers , a symbol table is used to distin-
guish them from each other.

Parentheses

Parentheses may be used to group expressions. The type of thewhole expression is the same as
the type of the expression in the parentheses.

Logical and Bitwise !

Thesignatureof the logical and bitwise NOT operator! is:

! : boolean → boolean
: word[N] → word[N]

This means that the operation can be applied toboolean or word[•] operands. The type of
the whole expression is the same as the type of the operand. Ifthe operand is notboolean or
word[•] then the expression violates the type system and NUSMV will throw an error.

Logical and Bitwise&, |, xor, xnor, ->, <->

Logical and bitwise binary operators& (AND), | (OR),xor (exclusive OR),xnor (negated
exclusive OR),-> (implies) and<-> (if and only if) are similar to the unary operator!,
except that they take two operands. Their signature is:

&, |, xor, xnor, ->, <-> : boolean * boolean → boolean
: word[N] * word[N] → word[N]

the operands can be ofboolean or word[•] type, and the type of the whole expression is the type
of the operands. Note that bothword[•] operands should have the same width.

Equality (=) and Inequality (!=)

The operators= (equality) and!= (inequality) have the following signature:
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=, != : boolean * boolean → boolean
: integer * integer → boolean
: symbolic enum * symbolic enum → boolean
: integers-and-symbolic enum * integers-and-symbolic enum

→ boolean
: word[N] * word[N] → boolean
: boolean * word[1] → boolean
: word[1] * boolean → boolean

Before checking the expression for being correctly typed, implicit type conversion can be
carried out ononeof the operands. For example, in the expression

TRUE = 5

the left operand is of typeboolean and the right one is of typeinteger. Though the signature
of the operation does not have aboolean * integer rule, the expression is correct, because after
implicit type conversion on the left operand the types of theoperands will beinteger * integer,
which is a valid signature for the= operator.
This is also true if one of the operands is of typeword[1] and the other one is of the typeboolean.
In this case, one of the operands is converted to the type of the other one and then the equality is
checked2.

Relational Operators>, <, >=, <=

The relational operators> (greater than),< (less than),>= (greater than or equal to) and<=
(less than or equal to) have the following signature:

>, <, >=, <= : boolean * boolean → boolean
: integer * integer → boolean
: word[N] * word[N] → boolean
: boolean * word[1] → boolean
: word[1] * boolean → boolean

Before checking the expression for being correctly typed, implicit type conversion can be carried
out ononeof the operands.

boolean andword[•] types are implicitly converted to theirinteger equivalents before the
result of these operations is calculated.

Arithmetic Operators +, -, *, /

The arithmetic operators+ (addition),- (subtraction),* (multiplication) and/ (division) have
the following signature:

+, -, *, / : boolean * boolean → integer
: integer * integer → integer
: word[N] * word[N] → word[N]

- : integer → integer
: word[N] → word[N]

Before checking the expression for being correctly typed, the implicit type conversion can be
applied tooneof the operands. Theboolean operands are converted to theinteger type before
performing the arithmetic operation. If the operators are applied to aword[N] type, then the
operations are performed modulo2

N .
The result of the/ operator is the quotient from the division of the first operand by the

second. When integers are divided, the result of the/ operator is the algebraic quotient with
any fractional part discarded (this is often called “truncation towards zero”). If the quotient

2It is does not matter which operand is converted — the result will be the same.
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a/b is representable, the expression(a/b) * b + (a mod b) shall equala. If the value of
the second operand is zero, the behavior is undefined and an error is thrown by NUSMV. The
semantics is equivalent to the corresponding one of C/C++ languages.

In the versions of NUSMV prior to 2.4.0 the semantics of division was different. See page
15 for more detail.

Remainder Operator mod

The result of themod operator is the algebraic remainder of the division. If the value of the
second operand is zero, the behavior is undefined and an erroris thrown by NUSMV.

The signature of the remainder operator is:

mod : integer * integer → integer
: word[N] * word[N] → word[N]
: integer * 2→ boolean

Note that when the left operand is an integer and the right oneis a constant2 then the type of the
expression is Boolean. In such a way “mod 2” expressions can be used as boolean expressions
to check whether the left operand is even or odd. Note also that the signature does not allow the
operands to be boolean since such expressions are useless. For example, if the left operand is a
boolean expression and on the right is3 the result will always be equal to the left operand. Actu-
ally, in some cases it can be useful to allow boolean operands(for example, if text of expressions
is automatically generated) therefore before applying theoperation NuSMV converts boolean
operand to integer but prints out a warning in this case. In all other respects, the semantics of
mod operator is equivalent to the corresponding operator% of C/C++ languages. Thus if the
quotienta/b is representable, the expression(a/b) * b + (a mod b) shall equala.

Note: in older versions of NUSMV (priori 2.4.0) the semantics of quotient and remainder
were different. Having the division and remainder operators / andmod be of the current, i.e.
C/C++’s, semantics the older semantics of division was given by the formula:

IF (amod b < 0) THEN (a/ b− 1) ELSE (a/ b)
and the semantics of remainder operator was given by the formula:

IF (amod b < 0) THEN (amod b + b) ELSE (amod b)
Note that in both versions the equation(a/b) * b + (a mod b) = a holds. For example,
in the current version of NuSMV the following holds:

7/5 = 1 7 mod 5 = 2
-7/5 = -1 -7 mod 5 = -2
7/-5=-1 7 mod -5 = 2
-7/-5=1 -7 mod -5 = -2

whereas in the older versions on NuSMV the equations were
7/5 = 1 7 mod 5 = 2
-7/5 = -2 -7 mod 5 = 3
7/-5=-1 7 mod -5 = 2
-7/-5=0 -7 mod -5 = -7

When supplied, the command line option -olddiv op switches the semantics of division and
remainder to the old one.

Shift Operators <<, >>

The signature of the shift operators is:

<<, >> : word[N] * integer → word[N]
: word[N] * word[M] → word[N]

Before checking the expression for being correctly typed, the right operand can be implicitly
converted fromboolean to integer type.

Left shift << and and right shift>> operations shift bits to the left and right respectively.
A shift by N bits is equivalent to N shifts by 1 bit. A bit shifted behind the word bound is lost.
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During shifting the word is padded with zeros.
For instance,

0b4 0001<< 2 is equal to
0b4 0100<< 1 is equal to
0b4 1000<< 0 is equal to
0b4 1000

It has to be remarked that the shifting requires the right operand to be greater or equal to zero
and less then the width of the word it is applied to. NUSMV raises an error if a shift is attempted
that does not satisfy this restriction.

Bit Selection Operator[ : ]

The bit selection operator extracts consecutive bits from aword[•] expression, resulting in
a newword[•] expression. This operation always decreases the width ofword[•] or leaves
it intact. The left expression in the brackets is the high bound and the right one is the low
bound. The high bound must be greater than or equal to the low bound. The bits count from
0. The result of the operations is aword[•] value consisting of the consecutive bits beginning
from the high bound of the operand down to, and including, thelow bound bit. For example,
0b7 1011001[4:1] extracts bits 1 through 4 (including 1st and 4th bits) and is equal to 0b41100.
0b3 101[0:0] extracts bit number 0 and is equal to 0b11.

The signature of the bit selection operator is:

[ : ] : word[N] * integerhigh * integerlow → word[integerhigh − integerlow + 1]

where0 ≤ integerlow ≤ integerhigh < N

Word Concatenation Operator::

The concatenation operator joins two words together to create a larger word type. The operator
itself is two colons (::), and its signature is as follows:

:: : word[M] * word[N] → word[M+N]
: boolean * word[N] → word[N+1]
: word[N] * boolean → word[N+1]

The left-hand operand will make up the upper bits of the new word, and the right-hand operand
will make up the lower bits. For example, given the two wordsw1 := 0b4 1101 andw2 :=
0b2 00 , then the result ofw1::w2 is 0b6 110100 .

Boolean and word[1] Explicit Conversions

bool converts aword[1] to aboolean, whileword1 converts aboolean to aword[1].
The signatures of these conversion operators are:

bool : word[1] → boolean
word1 : boolean → word[1]

The conversion obeys the following table:

bool(0b1 0) = 0
bool(0b1 1) = 1
word1(0) = 0b10
word1(1) = 0b11
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Set Expressions

The set expression is an expression defining a set ofboolean, integer and symbolic enum
values. A set expression can be created with theunion operator. For example,1 union 0
specifies the set of values1 and0. One or both of the operands ofunion can be sets. In this
case,union returns a union of these sets. For example, expression(1 union 0) union 3
specifies the set of values1, 0 and-3 .

Note that there cannot be a set of sets in NuSMV. Sets can contain only singleton values, but
not other sets.

The signature of theunion operator is:
union : boolean set * boolean set → boolean set

: integer set * integer set → integer set
: symbolic set * symbolic set → symbolic set
: integers-and-symbolic set * integers-and-symbolic set

→ integers-and-symbolic set
Before checking the expression for being correctly typed, if it is possible, both operands are
converted to their counterpartset types3, which virtually means converting individual values
to singleton sets. Then both operands are implicitly converted to a minimal type that covers
both operands. If after these manipulations the operands donot satisfy the signature ofunion
operator, an error is raised by NUSMV.

There is also another way to write a set expression by enumerating all its values between
curly brackets. The syntactic rule for the values in curly brackets is:

set_body_expr ::
basic_expr

| set_body_expr , basic_expr

Enumerating values in curly brackets is semantically equivalent to writing them connected
by union operators. For example, expression{exp1, exp2, exp3 } is equivalent toexp1
union exp2 union exp3 . Note that according to the semantics ofunion operator, ex-
pression{{1, 2 }, {3, 4 }} is equivalent to{1, 2, 3, 4 }, i.e. there is no actually set of
sets.

Set expressions can be used only as operands ofunion andin operations, and as the right
operand ofcase expressions and assignments. In all other places the use of set expressions is
prohibited.

Inclusion Operator in

The inclusion operator ‘in’ tests the left operand for being a subset of the right operand. If either
operand is a number or a symbolic value instead of a set, it is coerced to a singleton set.

The signature of thein operator is:

in : boolean set * boolean set → boolean
: integer set * integer set → boolean
: symbolic set * symbolic set → boolean
: integers-and-symbolic set * integers-and-symbolic set → boolean

Similar tounion operation, before checking the expression for being correctly typed, if it is
possible, both operands are converted to their counterpartset types4. Then, if required, implicit
type conversion is carried out ononeof the operands.

Case Expressions

A case expression has the following syntax:

3See 2.1.6 for more information about theset types and their counterpart types
4See 2.1.6 for more information about theset types and their counterpart types
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case_expr :: case case_body esac

case_body ::
basic_expr : basic_expr ;

| case_body basic_expr : basic_expr ;

A case expr returns the value of the first expression on the right hand side of ‘: ’, such that
the corresponding condition on the left hand side evaluatesto 1 (TRUE). For example, the result
of the expression

case
left_expression_1 : right_expression_1 ;
left_expression_2 : right_expression_2 ;
...
left_expression_N : right_expression_N ;

esac

is right expression k such that for alli from 0 to k− 1, left expression i is 0, and
left expression k is 1. It is an error if all expressions on the left hand side evaluate to 0.

The type of expressions on the left hand side must beboolean. If one of the expression on
the right is of aset type then, if it is possible, all remaining expressions on the right are converted
to their counterpartset types5. The type of the whole expression is such a minimal type6 that all
of the expressions on the right (after possible convertion to set types) can be implicitly converted
to this type. If this is not possible, NUSMV throws an error.

Basic Next Expression

Next expressions refer to next state variables. For example, if a variablev is a state vari-
able, thennext(v) refers to that variablev in the next time step. Anext applied to a complex
expression is a shorthand method of applyingnext to all the variables in the expressions recur-
sively. Example:next((1 + a) + b) is equivalent to(1 + next(a)) + next(b) .
Note that thenext operator cannot be applied twice, i.e.next( next(a)) is not allowed.

The syntactic rule is:

basic_next_expr :: next ( basic_expr )

A next expression does not change the type.

2.2.4 Simple and Next Expressions
Simple expressions are expressions built only from current state variables. Therefore, the
simple expression cannot have anext operation inside and the syntax ofsimple ex-
pressions is as follows:

simple_expr :: basic_expr

with the alternativebasic next expr not allowed. Simple expressions can be used
to specify sets of states, for example, the initial set of states. Thenext expression relates
current and next state variables to express transitions in the FSM. Thenext expression can
havenext operation inside, i.e.

next_expr :: basic_expr

with the alternativebasic next expr allowed.

5See 2.1.6 for information onset types and their counterpart types
6See Section 2.1.7 [Type Order], page 8 for the information onthe order of types.
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2.3 Definition of the FSM
We consider a Finite State Machine (FSM) described in terms of state variablesandinput vari-
ables, which may assume different values in differentstates, of a transition relationdescribing
how inputs leads from one state to possibly many different states, and ofFairness conditions
that describe constraints on the valid paths of the execution of the FSM. In this document, we
distinguish among constraints (used to constrain the behavior of a FSM, e.g. a modulo 4 counter
increments its value modulo 4), and specifications (used to express properties to verify on the
FSM (e.g. the counter reaches value 3).

In the following it is described how these concepts can be declared in the NUSMV language.

2.3.1 Variable Declarations
A variable can be an input or a state variable. The declaration of a variable specifies the variable’s
type with the help of type specifier.

Type Specifiers

A type specifier has the following syntax:

type_specifier ::
simple_type_specifier

| module_type_specifier

simple_type_specifier ::
boolean

| word [ integer_number ]
| { enumeration_type_body }
| integer_number .. integer_number
| array integer_number .. integer_number

of simple_type_specifier

enumeration_type_body ::
enumeration_type_value

| enumeration_type_body , enumeration_type_value

enumeration_type_value ::
symbolic_constant

| integer_number

There are two kinds oftype specifier : a simple type specifier and amodule
type specifier . Themodule type specifier is explained later in Section 2.3.10
[MODULE Instantiations], page 26. Thesimple type specifier comprisesboolean
type,integer type,enumeration types,word[] and arrays types.

Theboolean type is specified by the keywordboolean.
A enumeration type is specified by full enumeration of all the values the type comprises.

For example, possibleenumeration type specifiers are{0,2,3,-1 }, {1,0, OK }, {OK,
FAIL, running }. The values in the list are enclosed in curly brackets and separated by com-
mas. The values may beinteger numbers , symbolic constants , or both. All values
in the list should be distinct from each other, although the order of values is not important. Note
that thesymbolic constants TRUE andFALSE are just symbolic representations of the
integer numbers 1 and0, respectively.

If the list of values in theenumeration type specifier consists of just the two values1 and0
then the type it represents isboolean. For example,type specifiers {TRUE, FALSE}
andboolean are equivalent.

19



Note, expressions cannot be of the actualenumeration types, but only the simplified ver-
sions ofenumeration types, such assymbolic enum andintegers-and-symbolic enum.

A type specifier can be given by two integer numbers separated by.. (<TWO
DOTS>), for example,-1..5 . This is just a shorthand for aenumeration type containing
the list of integer numbers from the range given intype specifier . For example, the
type specifiers -1..5 and{-1,0,1,2,3,4,5 } are equivalent. Note that the number
on the left from the two dots must be less than or equal to the number on the right.

Theword[•] type is specified by the keywordword with an integer number supplied
in square brackets. This number must be greater than zero. The purpose of the word types is to
offer integer and bitwise arithmetic.

An array type is denoted by a sequence of the keywordarray, an integer number
specifying the lower bound of the array index, two dots.., aninteger number specifying
the upper bound of the array index, the keywordof, and the type of array’s elements. The
elements can themselves be arrays.

State Variables

A state of the model is an assignment of values to a set of statevariables. These variables (and
also instances of modules) are declared by the notation:

var_declaration :: VAR var_list

var_list :: identifier : type_specifier ;
| var_list identifier : type_specifier ;

A variable declaration specifies the identifier of the variables and its type. A variable
can take the values only from the domain of its type. In particular, a variable of aenumeration
type may take only the values enumerated in thetype specifier of the declaration.

Input Variables

IVAR s (input variables) are used to label transitions of the Finite State Machine. The difference
between the syntax for the input and state variables declarations is the keyword indicating the
beginning of a declaration:

ivar_declaration :: IVAR ivar_list
ivar_list :: identifier : simple_type_specifier ;

| ivar_list identifier : simple_type_specifier ;

Another difference between input and state variables is that input variables cannot be instances
of modules. The usage of input variables is more limited thanthe usage of state variables which
can occur everywhere both in the model and specifications. Namely, input variables cannot occur
in:

• Left-side of assignments. For example all these assignments are not allowed:

IVAR i : boolean;
ASSIGN
init(i) := TRUE;
next(i) := FALSE;

• INIT statements. For example:

IVAR i : boolean;
VAR s : boolean;
INIT i = s
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• Scope ofnext expressions. For example:

IVAR i : boolean;
VAR s : boolean;
TRANS i -> s – this is allowed
TRANS next(i -> s) – this is NOT allowed

• Some specification kinds:CTLSPEC, SPEC, INVARSPEC, COMPUTE, PSLSPEC. For
example:

IVAR i : boolean;
VAR s : boolean;
SPEC AF (i -> s) – this is NOT allowed
LTLSPEC F (X i -> s) – this is allowed

• Anywhere in the FSM when checking invariants with BMC and the“DUAL” algorithm.
See at page 66 for further information.

Examples

Below are examples of input and state variable declarations:

VAR a : boolean;
VAR b : 0..1;
IVAR c : {TRUE, FALSE};

The variablesa, b are state variables, andc is an input variable; all of them are ofboolean type.
In the following examples:

VAR d : {stopped, running, waiting, finished };
VAR e : {2, 4, -2, 0 };
VAR f : {1, a, 3, d, q, 4 };

the variablesd, e andf are ofenumeration types, and all their possible values are specified in
the type specifiers of their declarations.

VAR g : word[3];

The variableg is of 3-bits-wideword type (i.eword[3]).

VAR k : array -1..1 of array {0, TRUE};

The variablek is an array ofboolean elements with indexes -1, 0 and 1.

2.3.2 DEFINE Declarations
In order to make descriptions more concise, a symbol can be associated with a common expres-
sion, and aDEFINE declaration introduces such a symbol. The syntax for this kind of declaration
is:

define_declaration :: DEFINE define_body

define_body :: identifier := simple_expr ;
| define_body identifier := simple_expr ;

DEFINE associates anidentifier on the left hand side of the‘:=’ with an expression
on the right side. A define statement can be considered as a macro. Whenever a define

21



identifier occurs in an expression, theidentifier is syntactically replaced by the ex-
pression it is associated with. The associated expression is always evaluated in the context of
the expression where theidentifier is met (see Section 2.3.15 [Context], page 30 for an
explanation of contexts). Forward references to defined symbols are allowed but circular defini-
tions are not, and result in an error. The difference betweendefined symbols and variables is that
while variables are statically typed, definitions are not.

2.3.3 CONSTANTS Declarations
CONSTANTS declarations allow the user to explicitly declare symbolicconstants that might oc-
cur or not within the FSM that is being defined.CONSTANTS declarations are expecially useful
in those conditions that require symbolic constants to occur only inDEFINEs body (e.g. in gen-
erated models). For an example of usage see also the commandwrite boolean model . A
constant is allowed to be declared multiple times, as after the first declaration any further decla-
ration will be ignored.CONSTANTS declarations are an extension of the original SMV grammar,
and they are supported since NuSMV 2.4. The syntax for this kind of declaration is:

constants_declaration :: CONSTANTS constants_body ;

constants_body :: identifier
| constants_body , identifier

2.3.4 INIT Constraint
The set of initial states of the model is determined by aboolean expression under theINIT
keyword. The syntax of anINIT constraint is:

init_constrain :: INIT simple_expr [ ;]

Since the expression in theINIT constraint is asimple expression , it cannot contain the
next() operator. The expression also has to be of typeboolean. If there is more than one
INIT constraint, the initial set is the conjunction of all of theINIT constraints.

2.3.5 INVAR Constraint
The set of invariant states can be specified using aboolean expression under theINVAR key-
word. The syntax of anINVAR constraint is:

invar_constraint :: INVAR simple_expr [ ;]

Since the expression in theINVAR constraint is asimple expression , it cannot contain the
next() operator. If there is more than oneINVARconstraint, the invariant set is the conjunction
of all of theINVAR constraints.

2.3.6 TRANS Constraint
The transition relation of the model is a set of current state/next state pairs. Whether or not a
given pair is in this set is determined by a boolean expression, introduced by theTRANS keyword.
The syntax of aTRANSconstraint is:

trans_constraint :: TRANS next_expr [ ;]

It is an error for the expression to be not of theboolean type. If there is more than oneTRANS
constraint, the transition relation is the conjunction of all of TRANSconstraints.
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2.3.7 ASSIGN Constraint
An assignment has the form:

assign_constraint :: ASSIGN assign_list

assign_list :: assign ;
| assign_list assign ;

assign ::
complex_identifier := simple_expr

| init ( complex_identifier ) := simple_expr
| next ( complex_identifier ) := next_expr

On the left hand side of the assignment,identifier denotes the current value of a vari-
able, ‘init(identifier )’ denotes its initial value, and ‘next(identifier )’ denotes
its value in the next state. If the expression on the right hand side evaluates to a not-set expres-
sion such asinteger number or symbolic constant , the assignment simply means
that the left hand side is equal to the right hand side. On the other hand, if the expression eval-
uates to a set, then the assignment means that the left hand side is contained in that set. It is an
error if the value of the expression is not contained in the range of the variable on the left hand
side.

