NuSMV 2.4 User Manual

Roberto Cavada, Alessandro Cimatti,
Charles Arthur Jochim, Gavin Keighren,

Emanuele Olivetti, Marco Pistore, Marco Roveri
and Andrei Tchaltsev

ITC-irst - Via Sommarive 18, 38055 Povo (Trento) — Italy

Email: nusmv @ irst. itc. it



This document is part of the distribution package of theSWV model checker,
available ahttp://nusmv.irst.itc.it

Parts of this documents have been taken from “The SMV Syst@&maft”, by K.
McMillan, available at:

http://www.cs.cmu.edu/"modelcheck/smv/smvmanual.r2. 2.ps .

Copyright(©1998-2005 by CMU and ITC-irst.



Contents

1

2

Introduction 4

Input Language 6

2.1 TypesSOVEIVIEW . . . . . . o ot e e e e e e e 7
211 Boolean. . . . . ... .. 7
212 Integer . . ... 7
2.1.3 EnumerationTypes . . . . . . . . . 7
214 Word . ... 8
215 Array ... e 8
21.6 SetTypes . . . . . . e 8
217 TypeOrder . . . . . . .. 8

2.2 EXPressions . . . . ... 9
2.2.1 ImplicitTypeConversion. . . . . ... ... ... ...... 9
2.2.2 ConstantEXpressions . . . . . . . . . .. .. 9
2.2.3 BasicExpressions . .. ... ... ..o 11
2.2.4 Simple and Next Expressions . . . . ... ... ... .... 18

2.3 Definitionofthe FSM . . . . . . . . .o o o 19
2.3.1 \Variable Declarations . . . . ... ... ... ......... 19
2.3.2 DEFINEDeclarations . . ... ... ... .......... 21
2.3.3 CONSTANT®eclarations . . . . .. ... ... ....... 22
234 INIT Constraint . . . . ... ... ... ... ... ..... 22
2.3.5 INVARConstraint . . . .. ... ... ... ... ... .. 22
2.3.6 TRANSConstraint . ... ... ... ... ... ....... 22
2.3.7 ASSIGNConstraint . . ... ... ... ... . 0 23
2.3.8 FAIRNESSConstraints . . . . ... ... ... ....... 24
2.3.9 MODULBeclarations . . ... ... ... ... ....... 25
2.3.10 MODULHnstantiations . . . . . . . . . ... ... ... ... 26
2.3.11 References to Module Components (Variables and &fin

and Array Elements in Expressions . . . . .. ... ... .. 27

2.3.12 ProCeSSeS . . . . . o v i 28
2.3.13 A Program and thmain Module . . . . ... ... ... .. 29
2.3.14 Namespaces and Constraints on Declarations . . . ..... . 29
2315 Context . . . . .. 30
23.16 ISA Declarations . . . . ... .. ... ... 30

2.4 Specifications . . . . . ... 31
2.4.1 CTL Specifications . . . .. ... ... ... ... ...... 31
2.4.2 Invariant Specifications . . . . . ... ... oL 32
2.4.3 LTL Specifications . . . . . ... ... ... .. .. 32



2.4.4 Real Time CTL Specifications and Computations . . . . . . 33

2.4.5 PSL Specifications . . . ... ... ... ... . ... .... 35
2.5 VariableOrderlnput . . . . ... .. ... ... .. ... ... ... 38
251 InputFileSyntax . . . .. .. ... ... .. ... 38
25.2 ScalarVariables. . . .. ... .. ... .. ... .. ... 39
253 ArrayVariables . . . ... .. ... ... . 40
2.6 ClustersOrdering . . . . . . . . . i i 40
Running NuSMV interactively 41
3.1 ModelReadingandBuilding . . ... ... ... ........... 42
3.2 Commands for Checking Specifications . . . ... ......... 48
3.3 Commands for Bounded Model Checking . . . . ... ........ 54
3.4 Commands for checking PSL specifications . . . . ... ... ... 67
3.5 SimulationCommands . ... .. .. .. ... ... ... ...... 68
3.6 Traces . . . . . . e e 70
3.6.1 InspectingTraces . . . . . . . . . . . v i i 71
3.6.2 DisplayingTraces . . . .. .. ... ... 71
3.6.3 TracePluginCommands . . . ................. 71
3.7 TracePlugins . . . . . . . .. .. 73
3.7.1 Basic Trace Explainer . . ... ... ... ... ....... 73
3.7.2 States/VariablesTable . . ... ... ............. 73
3.7.3 XMLFormatPrinter . . ... ... ... ... ........ 74
3.74 XMLFormatReader . . ... .... ... .......... 74
3.8 Interfacetothe DD Package . . ... .. ... ... ... ...... 75
3.9 AdministrationCommands . . . .. .. ... ... .......... 78
3.10 Other EnvironmentVariables . . . . . ... ... ... ... .... 84
Running NuSMV batch 87
Compatibility with CMU SMV 93
Typing Rules 95
B.1 Types . . . . . 95
B.2 ImplicitConversion . . . . . . .. . ... ... 95
B.3 TypeRules . ... .. .. . .. . ... . 96
Production Rules 100