Semantically assignments can be expressed using other kinds of constraints:

ASSIGN a := exp; is equivalent toINVAR a in exp;
ASSIGN init(a) := exp; is equivalent toINIT a in exp;
ASSIGN next(a) := exp; is equivalent toTRANS next(a) in exp;

Notice that, an additional constraint is forced when assignments are used with respect to their
corresponding constraints counterpart: when a variable isassigned a value that it is not an ele-
ment of its declared type, an error is raised.

The allowed types of the assignment operator are:
:= : boolean * boolean

: boolean * boolean set
: integer * integer
: integer * integer set
: symbolic enum * symbolic enum
: symbolic enum * symbolic set
: integers-and-symbolic enum * integers-and-symbolic enum
: integers-and-symbolic enum * integers-and-symbolic set
: word[N] * word[N]
: boolean * word[1]
: word[1] * boolean

Before checking the assignment for being correctly typed, the implicit type conversion can be
applied to theright operand.

Rules for assignments

Assignments describe a system of equations that say how the FSM evolves through time. With
an arbitrary set of equations there is no guarantee that a solution exists or that it is unique. We
tackle this problem by placing certain restrictive syntactic rules on the structure of assignments,
thus guaranteeing that the program is implementable.

The restriction rules for assignments are:

• The single assignment rule– each variable may be assigned only once.
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• The circular dependency rule– a set of equations must not have “cycles” in its depen-
dency graph not broken by delays.

The single assignment rule disregards conflicting definitions, and can be formulated as: one
may either assign a value to a variable “x ”, or to “next( x)” and “init( x)”, but not both.
For instance, the following are legal assignments:

Example 1 x := expr 1 ;

Example 2 init( x ) := expr 1 ;

Example 3 next( x ) := expr 1 ;

Example 4 init( x ) := expr 1 ;
next( x ) := expr 2 ;

while the following are illegal assignments:

Example 1 x := expr 1 ;
x := expr 2 ;

Example 2 init( x ) := expr 1 ;
init( x ) := expr 2 ;

Example 3 x := expr 1 ;
init( x ) := expr 2 ;

Example 4 x := expr 1 ;
next( x ) := expr 2 ;

If we have an assignment likex := y ;, then we say thatx depends ony . A combinatorial
loop is a cycle of dependencies not broken by delays. For instance, the assignments:

x := y;
y := x;

form a combinatorial loop. Indeed, there is no fixed order in which we can computex andy ,
since at each time instant the value ofx depends on the value ofy and vice-versa. We can
introduce a “unit delay dependency” using thenext() operator.

x := y;
next(y) := x;

In this case, there is a unit delay dependency betweenx andy . A combinatorial loop is a cycle
of dependencies whose total delay is zero. In NUSMV combinatorial loops are illegal. This
guarantees that for any set of equations describing the behavior of variable, there is at least one
solution. There might be multiple solutions in the case of unassigned variables or in the case of
non-deterministic assignments such as in the following example,

next(x) := case x=1 : 1;
1 : {0,1 };

esac;

2.3.8 FAIRNESS Constraints
A fairness constraint restricts the attention only tofair execution paths. When evaluating speci-
fications, the model checker considers path quantifiers to apply only to fair paths.

NUSMV supports two types of fairness constraints, namely justice constraints and com-
passion constraints. A justice constraint consists of a formula f , which is assumed to be true
infinitely often in all the fair paths. In NUSMV, justice constraints are identified by keywords
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JUSTICE and, for backward compatibility,FAIRNESS. A compassion constraint consists of a
pair of formulas(p,q) ; if propertyp is true infinitely often in a fair path, then also formulaq
has to be true infinitely often in the fair path. In NUSMV, compassion constraints are identified
by keywordCOMPASSION. 7 If compassion constraints are used, then the model must not con-
tain any input variables. Currently, NUSMV does not enforce this so it is the responsibility of
the user to make sure that this is the case.

Fairness constraints are declared using the following syntax (all expressions are expected to
beboolean):

fairness_constraint ::
FAIRNESS simple_expr [ ;]

| JUSTICE simple_expr [ ;]
| COMPASSION ( simple_expr , simple_expr ) [ ;]

A path is considered fair if and only if it satisfies all the constraints declared in this manner.

2.3.9 MODULE Declarations
A module declaration is an encapsulated collection of declarations, constraints and specifica-
tions. A module declaration also opens a new identifier scope. Once defined, a module can be
reused as many times as necessary. Modules are used in such a way that each instance of a mod-
ule refers to different data structures. A module can contain instances of other modules, allowing
a structural hierarchy to be built. The syntax of a module declaration is as follows:

module :: MODULE identifier [ ( module_parameters )] [module_body]

module_parameters ::
identifier

| module_parameters , identifier

module_body ::
module_element

| module_body module_element

module_element ::
var_declaration

| ivar_declaration
| define_declaration
| constants_declaration
| assign_constraint
| trans_constraint
| init_constraint
| invar_constraint
| fairness_constraint
| ctl_specification
| invar_specification
| ltl_specification
| compute_specification
| isa_declaration

The identifier immediately following the keywordMODULE is the name associated with
the module. Module names have a separate name space in the program, and hence may clash

7In the current version of NUSMV, compassion constraints are supported only for BDD-based LTL
model checking. We plan to add support for compassion constraints also for CTL specifications and in
Bounded Model Checking in the next releases of NUSMV.
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with names of variables and definitions. The optional list ofidentifiers in parentheses are the
formal parameters of the module.

2.3.10 MODULE Instantiations
An instanceof a module is created using theVAR declaration (see Section 2.3.1 [State Variables],
page 20) with a module type specifier (see Section 2.3.1 [TypeSpecifiers], page 19). The syntax
of amodule type specifier is:

module_type_specifier ::
| identifier [ ( [ parameter_list ] ) ]
| process identifier [ ( [ parameter_list ] ) ]

parameter_list ::
simple_expr

| parameter_list , simple_expr

A variable declaration with amodule type specifier introduces a name for the module
instance. Themodule type specifier provides the name of the instantiating module and
also a list of actual parameters, which are assigned to the formal parameters of the module.
An actual parameter can be any legalsimple expression (see Section 2.2.4 [Simple and
Next Expressions], page 18). It is an error if the number of actual parameters is different from
the number of formal parameters. Whenever formal parameters occur in expressions within the
module, they are replaced by the actual parameters. The semantic of module instantiation is
similar to call-by-reference.8

Here are examples:

MODULE main
...

VAR
a : boolean;
b : foo(a);

...
MODULE foo(x)

ASSIGN
x := 1;

the variablea is assigned the value1. This distinguishes the call-by-reference mechanism from
a call-by-value scheme.
Now consider the following program:

MODULE main
...

DEFINE
a := 0;

VAR
b : bar(a);

...
MODULE bar(x)

DEFINE
a := 1;
y := x;

8This also means that the actual parameters are analyzed in the context of the variable declaration where
the module is instantiated, not in the context of the expression where the formal parameter occurs.
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In this program, the value ofy is 0. On the other hand, using a call-by-name mechanism, the
value ofy would be1, sincea would be substituted as an expression forx .
Forward references to module names are allowed, but circular references are not, and result in
an error.

The keywordprocess is explained in Section 2.3.12 [Processes], page 28.

2.3.11 References to Module Components (Variables and Defines)
and Array Elements in Expressions

As described in Section 2.2.3 [Variables and Defines], page 12, defines and variables can
be referenced in expressions asvariable identifiers and define identifiers
respectively, both of which arecomplex identifiers . The syntax of acomplex
identifier is:

complex_identifier ::
identifier

| complex_identifier . identifier
| complex_identifier [ simple_expression ]
| self

Every variable and define used in an expression should be declared. It is possible to have
forward references when a variable or define identifier is used textually before the corresponding
declaration.

Notations with. (<DOT>) are used to access the components of modules. For example, if m
is an instance of a module (see Section 2.3.10 [MODULE Instantiations], page 26 for information
about instances of modules) then the expressionm.c identifies the componentc of the module
instancem. This is precisely analogous to accessing a component of a structured data type.

Note that actual parameters of a module can potentially be instances of other modules.
Therefore, parameters of modules allow access to the components of other module instances,
as in the following example:

MODULE main
... VAR

a : bar;
m : foo(a);

...
MODULE bar

VAR
q : boolean;
p : boolean;

MODULE foo(c)
DEFINE

flag := c.q | c.p;

Here, the value of ‘m.flag ’ is the logicalOR of ‘a.p ’ and ‘a.q ’.
Individual elements of an array are accessed in the typical fashion with the index required

given in square brackets. For example, if ‘a’ identifies an array, the expression ‘a[N] ’ identifies
element ‘N’ of array ‘a’. It is an error for the expression ‘N’ to evaluate to a number outside the
subscript bounds of array ‘a’, or to a symbolic value. For example, for a module definition

MODULE main
VAR

a : array -1 .. 4 of boolean;
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aa : array -1 .. 4 of array 0 .. 2 of boolean;
b : -1..4;

expressions ‘a[-1] ’ and ‘aa[3][0] ’ are legal, whereas ‘a[5] ’ and ‘a[b] ’ are not.
It is possible to refer to the name that the current module hasbeen instantiated to by using

theself built-in identifier.

MODULE container(init_value1, init_value2)
VAR c1 : counter(init_value1, self);
VAR c2 : counter(init_value2, self);

MODULE counter(init_value, my_container)
VAR v: 1..100;
ASSIGN

init(v) := init_value;
DEFINE

greatestCounterInContainer := v >= my_container.c1.v &
v >= my_container.c2.v;

MODULE main
VAR c : container(14, 7);
SPEC

c.c1.greatestCounterInContainer;

In this example an instance of the modulecontainer is passed to the sub-modulecounter .
In the main module,c is declared to be an instance of the modulecontainer , which de-
clares two instances of the modulecounter . Every instance of thecounter module has a
definegreatestCounterInContainer which specifies the condition when this particular
counter has the greatest value in the container it belongs to. So acounter needs access to
the parentcontainer to access all thecounters in thecontainer .

2.3.12 Processes
Processes are used to model interleaving concurrency. Aprocessis a module which is instan-
tiated using the keyword ‘process’ (see Section 2.3.10 [MODULE Instantiations], page 26).
The program executes a step by non-deterministically choosing a process, then executing all of
the assignment statements in that process in parallel. It isimplicit that if a given variable is not
assigned by the process, then its value remains unchanged. Note that only assignments of the
form

ASSIGN next( var_name) := ... ;

are influenced by processes. All other kinds of assignments and all constraints (such asTRANS,
INVAR, etc) are always in force, independent of which process is selected for execution.

Each instance of a process has a specialboolean variable associated with it, called
running . The value of this variable is1 if and only if the process instance is currently se-
lected for execution. No two processes may be running at the same time.

Note that in the presence of processes NuSMV internally declares special variables
running and process selector . These names should NOT be used in user’s own dec-
larations, but they can be referenced for example in the transition relation of a module.

Furthermore, if the user declaresN processes, there will beN+1 processes allocated, as the
modulemain has always its own process associated. In the following example there are three
process,p1 , p2 andmain :

MODULE my_module
-- my module definition...

28



MODULE main
VAR

p1 : process my_module;
p2 : process my_module;

2.3.13 A Program and themain Module
The syntax of a NUSMV program is:

program :: module_list

module_list ::
module

| module_list module

There must be one module with the namemain and no formal parameters. The modulemain
is the one evaluated by the interpreter.

2.3.14 Namespaces and Constraints on Declarations
Identifiers in the NUSMV input language may reference five different entities: modules, vari-
ables, defines, module instances, and symbolic constants.

Module identifiers have their own separate namespace. Module identifiers can be used in
module type specifiers only, and no other kind of identifiers can be used there (see
Section 2.3.10 [MODULE Instantiations], page 26). Thus, module identifiers may be equal to
other kinds of identifiers without making the program ambiguous. However, no two modules
should be declared with the same identifier. Modules cannot be declared in other modules,
therefore they are always referenced by simpleidentifiers .

Variable, define, and module instance identifiers are introduced in a program when the mod-
ule containing their declarations is instantiated. Insidethis module the variables, defines and
module instances may be referenced by the simpleidentifiers . Inside other modules, their
simple identifiers should be preceded by the identifier of themodule instance containing their
declaration and. (<DOT>). Such identifiers are calledcomplex identifier . The full
identifier is a complex identifier which references a variable, define, or a module in-
stance from inside themain module.

Let us consider the following:

MODULE main
VAR a : boolean;
VAR b : foo;
VAR c : moo;

MODULE foo
VAR q : boolean;

e : moo;

MODULE moo
DEFINE f := 0 < 1;

MODULE not_used
VAR n : boolean;
VAR t : used;
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MODULE used
VAR k : boolean;

The full identifier of the variablea is a, the full identifier of the variableq (from the module
foo ) is b.q , the full identifier of the module instancee (from the modulefoo ) is b.e , the
full identifiers of the definef (from the modulemoo) areb.e.f andc.f , because two module
instances contain this define. Notice that, the variablesn andk as well as the module instance
t do not have full identifiers because they cannot be accessed from main (since the module
not used is not instantiated).

In the NUSMV language, variable, define, and module instances belongto one namespace,
and no two full identifiers of different variable, define, or module instances should be equal.
Also, none of them can be redefined.

A symbolic constant can be introduced by a variable declaration if its type specifier
enumerates thesymbolic constant . For example, the variable declaration

VAR a : {OK, FAIL, waiting };

declares the variablea as well as thesymbolic constants OK , FAIL andwaiting . The
full identifiers of thesymbolic constants are equal to their simpleidentifiers with
the additional condition – the variable whose declaration declares thesymbolic constants
also has a full identifier.

Symbolic constants have a separate namespace, so their identifiers may potentially
be equal, for example, variable identifiers. It is an error, if the same identifier in an expression
can simultaneously refer to asymbolic constant and a variable or a define. Asymbolic
constant may be declared an arbitrary number of times, but it must be declared at least once,
if it is used in an expression.

2.3.15 Context
Every module instance has its owncontext, in which all expressions are analyzed. The context
can be defined as the full identifiers of variables declared inthe module without their simple
identifiers. Let us consider the following example:

MODULE main
VAR a : foo;
VAR b : moo;

MODULE foo
VAR c : moo;

MODULE moo
VAR d : boolean;

The context of the modulemain is ‘’ (empty)9, the context of the module instancea (and inside
the modulefoo ) is ‘a.’ , the contexts of modulemoomay be‘b.’ (if the module instanceb
is analyzed) and‘a.c.’ (if the module instancea.c is analyzed).

2.3.16 ISA Declarations
There are cases in which some parts of a module could be sharedamong different modules, or
could be used as a module themselves. In NUSMV it is possible to declare the common parts as
separate modules, and then use theISA declaration to import the common parts inside a module
declaration. The syntax of anisa declaration is as follows:

9The modulemain is instantiated with the so called empty identifier which cannot be referenced in a
program.
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isa_declaration :: ISA identifier

whereidentifier must be the name of a declared module. TheISA declaration can be
thought as a simple macro expansion command, because the body of the module referenced by
anISA command is replaced to theISA declaration .

Warning: ISA is a deprecated feature and will be removed from future versions of
NUSMV. Therefore, avoid the use ofISA declarations . Use module instances instead.

2.4 Specifications
The specifications to be checked on the FSM can be expressed intemporal logics like Compu-
tation Tree Logic CTL, Linear Temporal Logic LTL extended with Past Operators, and Property
Specification Language (PSL) [psl03] that includes CTL and LTL with Sequencial Extended
Regular Expressions (SERE), a variant of classical regularexpressions. It is also possible to an-
alyze quantitative characteristics of the FSM by specifying real-time CTL specifications. Spec-
ifications can be positioned within modules, in which case they are preprocessed to rename the
variables according to their context.

CTL and LTL specifications are evaluated by NUSMV in order to determine their truth or
falsity in the FSM. When a specification is discovered to be false, NUSMV constructs and prints
a counterexample, i.e. a trace of the FSM that falsifies the property.

2.4.1 CTL Specifications
A CTL specification is given as a formula in the temporal logicCTL, introduced by the keyword
‘CTLSPEC’ (however, deprecated keyword ‘SPEC’ can be used instead.) The syntax of this
specification is:

ctl_specification :: CTLSPEC ctl_expr ;
| SPEC ctl_expr ;

The syntax of CTL formulas recognized by NUSMV is as follows:

ctl_expr ::
simple_expr -- a simple boolean expression
| ( ctl_expr )
| ! ctl_expr -- logical not
| ctl_expr & ctl_expr -- logical and
| ctl_expr | ctl_expr -- logical or
| ctl_expr xor ctl_expr -- logical exclusive or
| ctl_expr -> ctl_expr -- logical implies
| ctl_expr <-> ctl_expr -- logical equivalence
| EG ctl_expr -- exists globally
| EX ctl_expr -- exists next state
| EF ctl_expr -- exists finally
| AG ctl_expr -- forall globally
| AX ctl_expr -- forall next state
| AF ctl_expr -- forall finally
| E [ ctl_expr U ctl_expr ] -- exists until
| A [ ctl_expr U ctl_expr ] -- forall until

Sincesimple expr cannot contain thenext operator,ctl expr cannot contain it either.
Thectl expr should also be aboolean expression.

Intuitively the semantics of CTL operators is as follows:

• EX p is true in a states if there existsa states′ such that a transition goes froms to s′

andp is true ins′.
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• AX p is true in a states if for all statess′ where there is a transition froms to s′, p is true
in s′.

• EF p is true in a states0 if there existsa series of transitionss0 → s1, s1 → s2, . . . ,
sn−1 → sn such thatp is true insn.

• AF p is true in a states0 if for all series of transitionss0 → s1, s1 → s2, . . . ,sn−1 → sn

p is true insn.

• EG p is true in a states0 if there existsan infinite series of transitionss0 → s1, s1 → s2,
. . . such thatp is true ineverysi.

• AG p is true in a states0 if for all infinite series of transitionss0 → s1, s1 → s2, . . . p
is true ineverysi.

• E[p U q] is true in a states0 if there existsa series of transitionss0 → s1, s1 → s2,
. . . ,sn−1 → sn such thatp is true ineverystate froms0 to sn−1 andq is true in statesn.

• A[p U q] is true in a states0 if for all series of transitionss0 → s1, s1 → s2, . . . ,
sn−1 → sn p is true ineverystate froms0 to sn−1 andq is true in statesn.

A CTL formula is true if it is true inall initial states.
For a detailed description about the semantics ofPSLoperators, please see [psl03].

2.4.2 Invariant Specifications
It is also possible to specify invariant specifications withspecial constructs. Invariants are propo-
sitional formulas which must hold invariantly in the model.The corresponding command is
INVARSPEC, with syntax:

invar_specification :: INVARSPEC simple_expr ;

This statement is equivalent to

SPEC AG simple_expr ;

but can be checked by a specialised algorithm during reachability analysis. Fairness constraints
are not taken into account during invariant checking.

2.4.3 LTL Specifications
LTL specifications are introduced by the keywordLTLSPEC. The syntax of this specification is:

ltl_specification :: LTLSPEC ltl_expr [ ;]

The syntax of LTL formulas recognized by NUSMV is as follows:

ltl_expr ::
simple_expr -- a simple boolean expression
| ( ltl_expr )
| ! ltl_expr -- logical not
| ltl_expr & ltl_expr -- logical and
| ltl_expr | ltl_expr -- logical or
| ltl_expr xor ltl_expr -- logical exclusive or
| ltl_expr -> ltl_expr -- logical implies
| ltl_expr <-> ltl_expr -- logical equivalence
-- FUTURE
| X ltl_expr -- next state
| G ltl_expr -- globally
| F ltl_expr -- finally
| ltl_expr U ltl_expr -- until
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| ltl_expr V ltl_expr -- releases
-- PAST
| Y ltl_expr -- previous state
| Z ltl_expr -- not previous state not
| H ltl_expr -- historically
| O ltl_expr -- once
| ltl_expr S ltl_expr -- since
| ltl_expr T ltl_expr -- triggered

Intuitively the semantics of LTL operators is as follows:

• X p is true at timet if p is true at timet + 1.

• F p is true at timet if p is true atsometime t′ ≥ t.

• G p is true at timet if p is true atall timest′ ≥ t.

• p U q is true at timet if q is true atsometime t′ ≥ t, andfor all time t′′ (such that
t ≤ t′′ < t′) p is true.

• p V q is true at timet if q holds atall time stepst′ ≥ t up to and including the time step
t′′ wherep also holds. Alternatively, it may be the case thatp neverholds in which case
q must hold inall time stepst′ ≥ t.

• Y p is true at timet > 0 if p holds at timet − 1. Y p is falseat timet0.

• Z p is equivalent toY p with the exception that the expression istrue at timet0.

• H p is true at timet if p holds inall previous time stepst′ ≤ t.

• O p is true at timet if p held inat least oneof the previous time stepst′ ≤ t.

• p S q is true at timet if q held at timet′ ≤ t andp holds inall time steps fromt′ to t
inclusive.

• p T q is true at timet if p held at timet′ ≤ t andq holds inall time steps fromt′ to t
inclusive. Alternatively, ifp hasneverbeen true, thenq must hold in all time steps from
t0 to t.

An LTL formula is true if it is true at the initial timet = 0.
In NUSMV, LTL specifications can be analyzed both by means of BDD-based reasoning, or

by means of SAT-based bounded model checking. In the case of BDD-based reasoning, NUSMV
proceeds according to [CGH97]. For each LTL specification, atableau of the behaviors falsifying
the property is constructed, and then synchronously composed with the model. With respect to
[CGH97], the approach is fully integrated within NUSMV, and allows full treatment of past
temporal operators. Note that the counterexample is generated in such a way to show that the
falsity of a LTL specification may contain state variables which have been introduced by the
tableau construction procedure.

In the case of SAT-based reasoning, a similar tableau construction is carried out to encode the
paths of limited length, violating the property. NUSMV generates a propositional satisfiability
problem, that is then tackled by means of an efficient SAT solver [BCCZ99].

In both cases, the tableau constructions are completely transparent to the user.

2.4.4 Real Time CTL Specifications and Computations
NUSMV allows for Real Time CTL specifications [EMSS91]. NUSMV assumes that each
transition takes unit time for execution. RTCTL extends thesyntax of CTL path expressions
with the following bounded modalities:

rtctl_expr ::
ctl_expr

| EBF range rtctl_expr
| ABF range rtctl_expr
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| EBG range rtctl_expr
| ABG range rtctl_expr
| A [ rtctl_expr BU range rtctl_expr ]
| E [ rtctl_expr BU range rtctl_expr ]

range :: integer_number .. integer_number

Intuitively, the semantics of the RTCTL operators is as follows:

• EBF m..n p requires that there exists a path starting from a state, suchthat propertyp
holds in a future time instanti, with m ≤ i ≤ n

• ABF m..n p requires that for all paths starting from a state, propertyp holds in a future
time instanti, with m ≤ i ≤ n

• EBG m..n p requires that there exists a path starting from a state, suchthat propertyp
holds in all future time instantsi, with m ≤ i ≤ n

• ABG m..n p requires that for all paths starting from a state, propertyp holds in all
future time instantsi, with m ≤ i ≤ n

• E [ p BU m..n q ] requires that there exists a path starting from a state, suchthat
propertyq holds in a future time instanti, with m ≤ i ≤ n, and propertyp holds in all
future time instantsj, with m ≤ j < i

• A [ p BU m..n q ], requires that for all paths starting from a state, propertyq holds
in a future time instanti, with m ≤ i ≤ n, and propertyp holds in all future time instants
j, with m ≤ j < i

Real time CTL specifications can be defined with the followingsyntax, which extends the syntax
for CTL specifications.

rtctl_specification :: SPEC rtctl_expr [ ;]

With the COMPUTE statement, it is also possible to compute quantitative information on the
FSM. In particular, it is possible to compute the exact boundon the delay between two specified
events, expressed as CTL formulas. The syntax is the following:

compute_specification :: COMPUTE compute_expr [ ;]

where

compute_expr :: MIN [ rtctl_expr , rtctl_expr ]
| MAX [ rtctl_expr , rtctl_expr ]

MIN [start , final] returns the length of the shortest path from a state instart to a state
in final. For this, the set of states reachable fromstart is computed. If at any point, we encounter
a state satisfyingfinal, we return the number of steps taken to reach the state. If a fixed point is
reached and no computed states intersectfinal theninfinity is returned.
MAX [start , final] returns the length of the longest path from a state instart to a state
in final. If there exists an infinite path beginning in a state instart that never reaches a state
in final, theninfinity is returned. If any of the initial or final states is empty, then undefinedis
returned.

It is important to remark here that if the FSM is not total (i.e. it contains deadlock states)
COMPUTE may produce wrong results. It is possible to check the FSM against deadlock states
by calling the commandcheck fsm .
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2.4.5 PSL Specifications
NUSMV allows for PSL specifications as from version 1.01 of PSL Language Reference Manual
[psl03]. PSL specifications are introduced by the keyword “PSLSPEC”. The syntax of this
declaration (as from the PSL parsers distributed by IBM, [PSL]) is:

pslspec_declaration :: "PSLSPEC " psl_expr ";"

where

psl_expr ::
psl_primary_expr

| psl_unary_expr
| psl_binary_expr
| psl_conditional_expr
| psl_case_expr
| psl_property

The first five classes define the building blocks forpsl property and provide means of com-
bining instances of that class; they are defined as follows:

psl_primary_expr ::
number ;; a numeric constant

| boolean ;; a boolean constant
| var_id ;; a variable identifier
| { psl_expr , ... , psl_expr }
| { psl_expr " {" psl_expr , ... , "psl_expr" }}
| ( psl_expr )

psl_unary_expr ::
+ psl_primary_expr

| - psl_primary_expr
| ! psl_primary_expr

psl_binary_expr ::
psl_expr + psl_expr

| psl_expr union psl_expr
| psl_expr in psl_expr
| psl_expr - psl_expr
| psl_expr * psl_expr
| psl_expr / psl_expr
| psl_expr % psl_expr
| psl_expr == psl_expr
| psl_expr != psl_expr
| psl_expr < psl_expr
| psl_expr <= psl_expr
| psl_expr > psl_expr
| psl_expr >= psl_expr
| psl_expr & psl_expr
| psl_expr | psl_expr
| psl_expr xor psl_expr

psl_conditional_expr ::
psl_expr ? psl_expr : psl_expr

psl_case_expr ::
case

psl_expr : psl_expr ;
...
psl_expr : psl_expr ;

endcase
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Among the subclasses ofpsl expr we depict the classpsl bexpr that will be used in the
following to identify purely boolean, i.e. not temporal, expressions. The class of PSL properties
psl property is defined as follows:

psl_property ::
replicator psl_expr ;; a replicated property

| FL_property abort psl_bexpr
| psl_expr <-> psl_expr
| psl_expr -> psl_expr
| FL_property
| OBE_property

replicator ::
forall var_id [index_range] in value_set :

index_range ::
[ range ]

range ::
low_bound : high_bound

low_bound ::
number

| identifier
high_bound ::

number
| identifier
| inf ;; inifite high bound

value_set ::
{ value_range , ... , value_range }

| boolean
value_range ::

psl_expr
| range

The instances ofFL property are temporal properties built using LTL operators and SEREs
operators, and are defined as follows:

FL_property ::
;; PRIMITIVE LTL OPERATORS

X FL_property
| X! FL_property
| F FL_property
| G FL_property
| [ FL_property U FL_property ]
| [ FL_property W FL_property ]
;; SIMPLE TEMPORAL OPERATORS
| always FL_property
| never FL_property
| next FL_property
| next! FL_property
| eventually! FL_property
| FL_property until! FL_property
| FL_property until FL_property
| FL_property until!_ FL_property
| FL_property until_ FL_property
| FL_property before! FL_property
| FL_property before FL_property
| FL_property before!_ FL_property
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| FL_property before_ FL_property
;; EXTENDED NEXT OPERATORS
| X [number] ( FL_property )
| X! [number] ( FL_property )
| next [number] ( FL_property )
| next! [number] ( FL_property )
;;
| next_a [range] ( FL_property )
| next_a! [range] ( FL_property )
| next_e [range] ( FL_property )
| next_e! [range] ( FL_property )
;;
| next_event! ( psl_bexpr ) ( FL_property )
| next_event ( psl_bexpr ) ( FL_property )
| next_event! ( psl_bexpr ) [ number ] ( FL_property )
| next_event ( psl_bexpr ) [ number ] ( FL_property )
;;
| next_event_a! ( psl_bexpr ) [psl_expr ] ( FL_property )
| next_event_a ( psl_bexpr ) [psl_expr ] ( FL_property )
| next_event_e! ( psl_bexpr ) [psl_expr ] ( FL_property )
| next_event_e ( psl_bexpr ) [psl_expr ] ( FL_property )
;; OPERATORS ON SEREs
| sequence ( FL_property )
| sequence |-> sequence [ !]
| sequence |=> sequence [ !]
;;
| always sequence
| G sequence
| never sequence
| eventually! sequence
;;
| within! ( sequence_or_psl_bexpr , psl_bexpr ) sequence
| within ( sequence_or_psl_bexpr , psl_bexpr ) sequence
| within!_ ( sequence_or_psl_bexpr , psl_bexpr ) sequence
| within_ ( sequence_or_psl_bexpr , psl_bexpr ) sequence
;;
| whilenot! ( psl_bexpr ) sequence
| whilenot ( psl_bexpr ) sequence
| whilenot!_ ( psl_bexpr ) sequence
| whilenot_ ( psl_bexpr ) sequence

sequence_or_psl_bexpr ::
sequence

| psl_bexpr

Sequences, i.e. istances of classsequence , are defined as follows:

sequence ::
{ SERE }

SERE ::
sequence

| psl_bexpr
;; COMPOSITION OPERATORS
| SERE ; SERE
| SERE : SERE
| SERE & SERE
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| SERE && SERE
| SERE | SERE
;; RegExp QUALIFIERS
| SERE [* [count] ]
| [* [count] ]
| SERE [+]
| [+]
;;
| psl_bexpr [= count ]
| psl_bexpr [-> count ]

count ::
number

| range

Istances ofOBEproperty are CTL properties in the PSL style and are defined as follows:

OBE_property ::
AX OBE_property

| AG OBE_property
| AF OBE_property
| A [ OBE_property U OBE_property ]
| EX OBE_property
| EG OBE_property
| EF OBE_property
| E [ OBE_property U OBE_property ]

The NUSMV parser allows to input any specification based on the grammar above, but currently,
verification of PSL specifications is supported only for the OBE subset, and for a subset of PSL
for which it is possible to define a translation into LTL. For the specifications that belong to these
subsets, it is possible to apply all the verification techniques that can be applied to LTL and CTL
Specifications.

2.5 Variable Order Input
It is possible to specify the order in which variables shouldappear in the BDD’s generated by
NUSMV. The file which gives the desired order can be read in usingthe -i option in batch
mode or by setting theinput order file environment variable in interactive mode.

2.5.1 Input File Syntax
The syntax for input files describing the desired variable ordering is as follows, where the file
can be considered as a list of variable names, each of which must be on a separate line:

vars_list :: EMPTY
| var_list_item vars_list

var_list_item :: complex_identifier
| complex_identifier . integer_number

WhereEMPTY means parsing nothing.
This grammar allows for parsing a list of variable names of the following forms:

Complete_Var_Name -- to specify an ordinary variable
Complete_Var_Name[index] -- to specify an array variable e lement
Complete_Var_Name.NUMBER -- to specify a specific bit of a

-- scalar variable
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whereComplete Var Nameis just the name of the variable if it appears in the moduleMAIN,
otherwise it has the module name(s) prepended to the start, for example:

mod1.mod2...modN.varname

wherevarname is a variable inmodN, andmodN.varname is a variable inmodN-1, and
so on. Note that the module namemain is implicitely prepended to every variable name and
therefore must not be included in their declarations.
Any variable which appears in the model file, but not the ordering file is placed after all the others
in the ordering. Variables which appear in the ordering file but not the model file are ignored. In
both cases NUSMV displays a warning message stating these actions.

Comments can be included by using the same syntax as regular NUSMV files. That is, by
starting the line with-- .

2.5.2 Scalar Variables
A variable, which has a finite range of values that it can take,is encoded as a set ofboolean
variables. These boolean variables represent the binary equivalents of all the possible values for
the scalar variable. Thus, a scalar variable that can take values from 0 to 7 would require three
boolean variables to represent it.

It is possible not only to declare the position of a scalar variable in the ordering file, but each
of theboolean variables which represent it.
If only the scalar variable itself is named then all the boolean variables which are actually used
to encode it are grouped together in the BDD package.
Variables which are grouped together will always remain next to each other in the BDD package
and in the same order. When dynamic variable re-ordering is carried out, the group of variables
are treated as one entity and moved as such.
If a scalar variable is omitted from the ordering file then it will be added at the end of the variable
order and the specific-bit variables that represent it will be grouped together. However, if any
specific-bit variables have been declared in the ordering file (see below) then these will not be
grouped with the remaining ones.
It is also possible to specify that specific-bit variables are placed elsewhere in the ordering.
This is achieved by first specifying the scalar variable namein the desired location, then simply
specifyingComplete Var Name.i at the position where you want that bit variable to appear:

...
Complete Var Name
...
Complete Var Name.i
...

The result of doing this is that the variable representing theith bit is located in a different position
to the remainder of the variables representing the rest of the bits. The specific-bit variables
varname.0, ..., varname.i-1, varname.i+1, ..., varname.Nare grouped together as before.

If any one bit occurs before the variable it belongs to, the remaining specific-bit variables
are not grouped together:

...
Complete Var Name.i
...
Complete Var Name
...

The variable representing theith bit is located at the position given in the variable orderingand
the remainder are located where the scalar variable name is declared. In this case, the remaining
bit variables will not be grouped together.
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This is just a short-hand way of writing each individual specific-bit variable in the ordering file.
The following are equivalent:

... ...
Complete Var Name.0 Complete Var Name.0
Complete Var Name.1 Complete Var Name
... ...

Complete Var Name.N-1
...

where the scalar variableComplete Var Namerequires N boolean variables to encode all the
possible values that it may take. It is still possible to thenspecify other specific-bit variables at
later points in the ordering file as before.

2.5.3 Array Variables
When declaring array variables in the ordering file, each individual element must be specified
separately. It is not permitted to specify just the name of the array. The reason for this is that
the actual definition of an array in the model file is essentially a shorthand method of defining a
list of variables that all have the same type. Nothing is gained by declaring it as an array over
declaring each of the elements individually, and there is nodifference in terms of the internal
representation of the variables.

2.6 Clusters Ordering
When NUSMV builds a clusterized BDD-based FSM during model construction, an initial sim-
ple clusters list is roughly constructed by iterating through alist of variables, and by constructing
the clusters by picking the transition relation associatedto each variable in the list. Later, the
clusters list will be refined and improved by applying the clustering alghorithm that the user
previoulsy selected (see partitioning methods at page 3.1 for further information).

In [WJKWLvdBR06], Wendy Johnston and others from University of Queensland, showed
that choosing a good ordering for the initial list of variables that is used to build the clusters
list may lead to a dramatic improvement of performances. They did experiments in a modified
version of NUSMV, by allowing the user to specify a variable ordering to beused when con-
structing the initial clusters list. The prototype code hasbeen included in version 2.4.1, that
offers the new optiontrans order file to specify a file containing a variable ordering (see
at page 44 for further information).

Grammar of the clusters ordering file is the same of variable ordering file presented in section
2.5 at page 38.
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Chapter 3

Running NuSMV interactively

The main interaction mode of NUSMV is through an interactive shell. In this mode NUSMV
enters a read-eval-print loop. The user can activate the various NUSMV computation steps
as system commands with different options. These steps can therefore be invoked separately,
possibly undone or repeated under different modalities. These steps include the construction
of the model under different partitioning techniques, model checking of specifications, and the
configuration of the BDD package. The interactive shell of NUSMV is activated from the system
prompt as follows (’NuSMV>’ is the default NUSMV shell prompt):

system prompt> NuSMV -int <RET>
NuSMV>

A NUSMV command is a sequence of words. The first word specifies thecommand to be
executed. The remaining words are arguments to the invoked command. Commands separated
by a ‘; ’ are executed sequentially; the NUSMV shell waits for each command to terminate
in turn. The behavior of commands can depend on environment variables, similar to “csh”
environment variables.

It is also possible to make NUSMV read and execute a sequence of commands from a file,
through the command line option-load:

system prompt> NuSMV -int -load cmd file <RET>

-load cmd-file Starts the interactive shell and then executes NUSMV com-
mands from filecmd-file. If an error occurs during a com-
mand execution, commands that follow will not be executed.
See also the variable on failure script quits .
The option-load must be used with-int to be effective.

In the following we present the possible commands followed by the related environment vari-
ables, classified in different categories. Every command answers to the option-h by printing out
the command usage. When output is paged for some commands (option -m), it is piped through
the program specified by the UNIXPAGERshell variable, if defined, or through the UNIX com-
mand “more”. Environment variables can be assigned a value with the “set” command. Com-
mand sequences to NUSMV must obey the (partial) order specified in the Figure 3.10depicted
at page 86. For instance, it is not possible to evaluate CTL expressions before the model is built.

A number of commands and environment variables, like those dealing with file names,
accept arbitrary strings. There are a few reserved characters which must be escaped if they are
to be used literally in such situations. See the section describing thehistory command, on

41



page 79, for more information.

The verbosity of NUSMV is controlled by the following environment variable.

verboselevel Environment Variable

Controls the verbosity of the system. Possible values are integers from0 (no messages) to
4 (full messages). The default value is0.

3.1 Model Reading and Building
The following commands allow for the parsing and compilation of the model into a BDD.

read model - Reads a NuSMV file into NuSMV. Command

read model [-h] [-i model-file]

Reads a NUSMV file. If the -i option is not specified, it reads from the file specified in
the environment variableinput file .

Command Options:

-i model-file Sets the environment variableinput file to
model-file , and reads the model from the specified file.

input file Environment Variable

Stores the name of the input file containing the model. It can be set by the “set” command
or by the command line option ‘-i’. There is no default value.

pp list Environment Variable

Stores the list of pre-processors to be run on the input file before it is parsed by NUSMV.
The pre-processors are executed in the order specified by this variable. The argument must
either be the empty string (specifying that no pre-processors are to be run on the input
file), one single pre-processor name or a space seperated list of pre-processor names inside
double quotes. Any invalid names are ignored. The default isnone.

flatten hierarchy - Flattens the hierarchy of modules Command

flatten hierarchy [-h]

This command is responsible of the instantiation of modulesand processes. The instantia-
tion is performed by substituting the actual parameters forthe formal parameters, and then
by prefixing the result via the instance name.

backward compatibility Environment Variable

It is used to enable or disable type checking and other features provided by NuSMV 2.4.
If set to1 then the type checking is turned off, and NUSMV behaves as the old versions
w.r.t. type checking and other features like writing of flattened and booleanized SMV files.
If set to0 then the type checking is turned on, and whenever a type erroris encountered
while compiling a NUSMV program the user is informed and the execution stopped. As
default it set to0.

type checking warning on Environment Variable
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Enables notification of warning messages generated by the type checking. If set to0, then
messages are disregarded, otherwise if set to1 they are notified to the user. As default it
set to1.

show vars - Shows model’s symbolic variables and their values Command

show vars [-h] [-s] [-i] [-m | -o output-file]

Prints symbolic input and state variables of the model with their range of values (as defined
in the input file).

Command Options:

-s Prints only state variables.

-i Prints only input variables.

-m Pipes the output to the program specified by thePAGER
shell variable if defined, else through the UNIX command
“more”.

-o output-file Writes the output generated by the command to
output-file .

encodevariables - Builds the BDD variables necessary to compile
the model into a BDD.

Command

encode variables [-h] [-i order-file]

Generates the boolean BDD variables and the ADD needed to encode propositionally the
(symbolic) variables declared in the model. The variables are created as default in the
order in which they appear in a depth first traversal of the hierarchy.
The input order file can be partial and can contain variables not declared in the model.
Variables not declared in the model are simply discarded. Variables declared in the model
which are not listed in the ordering input file will be createdand appended at the end of
the given ordering list, according to the default ordering.

Command Options:

-i order-file Sets the environment variableinput order file to
order-file , and reads the variable ordering to be used
from file order-file . This can be combined with the
write order command. The variable ordering is written
to a file, which can be inspected and reordered by the user,
and then read back in.

input order file Environment Variable

Indicates the file name containing the variable ordering to be used in building the model
by the ‘encode variables ’ command. There is no default value.

write order dumps bits Environment Variable

Changes the behaviour of the commandwrite order .

When this variable is set,write order will dump the bits constituting the boolean en-
coding of each scalar variable, instead of the scalar variable itself. This helps to work
at bits level in the variable ordering file. See the commandwrite order for further
information. The default value is0.
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write order - Writes variable order to file. Command

write order [-h] [-b] [(-o | -f) order-file]

Writes the current order of BDD variables in the file specifiedvia the -o option. If no
option is specified the environment variableoutput order file will be considered.
If the variableoutput order file is unset (or set to an empty value) then standard
output will be used.