Chapter 1

Introduction

NUSMYV is a symbolic model checker originated from the reengjiiimgy, reimplemen-
tation and extension of CMU SMV, the original BDD-based matecker developed
at CMU [McM93]. The NUSMYV project aims at the development of a state-of-the-art
symbolic model checker, designed to be applicable in teldgydransfer projects: it
is a well structured, open, flexible and documented platflmmmodel checking, and
is robust and close to industrial systems standards [CCZR00

Version 1 of NUSMV basically implements BDD-based symbolic model check-
ing. Version 2 of USMV (NUSMV?2 in the following) inherits all the functionalities
of the previous version, and extends them in several dinestiCCG02]. The main
novelty in NUSMV?2 is the integration of model checking techniques basgaroposi-
tional satisfiability (SAT) [BCCZ99]. SAT-based model ckat is currently enjoying
a substantial success in several industrial fields, andsopemew research directions.
BDD-based and SAT-based model checking are often able ve siifferent classes of
problems, and can therefore be seen as complementarydeeisni

Starting from NUSMV2, we are also adopting a new development and license
model. NUSMV?2 is distributed with an OpenSource licehs¢hat allows anyone
interested to freely use the tool and to participate in itgettijpment. The aim of
the NUSMV OpenSource project is to provide to the model checkingroonity a
common platform for the research, the implementation, &edcomparison of new
symbolic model checking techniques. Since the releaseu$MV2, the NUSMV
team has received code contributions for different partk@bystem. Several research
institutes and commercial companies have expressed shiereollaborating to the
development of NSMV. The main features of NSMV are the following:

e Functionalities. NUSMV allows for the representation of synchronous and
asynchronousfinite state systems, and for the analysigoifg@tions expressed
in Computation Tree Logic (CTL) and Linear Temporal LogicT(l), using
BDD-based and SAT-based model checking techniques. Hiesrsre avail-
able for achieving efficiency and partially controlling thte explosion. The
interaction with the user can be carried on with a textuariiace, as well as in
batch mode.

e Architecture. A software architecture has been defined. The different camp
nents and functionalities of lISMV have been isolated and separated in mod-

1(seehttp://www.opensource.org )



ules. Interfaces between modules have been provided. @dises the effort
needed to modify and extendd$MV.

e Quality of the implementation. NUSMYV is written in ANSI C, is POSIX com-
pliant, and has been debugged with Purify in order to detechory leaks. Fur-
thermore, the system code is thoroughly commentedSMV uses the state
of the art BDD package developed at Colorado University, @modides a gen-
eral interface for linking with state-of the-art SAT solsei his makes NSMV
very robust, portable, efficient, and easy to understancelopie other than the
developers.

This document is structured as follows.

e In Chapter 2 [Input Language], page 6 we define the syntaxeahtbut language
of NUSMV.

e In Chapter 3 [Running NuSMV interactively], page 41 the coamais of the
interaction shell are described.

e In Chapter 4 [Running NuSMV batch], page 87 we define the batobe of
NUSMV.

NUSMYV is available ahttp://nusmv.irst.itc.it



Chapter 2

Input Language

In this chapter we present the syntax and semantics of tha iapguage of NSMV.

Before going into the details of the language, let us givenageneral notes about
the syntax. In the syntax notations used below, syntactiegoaies (non-terminals)
are indicated bynonospace font , and tokens and character set members (terminals)
by bold font. Grammar productions enclosed in square brack@ts)(are optional
while a vertical bar (") is used to separate alternatives in the syntax rules. 8oras
one of is used at the beginning of a rule as a shorthand for choosimong several
alternatives. If the charactgrs[ and] are in bold font, they lose their special meaning
and become regular tokens.

In the following, anidentifier may be any sequence of characters starting with
a character in the s¢iA- Za- z_} and followed by a possibly empty sequence of char-
acters belonging to the spA- Za- z0- 9_$#\- }. All characters and case in an identifier
are significant. Whitespace characters are spaS®QACE3, tab KTAB>) and new-
line (KRET>). Any string starting with two dashes{' ') and ending with a newline is
a comment and ignored by the parser.

The syntax rule for aitentifier is:
identifier ::

identifier_first_character
| identifier identifier_consecutive_character

identifier_first_character :: one of
ABCDEFGHI JKLMNOPQRSTUVWXYZ
abcdefghi j kl mnopgr stuvwxyz_

identifier_consecutive_character ::
identifier_first_character
| digit
| one of $ # \ -

digit :: oneof 01234567289
An identifier is always distinct from the NSMV language reserved keywords
which are:

MODULE, DEFI NE, CONSTANTS, VAR, | VAR |INT, TRANS, | NVAR
SPEC, CTLSPEC, LTLSPEC, PSLSPEC COVPUTE, | NVARSPEC, FAI RNESS,



JUSTI CE, COVPASSI ON, | SA, ASSI G\, CONSTRAI NT, SI MPWFF, CTLWFF,
LTLWFF, PSLWFF, COMPWFF, | N, M N, MAX, M RRCR, PRED, PREDI CATES,
process,array,of ,bool ean,i nt eger,real ,word,wordl, bool , EX,
AX, EF, AF, EG AGE F,OGH X Y,Z A U,S,V,T, BU, EBF, ABF, EBG,
ABG, case, esac, nod, next,init,union,in,xor,xnor,self, TRUE,
FALSE

To represent various values we will usgeger numbers  which are any non-
empty sequence of decimal digits preceded by an optionaj/umizaus

integer_number ::
- digit
| digit
| integer_number digit

andsymbolic constants which areidentifiers
symbolic_constant :: identifier

Examples ofinteger numbers and symbolic constants are 3, -14,
007, OK, FAIL, waiting, stop . The values oéymbolic constants and
integer numbers  do not intersect, with the exceptions of the reserssdbolic
constants TRUE andFALSE which are equal to thaateger numbers 1~ andO respec-
tively.

2.1 Types Overview

This section provides an overview of the types that are ngised by NUSMV.

2.1.1 Boolean

Theboolean type comprises twinteger numbers 0 and1, or their symbolic equivalents
FALSE andTRUE.

2.1.2 Integer

The domain of theénteger type is simply any whole number, positive or negative. At e
ment, there are implementation-dependent constraintssathis type anthteger numbers

can only be in the range 232 + 1 to 23 — 1 (more accurately, these values are equivalent to the
C/C++ macrodNT _MIN andINT _MAX.

2.1.3 Enumeration Types

An enumeration type is a type specified by full enumerations of all the vathas the type com-
prises. For example, the enumeration of values majshepped, running, waiting,

finished 1}, {2, 4, -2, 0 } {FAIL, 1, 3, 7, OK 1}, etc. All elements of an enumer-
ation have to be unique although the order of elements ismmbitant.

However, in the NNSMV type system, expressions cannot be of actnalmeration types,
but of their simplified and generalised versions only. Suehegalisecenumeration types do
not contain information about the exact values constigtire types, but only the flag whether all
values ara@nteger numbers , symbolic constants or both. Below only generalised
versions ofenumeration types are explained.

Thesymbolic enum type covers enumerations containing osjymbolic constants
For example, the enumeratiofistopped, running, waiting } and{FAIL, OK } be-
long to thesymbolic enum type.



There is also antegers-and-symbolic enum type. This type comprises enumerations
which containbothinteger numbers  and symbolic constants , for example {-1,
1, waiting },{0, 1, OK }, {running, stopped, waiting, O }.

Anotherenumeration type isinteger enum. Example of enumerations of integers &2
4, -2, 0 }and{-1, 1 }. Inthe NUSMV type system an expression of the tyipéeger
enum is always converted to the tyjreteger. Explaining the type of expression we will always
use the typénteger instead ofinteger enum.

The values in an enumeration may potentially contain ordyttholean values, for example,
{0, 1 }or{FALSE, TRUE]}. Inthis case the type will beoolean (see Section 2.1.1 [Boolean
Type], page 7).

To summarise, we actually deal only with tvemumeration types: symbolic enum and
integers-and-symbolic enum. These types are distinguishable and have different dpasat
allowed on them.

2.1.4 Word

Theword[e] types are used to model arrays of bits (booleans) which diibwise logical and
arithmetic operations. These types are distinguishabléhby width. For example, the type
word[3] represents arrays of three bits, and the twmed[7] represents arrays of seven bits.
Note that the width has to be greater than zero.

2.1.5 Array

Arrays are declared with a lower and upper bound for the inded the type of the elements in
the array. For example,

array 0..3 of boolean;
array 10..20 of {OK, vy, z };
array 1..8 of array -1..2 of word[5];

The typearray 1..8 of array -1..2 of word[5] means an array of 8 ele-
ments (from 1 to 8), each of which is an array of 4 elementa(frd to 2) that are 5-bit-long
words. The use of arrays in expressions are quite limited.2S&11 for more information.

2.1.6 Set Types

set types are used to identify expressions representing a selwdgs. There are fouget types

: boolean set, integer set, symbolic set, integers-and-symbolic set. Theset types can be

used in a very limited number of ways. In particular, a vdeatannot be of aet type. Only

range constant anduni on operator can be used to create an expressiorsef gype, and

onlyi n, case and assignmehexpressions can have imediate operandssaftaype.
Everyset type has a counterpart among other types. In particular,

the counterpart of boolean set type isboolean,

the counterpart of anteger set type isinteger,

the counterpart of aymbolic set type issymbolic enum,

the counterpart of mtegers-and-symbolic set type isintegers-and-symbolic enum.
Some types such agord[e] do not have &et type counterpart.