By default, the bits constituting the scalar variables encoding are not dumped. When a
variable bit should be dumped, the scalar variable which thebit belongs to is dumped
instead if not previously dumped. The result is a variable ordering containing only scalar
and boolean model variables.

To dump single bits instead of the corresponding scalar variables, either the option-b can
be specified, or the environment variablewrite order dumps bits must be previ-
ously set.

When the boolean variable dumping is enabled, the single bits will occur within the result-
ing ordering file in the same position that they occur at BDD level.

Command Options:

-b Dumps bits of scalar variables instead of the
single scalar variables. See also the variable
write order dumps bits .

-o order-file Sets the environment variableoutput order file to
order-file and then dumps the ordering list into that
file.

-f order-file Alias for the -o option. Supplied for backward
compatibility.

output order file Environment Variable

The file where the current variable ordering has to be written. The default value is
‘ temp.ord ’.

vars order type Environment Variable

Controls the manner variables are ordered by default, when avariable ordering is not
specified.

• inputs before. Input variables are forced to be orderedbeforestate variables (de-
fault).

• inputs after. Input variables are forced to be orderedafter state variables.

• lexicographic. Input and state variables will be ordered as they are declared in the
input smv file, in a lexicographic order.

build model - Compiles the flattened hierarchy into a BDD Command

build model [-h] [-f] [-m Method]

Compiles the flattened hierarchy into a BDD (initial states,invariants, and transition
relation) using the method specified in the environment variablepartition method
for building the transition relation.
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Command Options:

-m Method Sets the environment variablepartition method to
the valueMethod , and then builds the transition relation.
Available methods areMonolithic , Threshold and
Iwls95CP .

-f Forces model construction. By default, only one partition
method is allowed. This option allows to overcome this de-
fault, and to build the transition relation with different parti-
tioning methods.

partition method Environment Variable

The method to be used in building the transition relation, and to compute images and
preimages. Possible values are:

• Monolithic . No partitioning at all.

• Threshold. Conjunctive partitioning, with a simple threshold heuristic. Assign-
ments are collected in a single cluster until its size grows over the value specified
in the variableconj part threshold . It is possible (default) to use affinity
clustering to improve model checking performance. Seeaffinity variable.

• Iwls95CP. Conjunctive partitioning, with clusters generated and ordered according
to the heuristic described in [RAP+95]. Works in conjunction with the variables
image cluster size , image W1, image W2, image W3, image W4. It is
possible (default) to use affinity clustering to improve model checking performance.
Seeaffinity variable. It is also possible to avoid (default) preordering of clusters
(see [RAP+95]) by setting theiwls95preorder variable appropriately.

conj part threshold Environment Variable

The limit of the size of clusters in conjunctive partitioning. The default value is0 BDD
nodes.

affinity Environment Variable

Enables affinity clustering heuristic described in [MHS00], possible values are0 or 1. The
default value is1.

trans order file Environment Variable

Reads the a variables list from filetv file, to be used when clustering the transition rela-
tion. This feature has been provided by Wendy Johnston, University of Queensland. The
results of Johnston’s research have been presented at FM 2006 in Hamilton, Canada. See
[WJKWLvdBR06].

image cluster size Environment Variable

One of the parameters to configure the behaviour of theIwls95CPpartitioning algorithm.
image cluster size is used as threshold value for the clusters. The default value is
1000 BDD nodes.

image W{1,2,3,4} Environment Variable

The other parameters for theIwls95CPpartitioning algorithm. These attribute different
weights to the different factors in the algorithm. The default values are6, 1, 1, 6 respec-
tively. (For a detailed description, please refer to [RAP+95].)
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iwls95preorder Environment Variable

Enables cluster preordering following heuristic described in [RAP+95], possible values
are0 or 1. The default value is0. Preordering can be very slow.

image verbosity Environment Variable

Sets the verbosity for the image methodIwls95CP, possible values are0 or 1. The default
value is0.

print iwls95options- Prints the Iwls95 Options. Command

print iwls95options [-h]

This command prints out the configuration parameters of the IWLS95 clustering algorithm,
i.e. image verbosity , image cluster size andimage W{1,2,3,4 }.

go - Initializes the system for the verification. Command

go [-h] [-f]

This command initializes the system for verification. It is equivalent to the
command sequenceread model , flatten hierarchy , encode variables ,
build flat model , build model .

If some commands have already been executed, then only the remaining ones will be in-
voked.

Command Options:

-f Forces model construction even when Cone Of Influence is
enabled.

processmodel - Performs the batch steps and then returns control
to the interactive shell.

Command

process model [-h] [-f] [-r] [-i model-file] [-m Method]

Reads the model, compiles it into BDD and performs the model checking of all the specifi-
cation contained in it. If the environment variableforward search has been set before,
then the set of reachable states is computed. If the option-r is specified, the reordering
of variables is performed and a dump of the variable orderingis performed accordingly.
This command simulates the batch behavior of NUSMV and then returns the control to
the interactive shell.

Command Options:

-f Forces the model construction even when Cone Of Influence
is enabled.

-r Forces a variable reordering at the end of the computation,
and dumps the new variables ordering to the default order-
ing file. This options acts like the command line option
-reorder .
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-i model-file Sets the environment variableinput file to
file model-file , and reads the model from file
model-file .

-m Method Sets the environment variablepartition method to
Method and uses it as partitioning method.

write flat model - Writes a flat model to a file Command

write flat model [-h] [-o filename]

Writes the currently loaded SMV model in the specified file, after having flattened it.
Processes are eliminated and a corresponding equivalent model is printed out.

If no file is specified, the file specified via the environment variable
output flatten model file is used if any, otherwise standard output is
used.

Command Options:

-o filename Attempts to write the flat SMV model infilename

output flatten model file Environment Variable

The file where the flattened model has to be written. The default value is ‘stdout ’.

write boolean model - Writes a flat and boolean model to a file Command

write boolean model [-h] [-o filename]

Writes the currently loaded SMV model in the specified file, after having flattened and
booleanized it. Processes are eliminated and a corresponding equivalent model is printed
out.

If no file is specified, the file specified via the environment variable
output boolean model file is used if any, otherwise standard output is
used.

Command Options:

-o filename Attempts to write the flat and boolean SMV model in
filename

In NuSMV 2.4 scalar variables are dumped asDEFINEs whose body is their boolean
encoding.

This allows the user to still express and see parts of the generated boolean model in terms
of the original model’s scalar variables names and values, and still keeping the generated
model purely boolean.

Also, symbolic constants are dumped within aCONSTANTS statement to declare the values
of the original scalar variables’ for future reading of the generated file.

When NUSMV detects that there were triggered one or more dynamic reorderings in the
BDD engine, the commandwrite boolean model also dumps the current variables
ordering, if the optionoutput order file is set.

The dumped variables ordering will contain single bits or scalar variables depending on the
current value of the optionwrite order dumps bits . See commandwrite order
for further information about variables ordering.

output boolean model file Environment Variable
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The file where the flattened and booleanized model has to be written. The default value is
‘stdout ’.

output word format Environment Variable

This variable sets in which baseword[•] constants are outputted (during traces, counterex-
amples, etc, printing). Possible values are 2, 8, 10 and 16. Note that if a part of an input
file is outputted (for example, if a specification expressionis outputted) then theword[•]
constants remain in same format as they were written in the input file.

3.2 Commands for Checking Specifications
The following commands allow for the BDD-based model checking of a NUSMV model.

compute reachable- Computes the set of reachable states Command

compute reachable [-h]

Computes the set of reachable states. The result is then usedto simplify image and preim-
age computations. This can result in improved performancesfor models with sparse state
spaces. Sometimes this option may slow down the performances because the computation
of reachable states may be very expensive. The environment variableforward search
is set during the execution of this command. Since version 2.4.0, the computation of the
reachable states is automatically performed as the variable forward search is set by
default.

print reachablestates- Prints out the number of reachable states Command

print reachable states [-h] [-v]

Prints the number of reachable states of the given model. In verbose mode, prints also the
list of all reachable states. The reachable states are computed if needed.

check fsm - Checks the transition relation for totality. Command

check fsm [-h] [-m | -o output-file]

Checks if the transition relation is total. If the transition relation is not total then a potential
deadlock state is shown.

Command Options:

-m Pipes the output generated by the command to the pro-
gram specified by thePAGERshell variable if defined, else
through the UNIX command “more”.

-o output-file Writes the output generated by the command to the file
output-file .

At the beginning reachable states are computed in order to guarantee that deadlock states
are actually reachable.

check fsm Environment Variable

Controls the activation of the totality check of the transition relation during the
process model call. Possible values are0 or 1. Default value is0.
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print fsm stats- Prints out information about the fsm and cluster-
ing.

Command

print fsm stats [-h] | [-m] | [-o output-file]

This command prints out information regarding the fsm and each cluster. In particular for
each cluster it prints out the cluster number, the size of thecluster (in BDD nodes), the
variables occurring in it, the size of the cube that has to be quantified out relative to the
cluster and the variables to be quantified out.

Command Options:

-m Pipes the output generated by the command to the pro-
gram specified by thePAGERshell variable if defined, else
through the UNIX command “more”.

-o output-file Writes the output generated by the command to the file
output-file .

print fair states- Prints out the number of fair states Command

print fair states [-h] [-v]

Prints the number of fair states of the given model. In verbose mode, prints also the list of
all fair states.

print fair transitions - Prints out the number of fair states Command

print fair transitions [-h] [-v]

Prints the number of fair transitions of the given model. In verbose mode, prints also the
list of all fair transitions. The transitions are displayedas state-input pairs.

check ctlspec- Performs fair CTL model checking. Command

check ctlspec [-h] [-m | -o output-file] [-n number | -p
"ctl-expr [IN context]"]

Performs fair CTL model checking.

A ctl-expr to be checked can be specified at command line using option-p .
Alternatively, option-n can be used for checking a particular formula in the property
database. If neither-n nor -p are used, all the SPEC formulas in the database are checked.

Command Options:

-m Pipes the output generated by the command in processing
SPECs to the program specified by thePAGERshell vari-
able if defined, else through the UNIX command “more”.

-o output-file Writes the output generated by the command in processing
SPECs to the fileoutput-file .

-p "ctl-expr [IN
context]"

A CTL formula to be checked.context is the module
instance name which the variables inctl-expr must be
evaluated in.
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-n number Checks the CTL property with indexnumber in the prop-
erty database.

If the ag only search environment variable has been set, then a specialized algorithm
to check AG formulas is used instead of the standard model checking algorithms.

Since version 2.4.1 this command substitutescheck spec that isdeprecated.

check spec- Performs fair CTL model checking. Command

check spec [-h] [-m | -o output-file] [-n number | -p
"ctl-expr [IN context]"]

Performs fair CTL model checking.

Since version 2.4.1 this command isdeprecatedbut still provided for backward compati-
bility reasons. Usecheck ctlspec instead.

ag only search Environment Variable

Enables the use of an ad hoc algorithm for checking AG formulas. Given a formula of
the formAG alpha, the algorithm computes the set of states satisfyingalpha, and checks
whether it contains the set of reachable states. If this is not the case, the formula is proved
to be false.

forward search Environment Variable

Enables the computation of the reachable states during theprocess model command
and when used in conjunction with theag only search environment variable enables
the use of an ad hoc algorithm to verify invariants. Since version 2.4.0, this option is set
by default.

ltl tableau forward search Environment Variable

Forces the computation of the set of reachable states for thetableau resulting from BDD-
based LTL model checking, performed by commandcheck ltlspec . If the variable
ltl tableau forward search is not set (default), the resulting tableau will inherit
the computation of the reachable states from the model, if enabled. If the variable is set, the
reachable states set will be calculated for the modelandfor the tableau resulting from LTL
model checking. This might improve performances of the commandcheck ltlspec ,
but may also lead to a dramatic slowing down. This variable has effect only when the
calculation of reachable states for the model is enabled (see forward search ).

check invar - Performs model checking of invariants Command

check invar [-h] [-m | -o output-file] [-n number | -p
"invar-expr [IN context]"]

Performs invariant checking on the given model. An invariant is a set of states. Checking
the invariant is the process of determining that all states reachable from the initial states lie
in the invariant. Invariants to be verified can be provided assimple formulas (without any
temporal operators) in the input file via theINVARSPECkeyword or directly at command
line, using the option-p .

Option -n can be used for checking a particular invariant of the model.If neither -n nor
-p are used, all the invariants are checked.

During checking of invariants all the fairness conditions associated with the model are
ignored.
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If an invariant does not hold, a proof of failure is demonstrated. This consists of a path
starting from an initial state to a state lying outside the invariant. This path has the property
that it is the shortest path leading to a state outside the invariant.
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Command Options:

-m Pipes the output generated by the program in processing
INVARSPECs to the program specified by thePAGER
shell variable if defined, else through the UNIX command
“more”.

-o output-file Writes the output generated by the command in processing
INVARSPECs to the fileoutput-file .

-p "invar-expr [IN
context]"

The command line specified invariant formula to be verified.
context is the module instance name which the variables
in invar-expr must be evaluated in.

check ltlspec - Performs LTL model checking Command

check ltlspec [-h] [-m | -o output-file] [-n number | -p
"ltl-expr [IN context]"]

Performs model checking of LTL formulas. LTL model checkingis reduced to CTL model
checking as described in the paper by [CGH97].

A ltl-expr to be checked can be specified at command line using option-p . Alterna-
tively, option-n can be used for checking a particular formula in the propertydatabase. If
neither-n nor -p are used, all the LTLSPEC formulas in the database are checked.

Command Options:

-m Pipes the output generated by the command in process-
ing LTLSPECs to the program specified by thePAGER
shell variable if defined, else through the UNIX command
“more”.

-o output-file Writes the output generated by the command in processing
LTLSPECs to the fileoutput-file .

-p "ltl-expr [IN
context]"

An LTL formula to be checked.context is the module
instance name which the variables inltl-expr must be
evaluated in.

-n number Checks the LTL property with indexnumber in the prop-
erty database.

compute- Performs computation of quantitative characteristics Command

compute [-h] [-m | -o output-file] [-n number | -p
"compute-expr [IN context]"]

This command deals with the computation of quantitative characteristics of real time sys-
tems. It is able to compute the length of the shortest (longest) path from two given set of
states.

MAX [ alpha , beta ]
MIN [ alpha , beta ]

Properties of the above form can be specified in the input file via the keywordCOMPUTE
or directly at command line, using option-p .

If there exists an infinite path beginning in a state instart that never reaches a state in
final, theninfinity is returned. If any of the initial or final states is empty, then undefinedis
returned.
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Option -n can be used for computing a particular expression in the model. If neither -n
nor -p are used, all the COMPUTE specifications are computed.
It is important to remark here that if the FSM is not total (i.e. it contains deadlock states)
COMPUTE may produce wrong results. It is possible to check the FSM against deadlock
states by calling the commandcheck fsm .

Command Options:

-m Pipes the output generated by the command in process-
ing COMPUTEs to the program specified by thePAGER
shell variable if defined, else through the UNIX command
“more”.

-o output-file Writes the output generated by the command in processing
COMPUTEs to the fileoutput-file .

-p "compute-expr [IN
context]"

A COMPUTE formula to be checked. context
is the module instance name which the variables in
compute-expr must be evaluated in.

-n number Computes only the property with indexnumber .

check property - Checks a property into the current list of proper-
ties, or a newly specified property

Command

check property [-h] [-n number] | [(-c | -l | -i | -s | -q )
[-p "formula [IN context]"]]

Checks the specified property taken from the property list, or adds the new specified prop-
erty and checks it. It is possible to checkLTL, CTL, INVAR, PSL and quantitative
(COMPUTE) properties. Every newly inserted property is inserted andchecked.

Command Options:

-c Checks all theCTL properties not already checked. If -p is
used, the given formula is expected to be aCTL formula.

-l Checks all theLTL properties not already checked. If -p is
used, the given formula is expected to be aLTL formula.

-i Checks all theINVAR properties not already checked. If
-p is used, the given formula is expected to be aINVAR
formula.

-s Checks all thePSL properties not already checked. If-p is
used, the given formula is expected to be aPSL formula.

-q Checks all theCOMPUTEproperties not already checked. If
-p is used, the given formula is expected to be aCOMPUTE
formula.

-p "formula [IN
context]"

Checks the formula specified on the command-line.
context is the module instance name which the variables
in formula must be evaluated in.

add property - Adds a property to the list of properties Command

add property [-h] [(-c | -l | -i | -q | -s) -p "formula
[IN context]"]

Adds a property in the list of properties. It is possible to insertLTL, CTL, INVAR,
PSL and quantitative (COMPUTE) properties. Every newly inserted property is initialized
to unchecked. A type option must be given to properly executethe command.
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Command Options:

-c Adds aCTL property.

-l Adds anLTL property.

-i Adds anINVAR property.

-s Adds aPSL property.

-q Adds a quantitative (COMPUTE) property.

-p "formula [IN
context]"

Adds the formula specified on the command-line.
context is the module instance name which the variables
in formula must be evaluated in.

3.3 Commands for Bounded Model Checking
In this section we describe in detail the commands for doing and controlling Bounded Model
Checking in NUSMV. Bounded Model Checking is based on the reduction of the bounded
model checking problem to a propositional satisfiability problem. After the problem is gen-
erated, NUSMV internally calls a propositional SAT solver in order to find an assignment which
satisfies the problem. Currently NUSMV supplies three SAT solvers: SIM, Zchaff and MiniSat.
Notice that Zchaff and MiniSat are for non-commercial purposes only. They are therefore not
included in the source code distribution or in some of the binary distributions of NUSMV.

Some commands for Bounded Model Checking use incremental algorithms. These algo-
rithms exploit the fact that satisfiability problems generated for a particular bounded model
checking problem often share common subparts. So information obtained during solving of
one satisfiability problem can be used in solving of another one. The incremental algorithms
usually run quicker then non-incremental ones but require aSAT solver with incremental inter-
face. At the moment, only Zchaff and MiniSat offer such an interface. If none of these solvers
are linked to NUSMV, then the commands which make use of the incremental algorithms will
not be available.

It is also possible to generate the satisfiability problem without calling the SAT solver. Each
generated problem is dumped in DIMACS format to a file. DIMACSis the standard format used
as input by most SAT solvers, so it is possible to use NUSMV with a separate external SAT
solver. At the moment, the DIMACS files can be generated only by commands which do not use
incremental algorithms.

bmc setup- Builds the model in a Boolean Epression format. Command

bmc setup [-h]

You must call this command before use any other bmc-related command. Only one call
per session is required.

go bmc - Initializes the system for the BMC verification. Command

go bmc [-h] [-f]

This command initializes the system for verification. It is equivalent to the
command sequenceread model , flatten hierarchy , encode variables ,
build boolean model , bmc setup . If some commands have already been executed,
then only the remaining ones will be invoked.

Command Options:

-f Forces model construction even when Cone Of Influence is
enabled.
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sexp inlining Environment Variable

This variable enables the Sexp inlining when the boolean model is built. Sexp inlining is
performed in a similar way to RBC inlining (see system variable rbc inlining ) but the
underlying structures and kind of problem are different, because inlining is applied at the
Sexp level instead of the RBC level.

Inlining is applied to initial states, invariants and transition relations. By default, Sexp
inlining is disabled.

rbc inlining Environment Variable

When set, this variable makes BMC perform the RBC inlining before committing any
problem to the SAT solver. Depending on the problem structure and length, the inlining
may either make SAT solving much faster, or slow it down dramatically. Experiments
showed an average improvement in time of SAT solving when RBCinlining is enabled.
RBC inlining is enabled by default.

The idea about inlining was taken from [ABE00] by Parosh AzizAbdulla, Per Bjesse and
Niklas Eén.

check ltlspec bmc - Checks the given LTL specification, or all LTL
specifications if no formula is given. Checking parameters are the
maximum length and the loopback value

Command

check ltlspec bmc [-h | -n idx | -p "formula [IN context]"]
[-k max length] [-l loopback] [-o filename]

This command generates one or more problems, and calls SAT solver for each one. Each
problem is related to a specific problem bound, which increases from zero (0) to the given
maximum problem length. Heremax length is the bound of the problem that system is
going to generate and solve. In this context the maximum problem bound is represented
by the-k command parameter, or by its default value stored in the environment variable
bmc length . The single generated problem also depends on theloopback parameter
you can explicitly specify by the-l option, or by its default value stored in the environ-
ment variablebmc loopback .

The property to be checked may be specified using the-n idx or the-p "formula"
options. If you need to generate a DIMACS dump file of all generated problems, you must
use the option-o "filename" .

Command Options:

-n index indexis the numeric index of a valid LTL specification for-
mula actually located in the properties database.

-p "formula [IN
context]"

Checks theformula specified on the command-line.
context is the module instance name which the variables
in formula must be evaluated in.

-k max length maxlength is the maximum problem bound to be checked.
Only natural numbers are valid values for this option. If no
value is given the environment variablebmc length is con-
sidered instead.
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-l loopback The loopbackvalue may be:

• a natural number in (0,max length-1). A positive sign
(‘+’) can be also used as prefix of the number. Any in-
valid combination of length and loopback will be skipped
during the generation/solving process.