2.1.7 Type Order
Figure 2.1 depicts the order existing between typesursN V.

1For more information on these operators see pages 11, 177 Ehd 23, respectively.



boolean word[1]

!
integer symbolic enum word[2]
l 1 word[3]

integers-and-symbolic enum

boolean set
!

integer set  symbolic set
| !

integers-and-symbolic set
Figure 2.1: The ordering on the types inEMV

It means, for example, thdtoolean is less tharinteger, integer is less tharintegers-and-
symbolic enum, etc. Theword[e] types are not comparable with any other type or between
each other. Any type is equal to itself.

Note that enumerations containing oimiyeger numbers  have the typénteger (unless
the only elements ark and0 in which case the type isoolean).

2.2 Expressions

The previous versions of NuSMV (prior to 2.4.0) did not hakve type system and as such ex-
pressions were untyped. In the current version all exppassare typed and there are constraints
on the type of operands. Therefore, an expression may ncanfiaily violate the type system,
i.e. be erroneous.

To maintain backward compatibility, there is a new systemrialde called
backward _compatibility (and a correpondingold command line option) that
disables a few new features of version 2.4 to keep backwartpatbility with old version of
NuSMV. In particular, if this system variable is set then typalations caused by expressions
of old types (i.e.enumeration type, boolean andinteger) will be ignored by the type checker,
instead, warnings will be printed out. See description gepé2 for further information.

If additionally, the system variablgype _checking _warning _on is unset, then even
these warnings will not be printed out.

2.2.1 Implicit Type Conversion

In certain expressions MV can implicitly convert operands from one type to anatt@irch
implicit conversion can be performed from a smaller type biggier one (in accordance with the
ordering depicted in Figure 2.1). This means, for examplatvword[e] types cannot be implic-
itly converted to other types or each other implicitly, véehithe typeboolean can be implicitly
converted tanteger or integers-and-symbolic enum.

Also in some expressions operands may be converted fronmyppeed itsset type counter-
part (see 2.1.6). For examplateger can be converted toteger set type.

2.2.2 Constant Expressions

A constant can be a boolean, integer, symbolic, word or range constant.

constant ::



boolean_constant
integer_constant
symbolic_constant
word_constant
range_constant

Boolean Constant

A boolean constant is one of thanteger numbers 0  and1l or their symbolic equiv-
alentsFALSE andTRUE. The type of éboolean constant is boolean.

boolean_constant :: one of
0 1 FALSE TRUE

Integer Constant

An integer constant is aninteger number  with the exception 00 and1 which are
taken to beboolean constants . The type of arinteger constant isinteger.

integer_constant :: integer_number

Symbolic Constant

A symbolic constant is syntactically andentifier and indicates a unique value.
symbolic_constant :: identifier

The type of asymbolic constant is symbolic enum. See Section 2.3.14 [Namespaces],
page 29 for more information about h@ymbolic constants are distinguished from other
identifiers , i.e. variables, defines, etc.

Word Constant

Word constants  begin with digit0, followed by one of the charactet®B (binary), 0/O
(octal),d/D (decimal) orh/H (hexadecimal) which gives the base that the actual conistéamt
Next comes an optional decimal integer giving the numbeiitsf then the characterand lastly
the constant value itself. The type ofsrd constant is word[N], whereNis the width of
the constant. For example:

0b5_10111 has typeword[5]
006 _37 has typeword[6]
0d11.9 has typewvord[11]
0h12_a9 has typeword[12]

The number of bits can be skipped, in which case the width tisnaatically calculated from

the number of digits in the constant and its base. It may bessaey to explicitly give leading
zeroes to make the type correct — the following are all edeiitadeclarations of the integer
constantll as a word of typavord[8]:

0d8_11
0b8_1011
0b_00001011
Oh_Ob

0h8_b

The syntactic rule of thevord constant s the following:

10



word_constant ::

0 word_base [word_width] _ word_value
word_width ::

integer_number -- a number greater than zero
word_base ::

b| Bl o] O]l d| D| h| H

word_value ::
hex_digit
| word_value hex_digit
| word_value _
hex_digit :: one of

0123456789abcdef ABCDEF

Note that

e The width of a word must be a number strictly greater than 0.

e Decimalword constants  mustbe declared with the width specifier, since the number
of bits needed for an expression likd 019 is unclear.

e Digits are restricted depending on the base the constaives @.

e Digits can be separated by the underscore charact®rtf aid clarity, for example
0b_0101_.1111 1100 which is equivalent t®b 010111111100 .

e The number of bits irword constant  has an implementation limit which for most
systems is 64 bits.

Range Constant

A range constant  specifies a set of consecutive integer numbers. For exarapten-
stant-1..5 indicates the set of numbersl, 0, 1, 2, 3, 4 and5. Other examples of
range constant canbel..10 , -10..-10 , 1..300 . The syntactic rule of theange
constant s the following:

range_constant ::
integer_number .. integer_number

with an additional constraint that the first integer numbeasnie less than or equal to the second

integer number. The type ofrange constant isinteger set.

2.2.3 Basic Expressions

A basic expression is the most common kind of expression imsid/SMV.

basic_expr ::
constant -- a constant

| variable_identifier -- a variable identifier

| define_identifier -- a define identifier

| ( basic_expr )

| ! basic_expr -- logical or bitwise NOT
| basic_expr & basic_expr -- logical or bitwise AND
| basic_expr | basic_expr -- logical or bitwise OR

| basic_expr xor basic_expr

logical or bitwise exclusive OR

11



basic_expr xnor basic_expr -- logical or bitwise NOT exclusive OR

I
| basic_expr - > basic_expr -- logical or bitwise implication
| basic_expr <-> basic_expr -- logical or bitwise equivalence
| basic_expr = basic_expr -- equality
| basic_expr I = basic_expr -- inequality
| basic_expr < basic_expr -- less than
| basic_expr > basic_expr -- greater than
| basic_expr <= basic_expr -- less than or equal
| basic_expr >= basic_expr -- greater than or equal
| - basic_expr -- integer unary minus
| basic_expr + basic_expr -- integer addition
| basic_expr - basic_expr -- integer subtraction
| basic_expr * basic_expr -- integer multiplication
| basic_expr | basic_expr -- integer division
| basic_expr nmod basic_expr -- integer remainder
| basic_expr >> basic_expr -- bit shift right
| basic_expr << basic_expr - bit shift left
| basic_expr 11 basic_expr -- word concatenation
| basic_expr [ integer_number . integer_number ]
-- word bits selection
| wordl ( basic_expr ) -- boolean to word[1] convertion
| bool ( basic_expr ) -- word[1] to boolean convertion
| basic_expr uni on basic_expr  -- union of set expressions
| { set_body expr } -- set expression
| basic_expr i n basic_expr -- inclusion in a set expression
| case_expr -- a case expression
| basic_next_expr -- a next expression

The order of parsing precedence for operators from highvtado

I
[ 1]

- (unary minus)

+ -
nod

<< >>

uni on

in

= | = < > <= >=
&

| xor xnor

<->

->

Operators of equal precedence associate to the left, exceftat associates to the right. The
constants and their types are explained in Section 2.2.89@at Expressions], page 9.

Variables and Defines

A variable _identifier and define _identifier are expressions which identify a
variable or a define, respectively. Their syntax rules are:

define_identifier :: complex_identifier

12



variable_identifier :: complex_identifier

The syntax and semantics edmplex _identifiers are explained in Section 2.3.11 [Ref-
erences to Module Components], page 27. All defines andblasaeferenced in expressions
should be declared. All identifiers (variables, defines,sylin constants, etc) can be used prior
to their definition, i.e. there is no constraint on order saslin C where a declaration of a vari-
able should always be placed in text above the variable usen®re information about define
and variable declarations in Section 2.3.2 [DEFINE Detiana], page 21 and Section 2.3.1
[Variable Declarations], page 19.

A define is a kind of macro. Every time a define is met in expoessiit is substituted by the
expression associated with this define. Therefore, thedfaelefine is the type of the associated
expression in the current context.

variable _identifier represents state and input variables. The type of a varigble
specified in its declaration. For more information aboutialdes, see Section 2.3 [Defini-
tion of the FSM], page 19, Section 2.3.1 [State Variableag20 and Section 2.3.1 [Input
Variables], page 20. Sincesymbolic constant is syntactically indistinguishable from
variable _identifiers anddefine _identifiers , @ symbol table is used to distin-
guish them from each other.

Parentheses

Parentheses may be used to group expressions. The typevafithe expression is the same as
the type of the expression in the parentheses.

Logical and Bitwise !

Thesignatureof the logical and bitwise NOT operatbris:

I : boolean — boolean
- word[N] — word[N]

This means that the operation can be applietbdolean or word[e] operands. The type of
the whole expression is the same as the type of the operaride tfperand is ndvoolean or
word[e] then the expression violates the type system an&MV will throw an error.

Logical and Bitwise &, | , xor , xnor , - >, <- >

Logical and bitwise binary operato&(AND), | (OR),xor (exclusive OR)xnor (negated
exclusive OR),- > (implies) and<- > (if and only if) are similar to the unary operator,
except that they take two operands. Their signature is:

&, |, xor, xnor,->,<->: boolean* boolean — boolean
: word[N] * word[N] — word[N]

the operands can be bbolean or word[e] type, and the type of the whole expression is the type
of the operands. Note that botford[e] operands should have the same width.