• a negative number in (-1, -bmc length). In this caseloop-
backis considered a value relative tomax length. Any in-
valid combination of length and loopback will be skipped
during the generation/solving process.

• the symbol ‘X’, which means “no loopback”.
• the symbol ‘* ’, which means “all possible loopbacks from

zero tolength-1” .
-o filename filenameis the name of the dumped dimacs file. It may con-

tain special symbols which will be macro-expanded to form
the real file name. Possible symbols are:

• @F: model name with path part.
• @f: model name without path part.
• @k: current problem bound.
• @l: current loopback value.
• @n: index of the currently processed formula in the prop-

erty database.
• @@: the ‘@’ character.

check ltlspec bmc onepb- Checks the given LTL specification, or
all LTL specifications if no formula is given. Checking parameters
are the single problem bound and the loopback value

Command

check ltlspec bmc onepb [-h | -n idx | -p "formula"
[IN context]] [-k length] [-l loopback] [-o filename]

As commandcheck ltlspec bmc but it produces only one single problem with
fixed bound and loopback values, with no iteration of the problem bound from zero to
max length.

Command Options:

-n index indexis the numeric index of a valid LTL specification for-
mula actually located in the properties database. The valid-
ity of indexvalue is checked out by the system.

-p "formula [IN
context]"

Checks theformula specified on the command-line.
context is the module instance name which the variables
in formula must be evaluated in.

-k length lengthis the problem bound used when generating the sin-
gle problem. Only natural numbers are valid values for
this option. If no value is given the environment variable
bmc length is considered instead.

-l loopback The loopbackvalue may be:

• a natural number in (0,max length-1). A positive sign
(’+’) can be also used as prefix of the number. Any in-
valid combination of length and loopback will be skipped
during the generation/solving process.
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• a negative number in (-1, -bmc length). In this caseloop-
back is considered a value relative tolength. Any invalid
combination of length and loopback will be skipped during
the generation/solving process.

• the symbol ’X’, which means “no loopback” .
• the symbol ’* ’, which means “all possible loopback from

zero tolength-1”.
-o filename filenameis the name of the dumped dimacs file. It may con-

tain special symbols which will be macro-expanded to form
the real file name. Possible symbols are:

• @F: model name with path part.
• @f: model name without path part.
• @k: current problem bound.
• @l: current loopback value.
• @n: index of the currently processed formula in the prop-

erty database.
• @@: the ’@’ character.

gen ltlspec bmc - Dumps into one or more dimacs files the given
LTL specification, or all LTL specifications if no formula is given.
Generation and dumping parameters are the maximum bound and
the loopback value

Command

gen ltlspec bmc [-h | -n idx | -p "formula" [IN context]]
[-k max length] [-l loopback] [-o filename]

This command generates one or more problems, and dumps each problem into a dimacs
file. Each problem is related to a specific problem bound, which increases from zero (0) to
the given maximum problem bound. In this short descriptionlength is the bound of the
problem that system is going to dump out.

In this context the maximum problem bound is represented by themax lengthparameter,
or by its default value stored in the environment variablebmc length .

Each dumped problem also depends on the loopback you can explicitly specify by the-l
option, or by its default value stored in the environment variablebmc loopback .

The property to be checked may be specified using the-n idx or the-p "formula "
options.

You may specify dimacs file name by using the option-o filename , otherwise the
default value stored in the environment variablebmc dimacs filename will be con-
sidered.
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Command Options:

-n index indexis the numeric index of a valid LTL specification for-
mula actually located in the properties database. The valid-
ity of index value is checked out by the system.

-p "formula [IN
context]"

Checks theformula specified on the command-line.
context is the module instance name which the variables
in formula must be evaluated in.

-k max length maxlength is the maximum problem bound used when in-
creasing problem bound starting from zero. Only natural
numbers are valid values for this option. If no value is
given the environment variablebmc lengthvalue is consid-
ered instead.

-l loopback The loopbackvalue may be:

• a natural number in (0,max length-1). A positive sign
(’+’) can be also used as prefix of the number. Any in-
valid combination of bound and loopback will be skipped
during the generation and dumping process.

• a negative number in (-1, -bmc length). In this caseloop-
backis considered a value relative tomax length. Any in-
valid combination of bound and loopback will be skipped
during the generation process.

• the symbol ‘X’, which means “no loopback”.
• the symbol ‘* ’, which means “all possible loopback from

zero tolength-1”.
-o filename filenameis the name of dumped dimacs files. If this options

is not specified, variablebmc dimacsfilenamewill be con-
sidered. The file name string may contain special symbols
which will be macro-expanded to form the real file name.
Possible symbols are:

• @F: model name with path part.
• @f: model name without path part.
• @k: current problem bound.
• @l: current loopback value .
• @n: index of the currently processed formula in the prop-

erty database.
• @@: the ‘@’ character.

gen ltlspec bmc onepb - Dumps into one dimacs file the problem
generated for the given LTL specification, or for all LTL specifi-
cations if no formula is explicitly given. Generation and dumping
parameters are the problem bound and the loopback value

Command

gen ltlspec bmc onepb [-h | -n idx | -p "formula"
[IN context]] [-k length] [-l loopback] [-o filename]

As thegen ltlspec bmccommand, but it generates and dumps only one problem given
its bound and loopback.

Command Options:

-n index indexis the numeric index of a valid LTL specification for-
mula actually located in the properties database. The valid-
ity of indexvalue is checked out by the system.
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-p "formula [IN
context]"

Checks theformula specified on the command-line.
context is the module instance name which the variables
in formula must be evaluated in.

-k length lengthis the single problem bound used to generate and
dump it. Only natural numbers are valid values for this
option. If no value is given the environment variable
bmc length is considered instead.

-l loopback The loopbackvalue may be:

• a natural number in (0,length-1). A positive sign (’+’) can
be also used as prefix of the number. Any invalid combi-
nation of length and loopback will be skipped during the
generation and dumping process.

• negative number in (-1, -length). Any invalid combination
of length and loopback will be skipped during the genera-
tion process.

• the symbol ‘X’, which means “no loopback”.
• the symbol ‘* ’, which means “all possible loopback from

zero tolength-1”.
-o filename filenameis the name of the dumped dimacs file. If this op-

tions is not specified, variablebmc dimacs filename
will be considered. The file name string may contain spe-
cial symbols which will be macro-expanded to form the real
file name. Possible symbols are:

• @F: model name with path part
• @f: model name without path part
• @k: current problem bound
• @l: current loopback value
• @n: index of the currently processed formula in the prop-

erty database
• @@: the ’@’ character

check ltlspec bmc inc - Checks the given LTL specification, or all
LTL specifications if no formula is given, using an incremental al-
gorithm. Checking parameters are the maximum length and the
loopback value

Command

check ltlspec bmc inc [-h | -n idx | -p "formula [IN
context]"] [-k max length] [-l loopback]

For each problem this command incrementally generates manysatisfiability subproblems
and calls the SAT solver on each one of them. The incremental algorithm exploits the
fact that subproblems have common subparts, so informationobtained during a previous
call to the SAT solver can be used in the consecutive ones. Logically, this command does
the same thing ascheck ltlspec bmc (see the description on page 55) but usually
runs considerably quicker. A SAT solver with an incrementalinterface is required by
this command, therefore if no such SAT solver is provided then this command will be
unavailable.

Command Options:

-n index indexis the numeric index of a valid LTL specification for-
mula actually located in the properties database.
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-p "formula [IN
context]"

Checks theformula specified on the command-line.
context is the module instance name which the variables
in formula must be evaluated in.

-k max length maxlength is the maximum problem bound must be
reached. Only natural numbers are valid values for this
option. If no value is given the environment variable
bmc lengthis considered instead.

-l loopback The loopbackvalue may be:

• a natural number in (0,max length-1). A positive sign
(‘+’) can be also used as prefix of the number. Any in-
valid combination of length and loopback will be skipped
during the generation/solving process.

• a negative number in (-1, -bmc length). In this caseloop-
backis considered a value relative tomax length. Any in-
valid combination of length and loopback will be skipped
during the generation/solving process.

• the symbol ‘X’, which means “no loopback”.
• the symbol ‘* ’, which means “all possible loopback from

zero tolength-1” .

check ltlspec sbmc - Checks the given LTL specification, or all
LTL specifications if no formula is given. Checking parameters are
the maximum length and the loopback value

Command

check ltlspec sbmc [-h | -n idx | -p "formula [IN context]"]
[-k max length] [-l loopback] [-o filename]

This command generates one or more problems, and calls SAT solver for each one. The
BMC encoding used is the one by of Latvala, Biere, Heljanko and Junttila as described
in [LBHJ05]. Each problem is related to a specific problem bound, which increases from
zero (0) to the given maximum problem length. Heremax length is the bound of the
problem that system is going to generate and solve. In this context the maximum problem
bound is represented by the-k command parameter, or by its default value stored in the
environment variablebmc length . The single generated problem also depends on the
loopback parameter you can explicitly specify by the-l option, or by its default value
stored in the environment variablebmc loopback .

The property to be checked may be specified using the-n idx or the-p "formula"
options. If you need to generate a DIMACS dump file of all generated problems, you must
use the option-o "filename" .

Command Options:

-n index indexis the numeric index of a valid LTL specification for-
mula actually located in the properties database.

-p "formula [IN
context]"

Checks theformula specified on the command-line.
context is the module instance name which the variables
in formula must be evaluated in.

-k max length maxlength is the maximum problem bound to be checked.
Only natural numbers are valid values for this option. If no
value is given the environment variablebmc length is con-
sidered instead.
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-l loopback The loopbackvalue may be:

• a natural number in (0,max length-1). A positive sign
(‘+’) can be also used as prefix of the number. Any in-
valid combination of length and loopback will be skipped
during the generation/solving process.

• a negative number in (-1, -bmc length). In this caseloop-
backis considered a value relative tomax length. Any in-
valid combination of length and loopback will be skipped
during the generation/solving process.

• the symbol ‘X’, which means “no loopback”.
• the symbol ‘* ’, which means “all possible loopbacks from

zero tolength-1” .
-o filename filenameis the name of the dumped dimacs file. It may con-

tain special symbols which will be macro-expanded to form
the real file name. Possible symbols are:

• @F: model name with path part.
• @f: model name without path part.
• @k: current problem bound.
• @l: current loopback value.
• @n: index of the currently processed formula in the prop-

erty database.
• @@: the ‘@’ character.

check ltlspec sbmc inc - Checks the given LTL specification, or
all LTL specifications if no formula is given. Checking parameters
are the maximum length and the loopback value

Command

check ltlspec sbmc inc [-h | -n idx | -p "formula [IN
context]"] [-k max length] [-o filename] [-N] [-c]

This command generates one or more problems, and calls SAT solver for each one. The In-
cremental BMC encoding used is the one by of Heljanko, Junttila and Latvala, as described
in [KHL05]. For each problem this command incrementally generates many satisfiability
subproblems and calls the SAT solver on each one of them. Eachproblem is related to
a specific problem bound, which increases from zero (0) to the given maximum problem
length. Heremax length is the bound of the problem that system is going to generate
and solve. In this context the maximum problem bound is represented by the-k command
parameter, or by its default value stored in the environmentvariablebmc length .

The property to be checked may be specified using the-n idx or the-p "formula"
options. If you need to generate a DIMACS dump file of all generated problems, you must
use the option-o "filename" .

Command Options:

-n index indexis the numeric index of a valid LTL specification for-
mula actually located in the properties database.

-p "formula [IN
context]"

Checks theformula specified on the command-line.
context is the module instance name which the variables
in formula must be evaluated in.

-k max length maxlength is the maximum problem bound to be checked.
Only natural numbers are valid values for this option. If no
value is given the environment variablebmc length is con-
sidered instead.
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-o filename filenameis the name of the dumped dimacs file. It may con-
tain special symbols which will be macro-expanded to form
the real file name. Possible symbols are:

• @F: model name with path part.
• @f: model name without path part.
• @k: current problem bound.
• @l: current loopback value.
• @n: index of the currently processed formula in the prop-

erty database.
• @@: the ‘@’ character.

-N Does not perform virtual unrolling.

-c Performs completeness check.

gen ltlspec sbmc - Dumps into one or more dimacs files the given
LTL specification, or all LTL specifications if no formula is given.
Generation and dumping parameters are the maximum bound and
the loopback values.

Command

gen ltlspec sbmc [-h | -n idx | -p "formula [IN context]"]
[-k max length] [-l loopback] [-o filename]

This command generates one or more problems, and dumps each problem into a dimacs
file. The BMC encoding used is the one by of Latvala, Biere, Heljanko and Junttila as de-
scribed in [LBHJ05]. Each problem is related to a specific problem bound, which increases
from zero (0) to the given maximum problem length. Heremax length is the bound of
the problem that system is going to generate and dump. In thiscontext the maximum prob-
lem bound is represented by the-k command parameter, or by its default value stored in
the environment variablebmc length . The single generated problem also depends on
the loopback parameter you can explicitly specify by the-l option, or by its default
value stored in the environment variablebmc loopback .

The property to be used for tghe problem dumping may be specified using the-n idx
or the -p "formula" options. You may specify dimacs file name by using the op-
tion -o "filename" , otherwise the default value stored in the environment variable
bmc dimacs filename will be considered.

Command Options:

-n index indexis the numeric index of a valid LTL specification for-
mula actually located in the properties database.

-p "formula [IN
context]"

Dumps the formula specified on the command-line.
context is the module instance name which the variables
in formula must be evaluated in.

-k max length maxlengthis the maximum problem bound to be generated.
Only natural numbers are valid values for this option. If no
value is given the environment variablebmc length is con-
sidered instead.

-l loopback The loopbackvalue may be:

• a natural number in (0,max length-1). A positive sign
(‘+’) can be also used as prefix of the number. Any in-
valid combination of length and loopback will be skipped
during the generation/solving process.
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• a negative number in (-1, -bmc length). In this caseloop-
backis considered a value relative tomax length. Any in-
valid combination of length and loopback will be skipped
during the generation/solving process.

• the symbol ‘X’, which means “no loopback”.
• the symbol ‘* ’, which means “all possible loopbacks from

zero tolength-1” .
-o filename filenameis the name of the dumped dimacs file. It may con-

tain special symbols which will be macro-expanded to form
the real file name. Possible symbols are:

• @F: model name with path part.
• @f: model name without path part.
• @k: current problem bound.
• @l: current loopback value.
• @n: index of the currently processed formula in the prop-

erty database.
• @@: the ‘@’ character.

bmc length Environment Variable

Sets the generated problem bound. Possible values are any natural number, but must be
compatible with the current value held by the variablebmc loopback. The default value is
10 .

bmc loopback Environment Variable

Sets the generated problem loop. Possible values are:

• Any natural number, but less than the current value of the variable bmc length. In
this case the loop point is absolute.

• Any negative number, but greater than or equal to -bmc length. In this case specified
loop is the loop length.

• The symbol ’X’, which means “no loopback”.

• The symbol ’* ’, which means “any possible loopbacks”.

The default value is* .

bmc dimacs filename Environment Variable

This is the default file name used when generating DIMACS problem dumps. This variable
may be taken into account by all commands which belong to the gen ltlspecbmc family.
DIMACS file name can contain special symbols which will be expanded to represent the
actual file name. Possible symbols are:

• @F The currently loaded model name with full path.

• @f The currently loaded model name without path part.

• @nThe numerical index of the currently processed formula in the property database.

• @k The currently generated problem length.

• @l The currently generated problem loopback value.

• @@The ‘@’ character.

The default value is “@f k@k l@l n@n”.
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bmc sbmc gf fg opt Environment Variable

Controls whether the system exploits an optimization when performing SBMC on formu-
lae in the formFGp or GFp. The default value is1 (active).

check invar bmc - Generates and solves the given invariant, or all
invariants if no formula is given

Command

check invar bmc [-h | -n idx | -p "formula" [IN context]]
[-a alg] [-o filename]

In Bounded Model Checking, invariants are proved using induction. For this, satisfiability
problems for the base and induction step are generated and a SAT solver is invoked on
each of them. At the moment, two algorithms can be used to prove invariants. In one
algorithm, which we call “classic”, the base and induction steps are built on one state and
one transition, respectively. Another algorithm, which wecall “een-sorensson” [ES04],
can build the base and induction steps on many states and transitions. As a result, the
second algorithm is more powerful.

Also, notice that during checking of invariants all the fairness conditions associated with
the model are ignored.

Command Options:

-n index indexis the numeric index of a valid INVAR specification
formula actually located in the property database. The va-
lidity of indexvalue is checked out by the system.

-p "formula [IN
context]"

Checks theformula specified on the command-line.
context is the module instance name which the variables
in formula must be evaluated in.

-k max length maxlength is the maximum problem bound that can be
reached. Only natural numbers are valid values for this op-
tion. Use this option only if the “een-sorensson” algorithm
is selected. If no value is given the environment variable
bmc lengthis considered instead.

-a alg alg specifies the algorithm. The value can beclassic or
een-sorensson . If no value is given the environment
variablebmc invar alg is considered instead.

-o filename filenameis the name of the dumped dimacs file. It may con-
tain special symbols which will be macro-expanded to form
the real file name. Possible symbols are:

• @F: model name with path part
• @f: model name without path part
• @n: index of the currently processed formula in the prop-

erties database
• @@: the ‘@’ character

gen invar bmc - Generates the given invariant, or all invariants if
no formula is given

Command

gen invar bmc [-h | -n idx | -p "formula [IN context]"]
[-o filename]

At the moment, the invariants are generated using “classic”algorithm only (see the de-
scription ofcheck invar bmc on page 64).
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Command Options:

-n index indexis the numeric index of a valid INVAR specification
formula actually located in the property database. The va-
lidity of indexvalue is checked out by the system.

-p "formula [IN
context]"

Checks theformula specified on the command-line.
context is the module instance name which the variables
in formula must be evaluated in.

-o filename filenameis the name of the dumped dimacs file. If you do
not use this option the dimacs file name is taken from the
environment variablebmc invar dimacs filename .
File name may contain special symbols which will be
macro-expanded to form the real dimacs file name. Possi-
ble symbols are:

• @F: model name with path part
• @f: model name without path part
• @n: index of the currently processed formula in the prop-

erties database
• @@: the ’@’ character

check invar bmc inc - Generates and solves the given invariant,
or all invariants if no formula is given, using incremental algo-
rithms

Command

check invar bmc inc [-h | -n idx | -p "formula" [IN context]]
[-a algorithm]

This command does the same thing ascheck invar bmc (see the description on page
64) but uses an incremental algorithm and therefore usuallyruns considerably quicker.
The incremental algorithms exploit the fact that satisfiability problems generated for a
particular invariant have common subparts, so informationobtained during solving of one
problem can be used in solving another one. A SAT solver with an incremental interface
is required by this command. If no such SAT solver is providedthen this command will be
unavailable.

There are two incremental algorithms which can be used: “Dual” and “ZigZag”. Both
algorithms are equally powerful, but may show different performance depending on a SAT
solver used and an invariant being proved. At the moment, the“Dual” algorithm cannot
be used if there are input variables in a given model. For additional information about
algorithms, consider [ES04].

Also, notice that during checking of invariants all the fairness conditions associated with
the model are ignored.

Command Options:

-n index indexis the numeric index of a valid INVAR specification
formula actually located in the property database. The va-
lidity of indexvalue is checked out by the system.

-p "formula [IN
context]"

Checks theformula specified on the command-line.
context is the module instance name which the variables
in formula must be evaluated in.
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-k max length maxlength is the maximum problem bound that can be
reached. Only natural numbers are valid values for this
option. If no value is given the environment variable
bmc lengthis considered instead.

-a alg alg specifies the algorithm to use. The value can bedual
or zigzag . If no value is given the environment variable
bmc inc invar alg is considered instead.

bmc invar alg Environment Variable

Sets the default algorithm used by the commandcheck invar bmc. Possible values are
classic andeen-sorensson . The default value isclassic .

bmc inc invar alg Environment Variable

Sets the default algorithm used by the commandcheck invar bmc inc . Possible val-
ues aredual andzigzag . The default value isdual .

bmc invar dimacs filename Environment Variable

This is the default file name used when generating DIMACS invar dumps. This variable
may be taken into account by the commandgen invar bmc. DIMACS file name can
contain special symbols which will be expanded to representthe actual file name. Possible
symbols are:

• @F The currently loaded model name with full path.

• @f The currently loaded model name without path part.

• @n The numerical index of the currently processed formula in the properties
database.

• @@The ‘@’ character.

The default value is “@f invar n@n”.

sat solver Environment Variable

The SAT solver’s name actually to be used. Default SAT solveris SIM. Depending on the
NUSMV configuration, also the Zchaff and MiniSat SAT solvers can be available or not.
Notice that Zchaff and MiniSat are for non-commercial purposes only.

bmc simulate - Generates a trace of the model from 0 (zero) to k Command

bmc simulate [-h | -k ]

bmc simulate does not require a specification to build the problem, because only the
model is used to build it. The problem length is represented by the-k command parameter,
or by its default value stored in the environment variablebmc length .