Equality (=) and Inequality (! =)

The operators (equality) and = (inequality) have the following signature:

13



= 1= : boolean * boolean — boolean
: integer * integer — boolean
: symbolic enum * symbolic enum — boolean
: integers-and-symbolic enum * integers-and-symbolic enum
— boolean
: word[N] * word[N] — boolean
: boolean * word[1] — boolean
: word[1] * boolean — boolean

Before checking the expression for being correctly typethlicit type conversion can be
carried out oroneof the operands. For example, in the expression

TRUE =5

the left operand is of typboolean and the right one is of typmteger. Though the signature
of the operation does not havéeolean * integer rule, the expression is correct, because after
implicit type conversion on the left operand the types ofdperands will bénteger * integer,
which is a valid signature for thre operator.

This is also true if one of the operands is of typerd[1] and the other one is of the typeolean.

In this case, one of the operands is converted to the typeedadttier one and then the equality is
checked.

Relational Operators>, <, >=, <=

The relational operators (greater than)< (less than)>= (greater than or equal to) and=
(less than or equal to) have the following signature:

> <,>=, <=: boolean * boolean — boolean
: integer * integer — boolean
- word[N] * word[N] — boolean
: boolean * word[1] — boolean
: word[1] * boolean — boolean
Before checking the expression for being correctly typeyblicit type conversion can be carried
out ononeof the operands.
boolean andword[e] types are implicitly converted to theinteger equivalents before the
result of these operations is calculated.

Arithmetic Operators +,-,*,/

The arithmetic operators (addition),- (subtraction)# (multiplication) and/ (division) have
the following signature:

+,-,*,/ : boolean* boolean — integer
:integer * integer — integer
: word[N] * word[N] — word[N]
- . integer — integer
: word[N] — word[N]

Before checking the expression for being correctly typbd,implicit type conversion can be
applied tooneof the operands. Thisoolean operands are converted to timeger type before
performing the arithmetic operation. If the operators gpliad to aword[N] type, then the
operations are performed moddd .

The result of the operator is the quotient from the division of the first operduy the
second. When integers are divided, the result of/th@perator is the algebraic quotient with
any fractional part discarded (this is often called “truiara towards zero”). If the quotient

2|t is does not matter which operand is converted — the resilllbe/the same.

14



a/b is representable, the expressi@tb) *b + (a mod b) shall equak. If the value of
the second operand is zero, the behavior is undefined anda@risthrown by NUSMV. The
semantics is equivalent to the corresponding one of C/Crguages.

In the versions of NSMYV prior to 2.4.0 the semantics of division was differenee$age
15 for more detail.

Remainder Operator nod

The result of thenod operator is the algebraic remainder of the division. If tladue of the
second operand is zero, the behavior is undefined and angthvown by NUSMV.
The signature of the remainder operator is:

nod : integer * integer — integer
: word[N] * word[N] — word[N]
:integer * 2 — boolean

Note that when the left operand is an integer and the rightoa&onstan® then the type of the
expression is Boolean. In such a way “mod 2" expressions eamsbd as boolean expressions
to check whether the left operand is even or odd. Note algdtikasignature does not allow the
operands to be boolean since such expressions are usebesxafple, if the left operand is a
boolean expression and on the righBithe result will always be equal to the left operand. Actu-
ally, in some cases it can be useful to allow boolean operdadexample, if text of expressions
is automatically generated) therefore before applyingaeration NuSMV converts boolean
operand to integer but prints out a warning in this case. llothker respects, the semantics of
nod operator is equivalent to the corresponding oper&af C/C++ languages. Thus if the
quotienta/b is representable, the expressi@b) *b + (a mod b) shall equak.

Note: in older versions of NSMV (priori 2.4.0) the semantics of quotient and remainder
were different. Having the division and remainder opeafoandmod be of the current, i.e.
C/C++'s, semantics the older semantics of division wasrgisethe formula:

IF (amod b < 0) THEN (a/ b — 1) ELSE (a/ b)
and the semantics of remainder operator was given by theufarm

IF (@mod b < 0) THEN (amod b 4+ b) ELSE (amod b)

Note that in both versions the equati@b) *b + (a mod b) = a holds. For example,
in the current version of NuSMV the following holds:

75=1 7mod5=2

-7/5=-1 -7mod5=-2

7/-5=-1 7mod-5=2

-7/-5=1 -7mod -5 =-2
whereas in the older versions on NuSMV the equations were

7/5=1 7mod5=2

-7/5=-2 -7mod5=3

7/-5=-1 7mod-5=2

-71-5=0 -7mod -5 =-7
When supplied, the command line option -aliy_op switches the semantics of division and
remainder to the old one.

Shift Operators <<, >>

The signature of the shift operators is:

<<, >>: word[N] * integer — word[N]
: word[N] * word[M] — word[N]
Before checking the expression for being correctly typbd, right operand can be implicitly
converted fromboolean to integer type.
Left shift << and and right shift-> operations shift bits to the left and right respectively.
A shift by N bits is equivalent to N shifts by 1 bit. A bit shifteoehind the word bound is lost.

15



During shifting the word is padded with zeros.
For instance,

0b4.0001<< 2 is equal to
0b4.0100<< 1 is equal to
0b4.1000<< 0 is equal to
0b4.1000

It has to be remarked that the shifting requires the rightapeto be greater or equal to zero
and less then the width of the word it is applied taJBIMYV raises an error if a shift is attempted
that does not satisfy this restriction.

Bit Selection Operator[ : ]

The bit selection operator extracts consecutive bits fromoad[e] expression, resulting in
a newword[e] expression. This operation always decreases the widtlioofl[e] or leaves

it intact. The left expression in the brackets is the highrfiband the right one is the low
bound. The high bound must be greater than or equal to the tmwdy The bits count from
0. The result of the operations isnrd[e] value consisting of the consecutive bits beginning
from the high bound of the operand down to, and including,ltlebound bit. For example,
0b7.1011001[4:1] extracts bits 1 through 4 (including 1st arfdblts) and is equal to 0h4100.
0b3.101[0:0] extracts bit number 0 and is equal to Ob1

The signature of the bit selection operator is:
[ : ] :word[N]* integer,, , * integer,,, — word[integer,, , —integer,,, + 1]

where0 < integer,,,, < integerhigh <N

Word Concatenation Operator : :

The concatenation operator joins two words together taer@éarger word type. The operator
itself is two colons (: ), and its signature is as follows:

: 1 »word[M] * word[N] — word[M+N]
: boolean * word[N] — word[N+1]
: word[N] * boolean — word[N+1]

The left-hand operand will make up the upper bits of the newdwand the right-hand operand
will make up the lower bits. For example, given the two wonds := Ob4 _1101 andw2 :=
0b2_00, then the result ofvl: : w2is 0b6_110100 .

Boolean and word[1] Explicit Conversions

bool converts avord[1] to aboolean, while wor d1 converts éoolean to aword[1].
The signatures of these conversion operators are:

bool :word[1] — boolean
wor d1 : boolean — word[1]

The conversion obeys the following table:

bool (Ob10)=0
bool (Ob11)=1
wor d1(0) = 0b10
wor d1(1) =0b11

16



Set Expressions

The set expression is an expression defining a sébofean, integer and symbolic enum
values. A set expression can be created withutheon operator. For example, uni on 0
specifies the set of valudsand0. One or both of the operands ohi on can be sets. In this
caseuni on returns a union of these sets. For example, expreg¢sionni on 0) union 3
specifies the set of valuds 0 and-3 .
Note that there cannot be a set of sets in NuSB®&ts can contain only singleton values, but
not other sets.
The signature of thani on operator is:
uni on  : boolean set* boolean set — boolean set
:integer set * integer set — integer set
: symbolic set * symbolic set — symbolic set
. integers-and-symbolic set * integers-and-symbolic set
— integers-and-symbolic set
Before checking the expression for being correctly typédt, is possible, both operands are
converted to their counterpaset types®, which virtually means converting individual values
to singleton sets. Then both operands are implicitly caedeto a minimal type that covers
both operands. If after these manipulations the operand®tsatisfy the signature afi on
operator, an error is raised byu$ MV.
There is also another way to write a set expression by entimgrall its values between
curly brackets. The syntactic rule for the values in curlgdiets is:

set_body_expr ::
basic_expr
| set_body_expr , basic_expr

Enumerating values in curly brackets is semantically exjaivt to writing them connected
by uni on operators. For example, expressi@xpl, exp2, exp3 } is equivalent texpl
uni on exp2 uni on exp3. Note that according to the semanticsusfi on operator, ex-
pression{{1, 2 }, {3, 4 }}isequivalenttd{1, 2, 3, 4 1}, i.e. thereisno actually set of
sets.

Set expressions can be used only as operandsiodbn andi n operations, and as the right
operand oftase expressions and assignments. In all other places the ust exgressions is
prohibited.

Inclusion Operator i n

The inclusion operatoi ‘n’ tests the left operand for being a subset of the right opréreither
operand is a number or a symbolic value instead of a set, @dsced to a singleton set.
The signature of then operator is:

in :boolean set* boolean set — boolean
: integer set * integer set — boolean
: symbolic set * symbolic set — boolean
. integers-and-symbolic set * integers-and-symbolic set — boolean
Similar touni on operation, before checking the expression for being ctiyrégped, if it is
possible, both operands are converted to their countespatypes®. Then, if required, implicit
type conversion is carried out @ameof the operands.

Case Expressions

A case expression has the following syntax:

3See 2.1.6 for more information about thet types and their counterpart types
4See 2.1.6 for more information about thet types and their counterpart types

17



case_expr :: case case_body esac

case_body ::
basic_expr : basic_expr ;
| case_body basic_expr . basic_expr ;

A case _expr returns the value of the first expression on the right hanel sfd: ’, such that
the corresponding condition on the left hand side evaluatégTRUB. For example, the result
of the expression

case
left_expression_1 . right_expression_1 ;
left_expression_2 . right_expression_2 ;
left_expression_N . right_expression_N ;
esac
isright _expression _k such that for ali from0tok —1,left _expression . isO, and

left _expression _kis 1. Itis an error if all expressions on the left hand siddweat to O.