Command Options:

-k length lengthis the length of the generated simulation.
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3.4 Commands for checking PSL specifications
The following command allow for model checking of PSL specifications.

check pslspec- Performs PSL model checking Command

check pslspec [-h] [-m | -o output-file] [-n number | -p
"psl-expr [IN context]"] [-b [-i] [-g] [-1] [-k
bmc lenght] [-l loopback]]

Depending on the characteristics of the PSL property and on the options, the commands
applies CTL-based model checking, or LTL-based, possibilybounded model checking.

A psl-expr to be checked can be specified at command line using option-p . Alterna-
tively, option -n can be used for checking a particular formula in the propertydatabase.
If neither -n nor -p are used, all the PSLSPEC formulas in the database are checked. If
option -b is used, LTL bounded model checking is applied, otherwise bdd-based model
checking is applied. For LTL bounded model checking, options -k and-l can be used to
define the maximum problem bound, and the value of the loopback for the single generated
problems respectively; their values can be stored in the environment variablesbmc lenght
andbmc loopback. Single problems can be generated by using option-1 . By using op-
tion -i the incremental version of bounded model checking is activated. Bounded model
checking problems can be generated and dumped in a file by using option-g .

Command Options:

-m Pipes the output generated by the command in process-
ing PSLSPECs to the program specified by thePAGER
shell variable if defined, else through the UNIX command
“more”.

-o output-file Writes the output generated by the command in processing
PSLSPECs to the fileoutput-file

-p "psl-expr [IN
context]"

A PSL formula to be checked.context is the module
instance name which the variables inpsl-expr must be
evaluated in.

-n number Checks the PSL property with indexnumber in the prop-
erty database.

-b Applies SAT-based bounded model checking. The SAT
solver to be used will be chosen according to the current
value of the system variablesat solver .

-i Applies incremental SAT-bounded model checking if avail-
able, i.e. if an incremental SAT solver has been linked to
NuSMV. This option can be used only in combination with
the option-b .

-g Dumps DIMACS version of bounded model checking prob-
lem into a file whose name depends on the system variable
bmc dimacs filename . This feature is not allowed in
combination of the option-i .
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-1 Generates a single bounded model checking problem with
fixed bound and loopback values, it does not iterate incre-
menting the value of the problem bound.

-k bmc length bmclength is the maximum problem bound to be checked.
Only natural numbers are valid values for this option. If no
value is given the environment variablebmc length is con-
sidered instead.

-l loopback The loopbackvalue may be:

• a natural number in (0,max length-1). A positive sign
(‘+’) can be also used as prefix of the number. Any in-
valid combination of length and loopback will be skipped
during the generation/solving process.

• a negative number in (-1, -bmc length). In this caseloop-
backis considered a value relative tomax length. Any in-
valid combination of length and loopback will be skipped
during the generation/solving process.

• the symbol ‘X’, which means “no loopback”.
• the symbol ‘* ’, which means “all possible loopbacks from

zero tolength-1” If no value is given the environment vari-
ablebmc loopbackis considered instead..

3.5 Simulation Commands
In this section we describe the commands that allow to simulate a NUSMV specification. See
also the section Section 3.6 [Traces], page 70 that describes the commands available for manip-
ulating traces.

pick state- Picks a state from the set of initial states Command

pick state [-h] [-v] [-r | -i [-a]] [-c "constraints"]

Chooses an element from the set of initial states, and makes it the current state
(replacing the old one). The chosen state is stored as the first state of a new trace ready to
be lengthened bysteps states by thesimulate command. The state can be chosen
according to different policies which can be specified via command line options. By
default the state is chosen in a deterministic way.

Command Options:

-v Verbosely prints out chosen state (all state variables, oth-
erwise it prints out only the labelt.1 of the state chosen,
wheret is the number of the new trace, that is the number
of traces so far generated plus one).

-r Randomly picks a state from the set of initial states.

-i Enables the user to interactively pick up an initial state. The
user is requested to choose a state from a list of possible
items (every item in the list doesn’t show state variables un-
changed with respect to a previous item). If the number of
possible states is too high, then the user has to specify some
further constraints as “simple expression”.
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-a Displays all state variables (changed and unchanged with
respect to a previous item) in an interactive picking. This
option works only if the-i options has been specified.

-c "constraints" Usesconstraints to restrict the set of initial states in
which the state has to be picked.constraints must be
enclosed between double quotes" " .

showedstates Environment Variable

Controls the maximum number of states showed during an interactive simulation session.
Possible values are integers from1 to 100 . The default value is25 .

simulate - Performs a simulation from the current selected state Command

simulate [-h] [-p | -v] [-r | -i [-a]] [-c "constraints"]
steps

Generates a sequence of at moststeps states (representing a possible execution of
the model), starting from thecurrent state . The current state must be set via the
pick state or goto state commands.

It is possible to run the simulation in three ways (accordingto different command line
policies): deterministic (the default mode), random and interactive.

The resulting sequence is stored in a trace indexed with an integer number taking into
account the total number of traces stored in the system. There is a different behavior in
the way traces are built, according to howcurrent stateis set:current stateis always put
at the beginning of a new trace (so it will contain at most steps + 1 states) except when it
is the last state of an existent old trace. In this case the oldtrace is lengthened by at most
steps states.
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Command Options:

-p Prints current generated trace (only those variables whose
value changed from the previous state).

-v Verbosely prints current generated trace (changed and un-
changed state variables).

-r Picks a state from a set of possible future states in a random
way.

-i Enables the user to interactively choose every state of the
trace, step by step. If the number of possible states is too
high, then the user has to specify some constraints as simple
expression. These constraints are used only for a single sim-
ulation step and areforgottenin the following ones. They
are to be intended in an opposite way with respect to those
constraints eventually entered with thepick state com-
mand, or during an interactive simulation session (when the
number of future states to be displayed is too high), that are
local only to a single step of the simulation and areforgotten
in the next one.
To improve readability of the list of the states which the user
must pick one from, each state is presented in terms of dif-
ference with respect of the previous one.

-a Displays all the state variables (changed and unchanged)
during every step of an interactive session. This option
works only if the-i option has been specified.

-c "constraints" Performs a simulation in which computation is restricted
to states satisfying thoseconstraints . The desired se-
quence of states could not exist if such constraints were too
strong or it may happen that at some point of the simulation
a future state satisfying those constraints doesn’t exist:in
that case a trace with a number of states less thansteps
trace is obtained. Note:constraints must be enclosed
between double quotes" " .

steps Maximum length of the path according to the constraints.
The length of a trace could contain less thansteps states:
this is the case in which simulation stops in an intermediate
step because it may not exist any future state satisfying those
constraints.

3.6 Traces
A trace is a sequence of states-inputs pairs corresponding to a possible execution of the model.
Each pair contains the inputs that caused the transition to the new state, and the new state
itself. The initial state has no such input values defined as it does not depend on the values of
any of the inputs. The values of any constants declared inDEFINE sections are also part of a
trace. If the value of a constant depends only on state variables then it will be treated as if it
is a state variable too. If it depends only on input variablesthen it will be treated as if it is an
input variable. If however, a constant depends upon both input and state variables, then it gets
displayed in a seperate “combinatorial” section. Since thevalues of any such constants depend
on one or more inputs, the initial state does not contain thissection either.

70



Traces are created by NUSMV when a formula is found to be false; they are also generated
as a result of a simulation (Section 3.5 [Simulation Commands], page 68). Each trace has a
number, and the states-inputs pairs are numbered within thetrace. Tracen has states/inputsn.1,
n.2, n.3, ”...” wheren.1 represents the initial state.

3.6.1 Inspecting Traces
The trace inspection commands of NUSMV allow for navigation along the labelled states-inputs
pairs of the traces produced. During the navigation, there is acurrent state, and thecurrent trace
is the trace thecurrent statebelongs to. The commands are the following:

goto state- Goes to a given state of a trace Command

goto state [-h] state label

Makesstate label thecurrent state. This command is used to navigate along traces
produced by NUSMV. During the navigation, there is acurrent state, and thecurrent trace
is the trace thecurrent statebelongs to.

print current state- Prints out the current state Command

print current state [-h] [-v]

Prints the name of thecurrent stateif defined.

Command Options:

-v Prints the value of all the state variables of thecurrent state.

3.6.2 Displaying Traces
NUSMV comes with three trace plugins (see Section 3.7 [Trace Plugins], page 73) which can be
used to display traces in the system. Once a trace has been generated by NUSMV it is printed
to stdout using the trace explanation plugin which has been set as the current default. The
commandshow traces (see Section 3.5 [Simulation Commands], page 68) can then beused
to print out one or more traces using a different trace plugin, as well as allowing for output to a
file.

3.6.3 Trace Plugin Commands
The following commands relate to the plugins which are available in NUSMV.

show plugins - Shows the available trace explanation plugins Command

show plugins [-h] [-n plugin-no | -a]

Command Options:

-n plugin-no Shows the plugin with the index number equal to
plugin-no .

-a Shows all the available plugins.

Shows the available plugins that can be used to display a trace which has been generated
by NUSMV, or that has been loaded with theread trace command. The plugin that is
used to read in a trace is also shown. The current default plugin is marked with “[D] ”.
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All the available plugins are displayed by default if no command options are given.

default trace plugin Environment Variable

This determines which trace plugin will be used by default when traces that are generated
by NUSMV are to be shown. The values that this variable can take depend on which trace
plugins are installed. Use the commandshow plugins to see which ones are available.
The default value is0.

show traces- Shows the traces generated in a NuSMV session Command

show traces [-h] [-v] [-t] [-m | -o output-file] [-p
plugin-no]
[-a | trace number]

Shows the traces currently stored in system memory, if any. By default it shows the last
generated trace, if any.

Command Options:

-v Verbosely prints traces content (all state variables, otherwise
it prints out only those variables that have changed their
value from previous state). This option only applies when
the Basic Trace Explainer plugin is used to display the trace.

-t Prints only the total number of currently stored traces.

-a Prints all the currently stored traces.

-m Pipes the output through the program specified by the
PAGERshell variable if defined, else through the UNIX
command “more”.

-o output-file Writes the output generated by the command to
output-file .

-p plugin-no Uses the specified trace plugin to display the trace.

trace number The (ordinal) identifier number of the trace to be printed.
This must be the last argument of the command. Omitting
the trace number causes the most recently generated trace to
be printed.

If the XML Format Output plugin is being used to save generated traces to a file with the
intent of reading them back in again at a later date, then onlyone trace should be saved per
file. This is because the trace reader does not currently support multiple traces in one file.

read trace - Loads a previously saved trace Command

read trace [-h | -i file-name]

Command Options:

-i file-name Reads in a trace from the specified file. Note that the file
must only contain one trace.

Loads a trace which has been previously output to a file with the XML Format Output
plugin. The model from which the trace was originally generated must be loaded and built
using the command “go” first.
Please note that this command is only available on systems that have the Expat XML parser
library installed.
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3.7 Trace Plugins
NUSMV comes with three plugins which can be used to diaplay a trace that has been generated:

Basic Trace Explainer
States/Variables Table
XML Format Printer

There is also a plugin which can read in any trace which has been output to a file by the
XML Format Printer. Note however that this reader is only available on systems that have the
Expat XML parser library installed.

Once a trace has been generated it is output tostdout using the currently selected plu-
gin. The commandshow traces can be used to output any previuosly generated, or loaded,
trace to a specific file.

3.7.1 Basic Trace Explainer
This plugin prints out each state (the current values of the variables) in the trace, one after the
other. The initial state contains all the state variables and their initial values. States are numbered
in the following fasion:

trace number.state number

There is the option of printing out the value of every variable in each state, or just those
which have changed from the previous one. The one that is usedcan be chosen by selecting
the appropriate trace plugin. The values of any constants which depend on both input and state
variables are printed next. It then prints the set of inputs which cause the transition to a new state
(if the model contains inputs), before actually printing the new state itself. The set of inputs and
the subsequent state have the same number associated to them.

In the case of a looping trace, if the next state to be printed is the same as the last state in the
trace, a line is printed stating that this is the point where the loop begins.

With the exception of the initial state, for which no input values are printed, the output syntax
for each state is as follows:

-> Input: TRACE_NO.STATE_NO <-
/ * for each input var (being printed), i: * /
INPUT_VARi = VALUE

-> State: TRACE_NO.STATE_NO <-
/ * for each state var (being printed), j: * /
STATE_VARj = VALUE
/ * for each combinatorial constant (being printed), k: * /
CONSTANTk = VALUE

where INPUT VAR, STATE VAR and CONSTANThave the relevant module names
prepended to them (seperated by a period) with the exceptionof the module “main ” .

The version of this plugin which only prints out those variables whose values have changed
is the initial default plugin used by NUSMV.

3.7.2 States/Variables Table
This trace plugin prints out the trace as a table, either withthe states on each row, or in each
column. The entries along the state axis are:

S0 C1 I1 S1 ... Cn In Sn
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whereS0 is the initial state, andIi gives the values of the input variables which caused
the transition from stateSi−1 to stateSi. Ci gives the values of any combinatorial constants,
where the value depends on the values of the state variables in stateSi−1 and the values of input
variables in stateSi.

The variables in the model are placed along the other axis. Only the values of state variables
are displayed in the State row/column, only the values of input variables are displayed in the
Input row/column and only the values of combinatorial constants are displayed in the Constants
row/column. All remaining cells have ’- ’ displayed.

3.7.3 XML Format Printer
This plugin prints out the trace either tostdout or to a specified file using the command
show traces . If traces are to be output to a file with the intention of them being loaded
again at a later date, then each trace must be saved in a separate file. This is because the XML
Reader plugin does not currently support multiple traces per file.
The format of a dumped XML trace file is as follows:

<?XML_VERSION_STRING?>
<counter-example type=TRACE_TYPE desc=TRACE_DESC>

/ * for each state, i: * /
<node>

<state id=i>

/ * for each state var, j: * /
<value variable=j>VALUE</value>

</state>
<combinatorial id=i+1>

/ * for each combinatorial constant, k: * /
<value variable=k>VALUE</value>

</combinatorial>
<input id=i+1>

/ * for each input var, l: * /
<value variable=l>VALUE</value>

</input>
</node>

</counter-example>

Note that for the last state in the trace, there is no input section in the node tags. This is
because the inputs section gives the new input values which cause the transition to the next state
in the trace. There is also no combinatorial section as this depends on the values of the inputs
and are therefore undefined when there are no inputs.

3.7.4 XML Format Reader
This plugin makes use of the Expat XML parser library and as such can only be used on systems
where this library is available. Previously generated traces for a given model can be loaded using
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this plugin provided that the original model file1 has been loaded, and built using the command
go .

When a trace is loaded, it is given the smallest available trace number to identify it. It can
then be manipulated in the same way as any generated trace.

3.8 Interface to the DD Package
NUSMV uses the state of the art BDD package CUDD [Som98]. Control over the BDD package
can very important to tune the performance of the system. In particular, the order of variables
is critical to control the memory and the time required by operations over BDDs. Reordering
methods can be activated to determine better variable orders, in order to reduce the size of the
existing BDDs.

Reordering of the variables can be triggered in two ways: by the user, or by the
BDD package. In the first way, reordering is triggered by the interactive shell command
dynamic var ordering with the-f option.

Reordering is triggered by the BDD package when the number ofnodes reaches a given
threshold. The threshold is initialized and automaticallyadjusted after each reordering by the
package. This is called dynamic reordering, and can be enabled or disabled by the user. Dynamic
reordering is enabled with the shell commanddynamic var ordering with the option-e ,
and disabled with the-d option.

reorder method Environment Variable

Specifies the ordering method to be used when dynamic variable reordering is fired. The
possible values, corresponding to the reordering methods available with the CUDD pack-
age, are listed below. The default value issift .

sift: Moves each variable throughout the order to find an opti-
mal position for that variable (assuming all other variables
are fixed). This generally achieves greater size reductions
than the window method, but is slower.

random: Pairs of variables are randomly chosen, and swapped in
the order. The swap is performed by a series of swaps of
adjacent variables. The best order among those obtained
by the series of swaps is retained. The number of pairs
chosen for swapping equals the number of variables in the
diagram.

random pivot: Same asrandom , but the two variables are chosen so
that the first is above the variable with the largest num-
ber of nodes, and the second is below that variable. In case
there are several variables tied for the maximum number
of nodes, the one closest to the root is used.

sift converge: Thesift method is iterated until no further improvement
is obtained.

symmetry sift: This method is an implementation of symmetric sifting. It
is similar to sifting, with one addition: Variables that be-
come adjacent during sifting are tested for symmetry. If
they are symmetric, they are linked in a group. Sifting
then continues with a group being moved, instead of a sin-
gle variable.

1To be exact,M1 ⊆ M2, whereM1 is the model from which the trace was generated, andM2 is the
currently loaded, and built, model. Note however, that thismay mean that the trace is not valid for the model
M2.
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symmetry sift converge: Thesymmetry sift method is iterated until no further
improvement is obtained.

window2:
window3:
window4: Permutes the variables within windows ofn adjacent vari-

ables, wheren can be either 2, 3 or 4, so as to minimize the
overall BDD size.

window2 converge:
window3 converge:
window4 converge: Thewindow {2,3,4 } method is iterated until no further

improvement is obtained.

group sift: This method is similar tosymmetry sift , but uses
more general criteria to create groups.

group sift converge: Thegroup sift method is iterated until no further im-
provement is obtained.

annealing: This method is an implementation of simulated annealing
for variable ordering. This method is potentially very slow.

genetic: This method is an implementation of a genetic algorithm
for variable ordering. This method is potentially very slow.

exact: This method implements a dynamic programming ap-
proach to exact reordering. It only stores one BDD at a
time. Therefore, it is relatively efficient in terms of mem-
ory. Compared to other reordering strategies, it is very
slow, and is not recommended for more than 16 boolean
variables.

linear: This method is a combination of sifting and linear
transformations.

linear conv: The linear method is iterated until no further improve-
ment is obtained.

dynamic var ordering - Deals with the dynamic variable order-
ing.

Command

dynamic var ordering [-d] [-e <method>] [-f <method>] [-h]

Controls the application and the modalities of (dynamic) variable ordering. Dynamic
ordering is a technique to reorder the BDD variables to reduce the size of the existing
BDDs. When no options are specified, the current status of dynamic ordering is displayed.
At most one of the options-e , -f , and-d should be specified. Dynamic ordering may
be time consuming, but can often reduce the size of the BDDs dramatically. A good
point to invoke dynamic ordering explicitly (using the-f option) is after the commands
build model , once the transition relation has been built. It is possibleto save the
ordering found usingwrite order in order to reuse it (usingbuild model -i
order-file ) in the future.

Command Options:

-d Disable dynamic ordering from triggering automatically.

-e <method> Enable dynamic ordering to trigger automatically whenever
a certain threshold on the overall BDD size is reached.
<method> must be one of the following:
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• sift: Moves each variable throughout the order to find an
optimal position for that variable (assuming all other vari-
ables are fixed). This generally achieves greater size re-
ductions than the window method, but is slower.

• random: Pairs of variables are randomly chosen, and
swapped in the order. The swap is performed by a series of
swaps of adjacent variables. The best order among those
obtained by the series of swaps is retained. The number of
pairs chosen for swapping equals the number of variables
in the diagram.

• random pivot: Same asrandom, but the two variables
are chosen so that the first is above the variable with the
largest number of nodes, and the second is below that vari-
able. In case there are several variables tied for the maxi-
mum number of nodes, the one closest to the root is used.

• sift converge: Thesift method is iterated until no further
improvement is obtained.

• symmetry sift: This method is an implementation of sym-
metric sifting. It is similar to sifting, with one addition:
Variables that become adjacent during sifting are tested
for symmetry. If they are symmetric, they are linked in
a group. Sifting then continues with a group being moved,
instead of a single variable.

• symmetry sift converge: The symmetry sift method is
iterated until no further improvement is obtained.

• window{2,3,4}: Permutes the variables within windows
of ”n” adjacent variables, where ”n” can be either 2, 3 or
4, so as to minimize the overall BDD size.

• window{2,3,4} converge: Thewindow{2,3,4} method is
iterated until no further improvement is obtained.

• group sift: This method is similar tosymmetry sift, but
uses more general criteria to create groups.

• group sift converge: The group sift method is iterated
until no further improvement is obtained.

• annealing: This method is an implementation of simu-
lated annealing for variable ordering. This method is po-
tentially very slow.

• genetic: This method is an implementation of a genetic
algorithm for variable ordering. This method is potentially
very slow.

• exact: This method implements a dynamic programming
approach to exact reordering. It only stores a BDD at a
time. Therefore, it is relatively efficient in terms of mem-
ory. Compared to other reordering strategies, it is very
slow, and is not recommended for more than 16 boolean
variables.
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• linear: This method is a combination of sifting and linear
transformations.

• linear converge: The linear method is iterated until no
further improvement is obtained.

-f <method> Force dynamic ordering to be invoked immediately. The val-
ues for<method> are the same as in option-e .

print bdd stats- Prints out the BDD statistics and parameters Command

print bdd stats [-h]

Prints the statistics for the BDD package. The amount of information depends on the
BDD package configuration established at compilation time.The configurtion parameters
are printed out too. More information about statistics and parameters can be found in the
documentation of the CUDD Decision Diagram package.

set bdd parameters - Creates a table with the value of all cur-
rently active NuSMV flags and change accordingly the configurable
parameters of the BDD package.

Command

set bdd parameters [-h] [-s]

Applies the variables table of the NUSMV environnement to the BDD package, so the
user can set specific BDD parameters to the given value. This command works in con-
junction with theprint bdd stats and set commands.print bdd stats first
prints a report of the parameters and statistics of the current bdd manager. By using the
commandset , the user may modify the value of any of the parameters of the underlying
BDD package. The way to do it is by setting a value in the variable BDD.parameter
name whereparameter name is the name of the parameter exactly as printed by the
print bdd stats command.

Command Options:

-s Prints the BDD parameter and statistics after the
modification.

3.9 Administration Commands
This section describes the administrative commands offered by the interactive shell of NUSMV.

! - shell command Command

“ ! ” executes a shell command. The “shellcommand” is executed by calling “bin/sh -c
shell command”. If the command does not exists or you have not the right to execute it,
then an error message is printed.

alias - Provides an alias for a command Command

alias [-h] [<name> [<string>]]

The alias command, if given no arguments, will print the definition of all current
aliases. Given a single argument, it will print the definition of that alias (if any). Given two
arguments, the keyword<name> becomes an alias for the command string<string> ,
replacing any other alias with the same name.
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Command Options:

<name> Alias

<string> Command string

It is possible to create aliases that take arguments by usingthe history substitution
mechanism. To protect the history substitution character ‘%’ from immediate expansion,
it must be preceded by a ‘\’ when entering the alias.

For example:

NuSMV> alias read "read model -i %:1.smv ; set
input order file %:1.ord"
NuSMV> read short
will create an alias ‘read’, execute ”readmodel -i short.smv; set inputorder file
short.ord”. And again:
NuSMV> alias echo2 "echo Hi ; echo % * !"
NuSMV> echo2 happy birthday
will print:
Hi
happy birthday !
CAVEAT: Currently there is no check to see if there is a circular dependency in the alias
definition. e.g.
NuSMV> alias foo "echo print bdd stats; foo"
creates an alias which refers to itself. Executing the command foo will result an infinite
loop during which the commandprint bdd stats will be executed.

echo- Merely echoes the arguments Command

echo [-h] [-o filename [-a]] <string>

Echoes the specified string either to standard output, or tofilename if the option-o is
specified.

Command Options:

-o filename Echoes to the specified filename instead of to standard out-
put. If the option-a is not specified, the filefilename
will be overwritten if it already exists.

-a Appends the output to the file specified by option-o , in-
stead of overwritting it. Use only with the option-o .

help - Provides on-line information on commands Command

help [-a] [-h] [<command>]

If invoked with no argumentshelp prints the list of all commands known to the command
interpreter. If a command name is given, detailed information for that command will be
provided.

Command Options:

-a Provides a list of all internal commands, whose names begin
with the underscore character (’’) by convention.

history - list previous commands and their event numbers Command
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history [-h] [<num>]

Lists previous commands and their event numbers. This is a UNIX-like history mechanism
inside the NUSMV shell.

Command Options:

<num> Lists the last<num> events. Lists the last 30 events if
<num> is not specified.

History Substitution:
The history substitution mechanism is a simpler version of the csh history substitution
mechanism. It enables you to reuse words from previously typed commands.

The default history substitution character is the ‘%’ (‘!’ is default for shell escapes, and
‘#’ marks the beginning of a comment). This can be changed using theset command. In
this description ’%’ is used as the historychar. The ‘%’ can appear anywhere in a line.
A line containing a history substitution is echoed to the screen after the substitution takes
place. ‘%’ can be preceded by a ‘ı́n order to escape the substitution, for example, to enter
a ‘%’ into an alias or to set the prompt.

Each valid line typed at the prompt is saved. If thehistory variable is set (see help page
for set ), each line is also echoed to the history file. You can use thehistory command
to list the previously typed commands.

Substitutions:
At any point in a line these history substitutions are available.

Command Options:

%:0 Initial word of last command.

%:n n-th argument of last command.

%$ Last argument of last command.

%* All but initial word of last command.

%% Last command.

%stuf Last command beginning with “stuf”.

%n Repeat the n-th command.

%-n Repeat the n-th previous command.

̂old ̂new Replace “old” with “new” in previous command. Trailing
spaces are significant during substitution. Initial spacesare
not significant.

print usage- Prints processor and BDD statistics. Command

print usage [-h]

Prints a formatted dump of processor-specific usage statistics, and BDD usage statistics.
For Berkeley Unix, this includes all of the information in the getrusage() structure.

quit - exits NuSMV Command

quit [-h] [-s]

Stops the program. Does not save the current network before exiting.
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Command Options:

-s Frees all the used memory before quitting. This is slower,
and it is used for finding memory leaks.

reset- Resets the whole system. Command

reset [-h]

Resets the whole system, in order to read in another model andto perform verification on
it.

set- Sets an environment variable Command

set [-h] [<name>] [<value>]

A variable environment is maintained by the command interpreter. Theset command
sets a variable to a particular value, and theunset command removes the definition of a
variable. Ifset is given no arguments, it prints the current value of all variables.

Command Options:

<name> Variable name

<value> Value to be assigned to the variable.

Interpolation of variables is allowed when using theset command. The variables are
referred to with the prefix of ’$’. So for example, what follows can be done to check the
value of a set variable:
NuSMV> set foo bar
NuSMV> echo $foo
bar

The last line “bar” will be the output produced by NUSMV. Variables can be extended by
using the character ‘:’ to concatenate values. For example:
NuSMV> set foo bar
NuSMV> set foo $foo:foobar
NuSMV> echo $foo
bar:foobar

The variablefoo is extended with the valuefoobar . Whitespace characters may
be present within quotes. However, variable interpolationlays the restriction that the
characters ’:’ and ’/’ may not be used within quotes. This is to allow for recursive
interpolation. So for example, the following is allowed
NuSMV> set "foo bar" this
NuSMV> echo $"foo bar"
this

The last line will be the output produced by NUSMV.
But in the following, the value of the variablefoo/bar will not be interpreted correctly:
NuSMV> set "foo/bar" this
NuSMV> echo $"foo/bar"
foo/bar

If a variable is not set by theset command, then the variable is returned unchanged.
Different commands use environment information for different purposes. The command
interpreter makes use of the following parameters:
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Command Options:

autoexec Defines a command string to be automatically executed af-
ter every command processed by the command interpreter.
This is useful for things like timing commands, or tracing
the progress of optimization.

open path “open path” (in analogy to the shell-variable PATH) is a list
of colon-separated strings giving directories to be searched
whenever a file is opened for read. Typically the current di-
rectory (.) is the first item in this list. The standard system
library (typically NuSMVLIBRARY PATH) is always im-
plicitly appended to the current path. This provides a con-
venient short-hand mechanism for reaching standard library
files.

nusmv stderr Standard error (normally( stderr)) can be re-directed to a
file by setting the variablenusmv stderr .

nusmv stdout Standard output (normally( stdout)) can be re-directed to a
file by setting the variablenusmv stdout .

source- Executes a sequence of commands from a file Command

source [-h] [-p] [-s] [-x] <file> [<args>]

Reads and executes commands from a file.

Command Options:

-p Prints a prompt before reading each command.

-s Silently ignores an attempt to execute commands from a
nonexistent file.

-x Echoes each command before it is executed.

<file> File name.

Arguments on the command line after the filename are remembered but not evaluated.
Commands in the script file can then refer to these arguments using the history substitution
mechanism. EXAMPLE:
Contents oftest.scr :

read model -i %:2
flatten hierarchy
build variables
build model
compute fairness

Typing source test.scr short.smv on the command line will execute the
sequence
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read model -i short.smv
flatten hierarchy
build variables
build model
compute fairness

(In this case%:0 getssource , %:1 getstest.scr , and%:2 getsshort.smv .) If
you type alias st source test.scr and then typest short.smv bozo ,
you will execute

read model -i bozo
flatten hierarchy
build variables
build model
compute fairness

becausebozo was the second argument on the last command line typed. In other
words, command substitution in a script file depends on how the script file was invoked.
Switches passed to a command are also counted as positional parameters. Therefore, if
you typest -x short.smv bozo , you will execute

read model -i short.smv
flatten hierarchy
build variables
build model
compute fairness

To pass the-x switch (or any other switch) tosource when the script uses posi-
tional parameters, you may define an alias. For instance,alias srcx source
-x .

See the variableon failure script quits for further information.

time - Provides a simple CPU elapsed time value Command

time [-h]

Prints the processor time used since the last invocation of the time command, and the
total processor time used since NUSMV was started.

unalias - Removes the definition of an alias. Command

unalias [-h] <alias-names>

Removes the definition of an alias specified via thealias command.

Command Options:

<alias-names> Aliases to be removed
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unset- Unsets an environment variable Command

unset [-h] <variables>

A variable environment is maintained by the command interpreter. Theset command
sets a variable to a particular value, and theunset command removes the definition of a
variable.

Command Options:

<variables> Variables to be unset.

usage- Provides a dump of process statistics Command

usage [-h]

Prints a formatted dump of processor-specific usage statistics. For Berkeley Unix, this
includes all of the information in the getrusage() structure.

which - Looks for a file called ”filename” Command

which [-h] <file name>

Looks for a file in a set of directories which includes the current directory as well as those
in the NUSMV path. If it finds the specified file, it reports the found file’s path. The
searching path is specified through theset open path command in.nusmvrc .

Command Options:

<file name> File to be searched

3.10 Other Environment Variables
The behavior of the system depends on the value of some environment variables. For instance, an
environment variable specifies the partitioning method to be used in building the transition rela-
tion. The value of environment variables can be inspected and modified with the “set” command.
Environment variables can be either logical or utility.

autoexec Environment Variable

Defines a command string to be automatically executed after every command processed by
the command interpreter. This may be useful for timing commands, or tracing the progress
of optimization.

on failure script quits Environment Variable

When a non-fatal error occurs during the interactive mode, the interactive interpreter sim-
ply stops the currently executed command, prints the reasonof the problem, and prompts
for a new command. When set, this variables makes the commandinterpreter quit when
an error occur, and then quit NUSMV. This behaviour might be useful when the command
source is controlled by either a system pipe or a shell script. Underthese conditions a
mistake within the script interpreted bysource or any unexpected error might hang the
controlling script or pipe, as by default the interpreter would simply give up the current
execution, and wait for further commands. The default valueof this environment variable
is 0.
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filec Environment Variable

Enables file completion a la “csh”. If the system has been compiled with the “readline”
library, the user is able to perform file completion by typingthe <TAB> key (in a way
similar to the file completion inside the “bash” shell). If the system has not been compiled
with the “readline” library, a built-in method to perform file completion a la “csh” can be
used. This method is enabled with the ‘set filec ’ command. The “csh” file comple-
tion method can be also enabled if the “readline” library hasbeen used. In this case the
features offered by “readline” will be disabled.

shell char Environment Variable

shell char specifies a character to be used as shell escape. The default value of this
environment variable is ‘! ’.

history char Environment Variable

history char specifies a character to be used in history substitutions. The default value
of this environment variable is ‘%’.

open path Environment Variable

open path (in analogy to the shell-variablePATH) is a list of colon-separated strings
giving directories to be searched whenever a file is opened for read. Typically the current
directory (. ) is first in this list. The standard system library (NuSMVLIBRARY PATH)
is always implicitly appended to the current path. This provides a convenient short-hand
mechanism for reaching standard library files.

nusmv stderr Environment Variable

Standard error (normallystderr ) can be re-directed to a file by setting the variable
nusmv stderr .

nusmv stdout Environment Variable

Standard output (normallystdout ) can be re-directed to a file by setting the internal
variablenusmv stdout .

nusmv stdin Environment Variable

Standard input (normallystdin ) can be re-directed to a file by setting the internal variable
nusmv stdin .
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go

read_model

flatten_hierarchy

encode_variables

build_model

check_fsm
compute_reachable
print_fsm_stats
print_fair_states
print_fair_transitions
print_reachable_states

check_ctlspec
check_invar
check_ltlspec
check_property
check_pslspec
compute

goto_state
pick_state
simulate

build_flat_model build_boolean_model

show_plugins
show_property
show_traces
show_vars
write_flat_model

write_boolean_model

write_order

go_bmcreset

bmc_setup

bmc_simulate
check_invar_bmc
check_invar_bmc_inc
check_ltlspec_bmc
check_ltlspec_bmc_inc
check_ltlspec_bmc_onepb
check_ltlspec_sbmc
check_ltlspec_sbmc_inc
check_pslspec
gen_invar_bmc
gen_ltlspec_bmc
gen_ltlspec_bmc_onepb
gen_ltlspec_sbmc

Figure 3.1: The dependency among NUSMV commands.
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Chapter 4

Running NuSMV batch

When the-int option is not specified, NUSMV runs as a batch program, in the style of SMV,
performing (some of) the steps described in previous section in a fixed sequence.

system prompt> NuSMV [command line options] input-file <RET>

The program described ininput-file is processed, and the corresponding finite state machine
is built. Then, if input-file contains formulas to verify, their truth in the specified structure is
evaluated. For each formula which is not true a counterexample is printed.
The batch mode can be controlled with the following command line options:

NUSMV [-h | -help] [-v vl]
[-s] [-old] [-old_div_op] [-dcx]
[-cpp] [-pre pps] [-ofm fm file] [-obm bm file]
[-lp] [-n idx] [-is] [-ic] [-ils] [-ips] [-ii]
[-ctt] [[-f] [-r]]|[-df] [-flt] [-AG] [-coi]
[-i iv file] [-o ov file] [-t tv file] [-reorder] [-dynamic] [-m method]
[[-mono]|[-thresh cp t]|[-cp cp t]|[-iwls95 cp t]]
[-noaffinity] [-iwls95preorder]
[-bmc] [-bmc length k] [-sat solver name]
[-sin on|off] [-rin on|off]
[ input-file]

where the meaning of the options is described below. Ifinput-file is not provided in batch mode,
then the model is read from standard input.

-help

-h Prints the command line help.

-v verbose-level Enables printing of additional information on the internal
operations of NUSMV. Settingverbose-levelto 1 gives the
basic information. Using this option makes you feel better,
since otherwise the program prints nothing until it finishes,
and there is no evidence that it is doing anything at all. Set-
ting theverbose-levelhigher than 1 enables printing of much
extra information.
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-s Avoids to load the NUSMV commands con-
tained in ∼/.nusmvrc or in .nusmvrc or in
${NuSMVLIBRARY PATH }/master.nusmvrc .

-old
Keeps backward compatibility with older versions of
NuSMV. This option disables some new features like type
checking and dumping of new extension to SMV files.

-old div op Enables the old semantics of “/ ” and “mod” operations
(from NUSMV 2.3.0) instead of ANSI C semantics.

-cpp Runs preprocessor on SMV files before any of those speci-
fied with the -pre option.

-pre pps Specifies a list of pre-processors to run (in the order given)
on the input file before it is parsed by NUSMV. Note that if
the -cpp command is used, then the pre-processors speci-
fied by this command will be run after the input file has been
pre-processed by that pre-processor.pps is either one sin-
gle pre-processor name (with or without double quotes) or
it is a space-seperated list of pre-processor names contained
within double quotes.

-ofm fm file prints flattened model to filefn file

-obm bm file Prints boolean model to filebn file

-lp Lists all properties in SMV model

-n idx Specifies which property of SMV model should be checked

-is Does not checkSPEC

-ic Does not checkCOMPUTE

-ils Does not checkLTLSPEC

-ips Does not checkPSLSPEC

-ii Does not checkINVARSPEC

-ctt Checks whether the transition relation is total.

-f Computes the set of reachable states before evaluating CTL
expressions. Since NuSMV-2.4.0 this option is set by de-
fault, and it is provided for backward compatibility only. See
also option -df.

-r Prints the number of reachable states before exiting. If
the -f option is not used, the set of reachable states is
computed.

-df Disable the computation of the set of reachable states. This
option is provided since NuSMV-2.4.0 to prevent the com-
putation of reachable states that are otherwise computed by
default.
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-flt Forces the computation of the set of reachable states for
the tableau resulting from BDD-based LTL model check-
ing (commandcheck ltlspec ). If the option -flt is
not specified (default), the resulting tableau will inheritthe
computation of the reachable states from the model, if en-
abled. If the option-flt is specified, the reachable states
set will be calculated for the modeland for the tableau
resulting from LTL model checking. This might improve
performances of the commandcheck ltlspec , but may
also lead to a dramatic slowing down. This options has ef-
fect only when the calculation of reachable states is enabled
(see-f ).

-AG Verifies only AG formulas using an ad hoc algorithm
(see documentation for theag only search environment
variable).

-coi Enables cone of influence reduction

-i iv file Reads the variable ordering from fileiv file.

-o ov file Reads the variable ordering from fileov file.

-t tv file Reads a variable list from filetv file. This list defines
the order for clustering the transition relation. This fea-
ture has been provided by Wendy Johnston, University of
Queensland. The results of Johnston’s et al. research have
been presented at FM 2006 in Hamilton, Canada. See
[WJKWLvdBR06].

-reorder Enables variable reordering after having checked all the
specification if any.

-dynamic Enables dynamic reordering of variables

-m method Uses method when variable ordering is enabled. Pos-
sible values for method are those allowed for the
reorder method environment variable (see Section 3.8
[Interface to DD package], page 75).

-mono Enables monolithic transition relation

-thresh cp t conjunctive partitioning with threshold of each partitionset
to cp t (DEFAULT, with cp t=1000)

-cp cp t DEPRECATED: usethresh instead.

-iwls95 cp t Enables Iwls95 conjunctive partitioning and sets the thresh-
old of each partition tocp t

-noaffinity Disables affinity clustering

-iwls95preoder EnablesIwls95CPpreordering

-bmc Enables BMC instead of BDD model checking (works only
for LTL properties and PSL properties that can be translated
into LTL)

-bmc length k Setsbmc length variable, used by BMC

-sat solver name Setssat solver variable, used by BMC so select the sat
solver to be used.
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-sin on,off Enables (on) or disables (off) Sexp inlining, by setting sys-
tem variablesexp inlining . Default value isoff .

-rin on,off Enables (on) or disables (off) RBC inlining, by setting sys-
tem variablerbc inlining . Default value ison . The
idea about inlining was taken from [ABE00] by Parosh Aziz
Abdulla, Per Bjesse and Niklas Eén.
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Appendix A

Compatibility with CMU SMV

The NUSMV language is mostly source compatible with the original version of SMV distributed
at Carnegie Mellon University from which we started. In thisappendix we describe the most
common problems that can be encountered when trying to use old CMU SMV programs with
NUSMV.

The main problem is variable names in old programs that conflicts with new reserved words.
The list of the new reserved words of NUSMV w.r.t. CMU SMV is the following:

F, G, X, U, V,
W, H, O, Y, Z,
S, T, B

These names are reserved for the LTL temporal operators.

CTLSPEC It is used to introduce CTL specifications.
LTLSPEC It is used to introduce LTL specifications.
INVARSPEC It is used to introduce invariant specifications.
PSLSPEC It is used to introduce PSL specifications.
IVAR It is used to introduce input variables.
JUSTICE It is used to introduce “justice” fairness constraints.
COMPASSION It is used to introduce “compassion” fairness constraints.
CONSTANT It is used to force declaration of constants.
word It is used to declare word type variables.
word1 It is used to cast boolean expressions to word type.
bool It is used to cast word1 expressions to boolean type.

TheIMPLEMENTS, INPUT, OUTPUTstatements are not no longer supported by NUSMV.
NUSMV differs from CMU SMV also in the controls that are performed on the input for-

mulas. Several formulas that are valid for CMU SMV, but that have no clear semantics, are not
accepted by NUSMV.

In particular:

• It is no longer possible to write formulas containing nested‘next ’.

TRANS
next(alpha & next(beta | next(gamma))) -> delta

• It is no longer possible to write formulas containing ‘next ’ in the right hand side of
“normal” and “init” assignments (they are allowed in the right hand side of “next” assign-
ments), and with the statements ‘INVAR’ and ‘INIT ’.

INVAR
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next(alpha) & beta
INIT

next(beta) -> alpha
ASSIGN

delta := alpha & next(gamma); -- normal assignments
init(gamma) := alpha & next(delta); -- init assignments

• It is no longer possible to write ‘SPEC’, ‘ FAIRNESS’ statements containing ‘next ’.

FAIRNESS
next(running)

SPEC
next(x) & y

• The check for circular dependencies among variables has been done more restrictive. We
say that variablex depends on variabley if x := f(y). We say that there is a circular
dependency in the definition ofx if:

– x depends on itself ( e.g.x := f(x,y) );

– x depends ony andy depends onx (e.g.x := f(y) andy := f(x) or x := f(z), z := f(y)
andy := f(x) ).

In the case of circular dependencies among variables there is no fixed order in which
we can compute the involved variables. Avoiding circular dependencies among variables
guarantee that there exists an order in which the variables can be computed. In NUSMV
circular dependencies are not allowed.

In CMU SMV the test for circular dependencies is able to detect circular dependencies
only in “normal” assignments, and not in “next” assignments. The circular dependencies
check of NUSMV has been extended to detect circularities also in “next”assignments.
For instance the following fragment of code is accepted by CMU SMV but discarded by
NUSMV.

MODULE main
VAR

y : boolean;
x : boolean;

ASSIGN
next(x) := x & next(y);
next(y) := y & next(x);

Another difference between NUSMV and CMU SMV is in the variable order file. The vari-
able ordering file accepted by NUSMV can be partial and can contain variables not declared in
the model. Variables listed in the ordering file but not declared in the model are simply discarded.
The variables declared in the model but not listed in the variable file provided in input are created
at the end of the given ordering following the default ordering. All the ordering files generated
by CMU SMV are accepted in input from NUSMV but the ordering files generated by NUSMV
may be not accepted by CMU SMV. Notice that there is no guarantee that a good ordering for
CMU SMV is also a good ordering for NUSMV. In the ordering files for NUSMV, identifier
process selector can be used to control the position of the variable that encodes process

selection. In CMU SMV it is not possible to control the position of this variable in the ordering;
it is hard-coded at the top of the ordering. A further difference about variable ordering consists
in the fact that in NUSMV it is allowed to specify single bits of scalar variables.In the example:

VAR x : 0..7;

NUSMV will create three variablesx.0 , x.1 andx.2 that can be explicitly mentioned in
the variable ordering file to fine control their ordering.
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Appendix B

Typing Rules

This appendix gives the explicit formal typing rules for NUSMV’s input language, as well as
notes on implicit conversion and casting.

In the following, an atomic constant is defined as being any sequence of characters starting
with a character in the set{A-Za-z } and followed by a possible empty sequence of characters
from the set{A-Za-z0-9 $#- \}. An integer is any whole number, positive or negative.

B.1 Types
The main types recognised by NUSMV are as follows:

boolean

integer

symbolic enum

integers-and-symbolic enum

boolean set

integer set

symbolic set

integers-and-symbolic set

word[N] (whereN is any whole number≥ 1)

For more detalied description of existing types see Section2.1 [Types], page 7.

B.2 Implicit Conversion
In certain situations NUSMV is able to carry out implicit conversion of types. There are two
kind of implicit convertion. The first one converts expression of one type to a greater type. The
order to types is given in Figure B.1. For more information ontype ordering see Section 2.2.1
[Implicit Type Conversion], page 9.

Another kind of implicit type convertions changes the type of an expression to its counterpart
set type. The Figure B.2 shows the direction of such convertions. For more information onset
types and their counterpart types see Section 2.1.6 [Set Types], page 8.
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boolean
↓

integer symbolic enum
↓ ↓

integers-and-symbolic enum

word[1]

word[2]

word[3]
. . .

boolean set
↓

integer set symbolic set
↓ ↓

integers-and-symbolic set

Figure B.1: The ordering on the types in NUSMV

boolean → boolean set
integer → integer set
symbolic enum → symbolic set
integers-and-symbolic enum → integers-and-symbolic set

Figure B.2: Implicit convertion to counterpartset types

B.3 Type Rules
The type rules are presented below with the operators on the left and the signatures of the rules
on the right. To save space, more than one operator may be on the left-hand side, and it is also
the case that an individual operator may have more than one signature. For more information on
these expressions and their type rules see Section 2.2 [Expressions], page 9.

Constants

booleanconstant :boolean
integerconstant :integer
symbolic constant :symbolic enum
word constant :word[N] (whereN is the number of bits required)
rangeconstant :integer set

Variable and Define

variableidentifier :Type (whereType is the type of the variable)
defineidentifier :Type (whereType is the type of the define’s expression)
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Arithmetic Operators

- : boolean → integer
: integer → integer
: word[N] → word[N]

The implicit type conversion can be applied to the operand.
+, - , / , * : boolean * boolean → integer

: integer * integer → integer
: word[N] * word[N] → word[N]

The implicit type conversion can be applied tooneof the operands.
mod : integer * 2→ boolean

: integer * integer → integer
: word[N] * word[N] → word[N]

For operations on words, the result is taken modulo2
N

>, <, >=, <= : boolean * boolean → boolean
: integer * integer → boolean
: word[N] * word[N] → boolean
: boolean * word[1] → boolean
: word[1] * boolean → boolean

The implicit type conversion can be applied tooneof the operands.

Logic Operators

! (negation) :boolean → boolean
: word[N] → word[N]

&, | , -> , <-> , xor , xnor : boolean * boolean → boolean
: word[N] * word[N] → word[N]

=, != : boolean * boolean → boolean
: integer * integer → boolean
: symbolic enum * symbolic enum → boolean
: integers-and-symbolic enum *

integers-and-symbolic enum → boolean
: word[N] * word[N] → boolean
: boolean * word[1] → boolean
: word[1] * boolean → boolean

The implicit type conversion can be applied tooneof the operands.

Bit-Wise Operators

:: (concatenation) :word[N] * word[M] → word[N+M]
: boolean * word[N] → word[N+1]
: word[N] * boolean → word[N+1]

exp1[ exp2, exp3] : word[N] * integer * integer → word[exp3 − exp2 + 1]
exressionsexp2 andexp3 must evaluate to integers such that 0≤ exp2 ≤ exp3 < N

<<, >> (shift) : word[N] * integer → word[N]
: word[N] * boolean → word[N]
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Set Operators

{exp1, exp2, . . . , expn} : equivalent to consecutiveunion operations
union : boolean set * boolean set → boolean set

: integer set * integer set → integer set
: symbolic set * symbolic set → symbolic set
: integers-and-symbolic set * integers-and-symbolic set

→ integers-and-symbolic set
At first, if it is possible, the operands are converted to their set counterpart types,
then both operands are implicitly converted to a minimal common type

in : boolean set * boolean set → boolean set
: integer set * integer set → integer set
: symbolic set * symbolic set → symbolic set
: integers-and-symbolic set * integers-and-symbolic set

→ integers-and-symbolic set
At first, if it is possible, the operands are converted to their set counterpart types,
then implicit convertion is performed on one of the operands

Case Expression

case cond1 : result1;
cond2 : result2;
. . .
condn : resultn;

esac
condi must be of typeboolean. If one ofresulti is of aset type then all otherresultk are
converted to their counterpartset types. The overall type of the expression is such a minimal
type that eachresulti can be implicitly converted to.

Formula Operators

EX, AX, EF, AF, EG, AG,
X, Y, Z, G, H, F, O : boolean → boolean

A-U, E-U, U, S : boolean * boolean → boolean
A-BU, E-BU : boolean * integer * integer * boolean → boolean
EBF, ABF, EBG, ABG : integer * integer * boolean → boolean
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Miscellaneous Operators

Integer.. Integer :integer number * integer number → integer
bool : word[1] → boolean
word1 : boolean → word[1]
next , init : any type→ the same type
() : any type→ the same type
:= : boolean * boolean → no type

: boolean * boolean set → no type
: integer * integer → no type
: integer * integer set → no type
: symbolic enum * symbolic enum → no type
: symbolic enum * symbolic set → no type
: integers-and-symbolic enum *

integers-and-symbolic enum → no type
: integers-and-symbolic enum *

integers-and-symbolic set → no type
: word[N] * word[N] → no type
: boolean * word[1] → no type
: word[1] * boolean → no type

Implicit type conversion is performed on the right operand only
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Appendix C

Production Rules

This appendix contains the syntactic production rules for writing a NUSMV program.

Identifiers

identifier ::
identifier_first_character

| identifier identifier_consecutive_character

identifier_first_character :: one of
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z _

identifier_consecutive_character ::
identifier_first_character

| digit
| one of $ # \ -

digit :: one of 0 1 2 3 4 5 6 7 8 9

Note that there are certain reserved keyword which cannot beused as identifiers (see page
6).

Variable and DEFINE Identifiers

define_identifier :: complex_identifier

variable_identifier :: complex_identifier

Complex Identifiers

complex_identifier ::
identifier

| complex_identifier . identifier
| complex_identifier [ simple_expression ]
| self

Integer Numbers

integer_number ::
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- digit
| digit
| integer_number digit

Constants

constant ::
boolean_constant

| integer_constant
| symbolic_constant
| word_constant
| range_constant

boolean_constant :: one of
0 1 FALSE TRUE

integer_constant :: integer_number

symbolic_constant :: identifier

word_constant :: [word_width] word_base ’ word_value

word_width :: integer_number (>0)

word_base :: b | B | o | O | d | D | h | H

word_value ::
hex_digit

| word_value hex_digit
| word_value

hex_digit :: one of
0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

Note that there are some additional restrictions on the exact format of word constants (see
page 11).

range_constant ::
integer_number .. integer_number

Basic Expressions

basic_expr ::
constant -- a constant

| variable_identifier -- a variable identifier
| define_identifier -- a define identifier
| ( basic_expr )
| ! basic_expr -- logical/bitwise NOT
| basic_expr & basic_expr -- logical/bitwise AND
| basic_expr | basic_expr -- logical/bitwise OR
| basic_expr xor basic_expr -- logical/bitwise exclusive OR
| basic_expr xnor basic_expr -- logical/bitwise NOT xor
| basic_expr -> basic_expr -- logical/bitwise implication
| basic_expr <-> basic_expr -- logical/bitwise equivalence
| basic_expr = basic_expr -- equality
| basic_expr != basic_expr -- inequality
| basic_expr < basic_expr -- less than
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| basic_expr > basic_expr -- greater than
| basic_expr <= basic_expr -- less than or equal
| basic_expr >= basic_expr -- greater than or equal
| basic_expr + basic_expr -- integer addition
| basic_expr - basic_expr -- integer subtraction
| basic_expr * basic_expr -- integer multiplication
| basic_expr / basic_expr -- integer division
| basic_expr mod basic_expr -- integer remainder
| basic_expr >> basic_expr -- bit shift right
| basic_expr << basic_expr -- bit shift left
| basic_expr :: basic_expr -- word concatenation
| basic_expr [ integer_number : integer_number ]

-- word bits selection
| word1 ( basic_expr ) -- boolean to word[1] convertion
| bool ( basic_expr ) -- word[1] to boolean convertion
| basic_expr union basic_expr -- union of set expressions
| { set_body_expr } -- set expression
| basic_expr in basic_expr -- inclusion expression
| case_expr -- a case expression
| next ( basic_expr ) -- a next expression

set_body_expr ::
basic_expr

| set_body_expr , basic_expr

Case Expression

case_expr :: case case_body esac

case_body ::
basic_expr : basic_expr ;

| case_body basic_expr : basic_expr ;

Simple Expression

simple_expr :: basic_expr

Note that simple expressionscannotcontainnext operators.

Next Expression

next_expr :: basic_expr

Type Specifier

type_specifier ::
simple_type_specifier

| module_type_spicifier

simple_type_specifier ::
boolean

| word [ integer_number ]
| { enumeration_type_body }
| integer_number .. integer_number
| array integer_number .. integer_number

of simple_type_specifier

enumeration_type_body ::
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enumeration_type_value
| enumeration_type_body , enumeration_type_value

enumeration_type_value ::
symbolic_constant

| integer_number

Input Variable

ivar_declaration :: IVAR var_list

DEFINE Declaration

define_declaration :: DEFINE define_body

define_body :: identifier := simple_expr ;
| define_body identifier := simple_expr ;

CONSTANTS Declaration

constants_declaration :: CONSTANTS constants_body ;

constants_body :: identifier
| constants_body , identifier

ASSIGN Declaration

assign_constraint :: ASSIGN assign_list

assign_list :: assign ;
| assign_list assign ;

assign ::
complex_identifier := simple_expr

| init ( complex_identifier ) := simple_expr
| next ( complex_identifier ) := next_expr

TRANS Statement

trans_constraint :: TRANS next_expr [ ;]

INIT Statement

init_constrain :: INIT simple_expr [ ;]

INVAR Statement

invar_constraint :: INVAR simple_expr [ ;]

Module Declarations

module :: MODULE identifier [ (module_parameters )] [module_body]

module_parameters ::
identifier
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| module_parameters , identifier

module_body ::
module_element

| module_body module_element

module_element ::
var_declaration

| ivar_declaration
| define_declaration
| constants_declaration
| assign_constraint
| trans_constraint
| init_constraint
| invar_constraint
| fairness_constraint
| ctl_specification
| invar_specification
| ltl_specification
| compute_specification
| isa_declaration

Module Type Specifier

module_type_specifier ::
| identifier [ ( [ parameter_list ] ) ]
| process identifier [ ( [ parameter_list ] ) ]

parameter_list ::
simple_expr

| parameter_list , simple_expr

ISA Declaration

isa_declaration :: ISA identifier

Warning: this is a deprecated feature and will eventually be removed from NUSMV. Use
module instances instead.

CTL Specification

ctl_specification :: SPEC ctl_expr ;

ctl_expr ::
simple_expr -- a simple boolean expression
| ( ctl_expr )
| ! ctl_expr -- logical not
| ctl_expr & ctl_expr -- logical and
| ctl_expr | ctl_expr -- logical or
| ctl_expr xor ctl_expr -- logical exclusive or
| ctl_expr -> ctl_expr -- logical implies
| ctl_expr <-> ctl_expr -- logical equivalence
| EG ctl_expr -- exists globally
| EX ctl_expr -- exists next state
| EF ctl_expr -- exists finally
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| AG ctl_expr -- forall globally
| AX ctl_expr -- forall next state
| AF ctl_expr -- forall finally
| E [ ctl_expr U ctl_expr ] -- exists until
| A [ ctl_expr U ctl_expr ] -- forall until

INVAR Specification

invar_specification :: INVARSPEC simple_expr ;

This is equivalent to

SPEC AG simple_expr ;

but is checked by a specialised algorithm during reachability analysis.

LTL Specification

ltl_specification :: LTLSPEC ltl_expr [ ;]

ltl_expr ::
simple_expr -- a simple boolean expression
| ( ltl_expr )
| ! ltl_expr -- logical not
| ltl_expr & ltl_expr -- logical and
| ltl_expr | ltl_expr -- logical or
| ltl_expr xor ltl_expr -- logical exclusive or
| ltl_expr -> ltl_expr -- logical implies
| ltl_expr <-> ltl_expr -- logical equivalence
-- FUTURE
| X ltl_expr -- next state
| G ltl_expr -- globally
| F ltl_expr -- finally
| ltl_expr U ltl_expr -- until
| ltl_expr V ltl_expr -- releases
-- PAST
| Y ltl_expr -- previous state
| Z ltl_expr -- not previous state not
| H ltl_expr -- historically
| O ltl_expr -- once
| ltl_expr S ltl_expr -- since
| ltl_expr T ltl_expr -- triggered

Real Time CTL Specification

rtctl_specification :: SPEC rtctl_expr [ ;]

rtctl_expr ::
ctl_expr

| EBF range rtctl_expr
| ABF range rtctl_expr
| EBG range rtctl_expr
| ABG range rtctl_expr
| A [ rtctl_expr BU range rtctl_expr ]
| E [ rtctl_expr BU range rtctl_expr ]

range :: integer_number .. integer_number
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It is also possible to compute quantative information for the FSM:

compute_specification :: COMPUTE compute_expr [ ;]

compute_expr :: MIN [ rtctl_expr , rtctl_expr ]
| MAX [ rtctl_expr , rtctl_expr ]

PSL Specification

pslspec_declaration :: "PSLSPEC " psl_expr ";"

psl_expr ::
psl_primary_expr

| psl_unary_expr
| psl_binary_expr
| psl_conditional_expr
| psl_case_expr
| psl_property

psl_primary_expr ::
number ;; a numeric constant

| boolean ;; a boolean constant
| var_id ;; a variable identifier
| { psl_expr , ... , psl_expr }
| { psl_expr " {" psl_expr , ... , "psl_expr" }}
| ( psl_expr )

psl_unary_expr ::
+ psl_primary_expr

| - psl_primary_expr
| ! psl_primary_expr

psl_binary_expr ::
psl_expr + psl_expr

| psl_expr union psl_expr
| psl_expr in psl_expr
| psl_expr - psl_expr
| psl_expr * psl_expr
| psl_expr / psl_expr
| psl_expr % psl_expr
| psl_expr == psl_expr
| psl_expr != psl_expr
| psl_expr < psl_expr
| psl_expr <= psl_expr
| psl_expr > psl_expr
| psl_expr >= psl_expr
| psl_expr & psl_expr
| psl_expr | psl_expr
| psl_expr xor psl_expr

psl_conditional_expr ::
psl_expr ? psl_expr : psl_expr

psl_case_expr ::
case

psl_expr : psl_expr ;
...
psl_expr : psl_expr ;

endcase
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Among the subclasses ofpsl expr we depict the classpsl bexpr that will be used in the
following to identify purely boolean, i.e. not temporal, expressions.

psl_property ::
replicator psl_expr ;; a replicated property

| FL_property abort psl_bexpr
| psl_expr <-> psl_expr
| psl_expr -> psl_expr
| FL_property
| OBE_property

replicator ::
forall var_id [index_range] in value_set :

index_range ::
[ range ]

range ::
low_bound : high_bound

low_bound ::
number

| identifier
high_bound ::

number
| identifier
| inf ;; inifite high bound

value_set ::
{ value_range , ... , value_range }

| boolean
value_range ::

psl_expr
| range

FL_property ::
;; PRIMITIVE LTL OPERATORS

X FL_property
| X! FL_property
| F FL_property
| G FL_property
| [ FL_property U FL_property ]
| [ FL_property W FL_property ]
;; SIMPLE TEMPORAL OPERATORS
| always FL_property
| never FL_property
| next FL_property
| next! FL_property
| eventually! FL_property
| FL_property until! FL_property
| FL_property until FL_property
| FL_property until!_ FL_property
| FL_property until_ FL_property
| FL_property before! FL_property
| FL_property before FL_property
| FL_property before!_ FL_property
| FL_property before_ FL_property
;; EXTENDED NEXT OPERATORS
| X [number] ( FL_property )
| X! [number] ( FL_property )
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| next [number] ( FL_property )
| next! [number] ( FL_property )
;;
| next_a [range] ( FL_property )
| next_a! [range] ( FL_property )
| next_e [range] ( FL_property )
| next_e! [range] ( FL_property )
;;
| next_event! ( psl_bexpr ) ( FL_property )
| next_event ( psl_bexpr ) ( FL_property )
| next_event! ( psl_bexpr ) [ number ] ( FL_property )
| next_event ( psl_bexpr ) [ number ] ( FL_property )
;;
| next_event_a! ( psl_bexpr ) [psl_expr ] ( FL_property )
| next_event_a ( psl_bexpr ) [psl_expr ] ( FL_property )
| next_event_e! ( psl_bexpr ) [psl_expr ] ( FL_property )
| next_event_e ( psl_bexpr ) [psl_expr ] ( FL_property )
;; OPERATORS ON SEREs
| sequence ( FL_property )
| sequence |-> sequence [ !]
| sequence |=> sequence [ !]
;;
| always sequence
| G sequence
| never sequence
| eventually! sequence
;;
| within! ( sequence_or_psl_bexpr , psl_bexpr ) sequence
| within ( sequence_or_psl_bexpr , psl_bexpr ) sequence
| within!_ ( sequence_or_psl_bexpr , psl_bexpr ) sequence
| within_ ( sequence_or_psl_bexpr , psl_bexpr ) sequence
;;
| whilenot! ( psl_bexpr ) sequence
| whilenot ( psl_bexpr ) sequence
| whilenot!_ ( psl_bexpr ) sequence
| whilenot_ ( psl_bexpr ) sequence

sequence_or_psl_bexpr ::
sequence

| psl_bexpr

sequence ::
{ SERE }

SERE ::
sequence

| psl_bexpr
;; COMPOSITION OPERATORS
| SERE ; SERE
| SERE : SERE
| SERE & SERE
| SERE && SERE
| SERE | SERE
;; RegExp QUALIFIERS
| SERE [* [count] ]
| [* [count] ]
| SERE [+]
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| [+]
;;
| psl_bexpr [= count ]
| psl_bexpr [-> count ]

count ::
number

| range

OBE_property ::
AX OBE_property

| AG OBE_property
| AF OBE_property
| A [ OBE_property U OBE_property ]
| EX OBE_property
| EG OBE_property
| EF OBE_property
| E [ OBE_property U OBE_property ]
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