The type of expressions on the left hand side mudidmean. If one of the expression on
the right is of aset type then, if it is possible, all remaining expressions anrtght are converted
to their counterparset types®. The type of the whole expression is such a minimal tythat all
of the expressions on the right (after possible convert@et types) can be implicitly converted
to this type. If this is not possible, MMV throws an error.

Basic Next Expression

Next expressions refer to next state variables. For example, if a variabis a state vari-
able, themext (v) refers to that variable in the next time step. Aext applied to a complex
expression is a shorthand method of applyiext to all the variables in the expressions recur-
sively. Example:next (1 + a) + b) isequivalenttql + next(a)) + next(b) .
Note that thenext operator cannot be applied twice, ireext ( next (a)) is notallowed.

The syntactic rule is:

basic_next_expr :: next ( basic_expr )

A next expression does not change the type.

2.2.4 Simple and Next Expressions

Simple _expressions  are expressions built only from current state variablegr&tore, the
simple _expression cannot have aext operation inside and the syntaxsimple _ex-
pressions is as follows:

simple_expr :: basic_expr

with the alternativébasic _next _expr not allowed. Simple _expressions can be used
to specify sets of states, for example, the initial set diestaThenext _expression relates
current and next state variables to express transitioleifr M. Thenext _expression can
havenext operation inside, i.e.

next_expr :: basic_expr

with the alternativdbasic _next _expr allowed.

5See 2.1.6 for information oset types and their counterpart types
6See Section 2.1.7 [Type Order], page 8 for the informatiotherorder of types.

18



2.3 Definition of the FSM

We consider a Finite State Machine (FSM) described in ternssate variablesandinput vari-
ables which may assume different values in differstates of atransition relationdescribing
how inputs leads from one state to possibly many differesiest and ofrairness conditions
that describe constraints on the valid paths of the exatwtidhe FSM. In this document, we
distinguish among constraints (used to constrain the behaf/a FSM, e.g. a modulo 4 counter
increments its value modulo 4), and specifications (usecpoess properties to verify on the
FSM (e.g. the counter reaches value 3).

In the following it is described how these concepts can b&aded in the NNSMV language.

2.3.1 Variable Declarations

A variable can be an input or a state variable. The declarafia variable specifies the variable’s
type with the help of type specifier.

Type Specifiers
A type specifier has the following syntax:

type_specifier ::
simple_type_specifier
| module_type_specifier

simple_type_specifier ::

bool ean

word [ integer_number ]

{ enumeration_type_body }
integer_number .. integer_number
array integer_number .. integer_number
of simple_type_specifier

enumeration_type_body ::
enumeration_type_value
| enumeration_type_body , enumeration_type_value

enumeration_type_value :
symbolic_constant
| integer_number

There are two kinds dfype specifier : asimple type specifier and amodule
type specifier . Themodule type specifier is explained later in Section 2.3.10
[MODULE Instantiations], page 26. Th&mple type specifier compriseshoolean

type,integer type,enumeration types,word[] and arrays types.

Theboolean type is specified by the keywoltbol ean.

A enumeration type is specified by full enumeration of all the values thestgpmprises.
For example, possiblenumeration type specifiers ar¢0,2,3,-1 }, {1,0, OK }, {OK,
FAIL, running }. The values in the list are enclosed in curly brackets andraggd by com-
mas. The values may lieteger numbers , symbolic constants , or both. All values
in the list should be distinct from each other, although tfteepof values is not important. Note
that thesymbolic constants TRUE and FALSE are just symbolic representations of the
integer numbers1  andO, respectively.

If the list of values in theenumeration type specifier consists of just the two valdeandO
then the type it representsh®olean. For exampletype specifiers {TRUE, FALSE}
andboolean are equivalent.

19



Note, expressions cannot be of the acem@imeration types, but only the simplified ver-
sions ofenumeration types, such asymbolic enum andintegers-and-symbolic enum.

A type specifier can be given by two integer numbers separated by (<KTWO
DOTS3, for example,-1..5 . This is just a shorthand for @numeration type containing
the list ofinteger numbers  from the range given itype specifier . For example, the
type specifiers -1..5 and{-1,0,1,2,3,4,5 } are equivalent. Note that the number
on the left from the two dots must be less than or equal to theben on the right.

Theword[e] type is specified by the keywomsbr d with aninteger number  supplied
in square brackets. This number must be greater than zempUdipose of the word types is to
offer integer and bitwise arithmetic.

An array type is denoted by a sequence of the keyvaarday, aninteger number
specifying the lower bound of the array index, two dots aninteger number  specifying
the upper bound of the array index, the keywafd, and the type of array’s elements. The
elements can themselves be arrays.

State Variables

A state of the model is an assignment of values to a set of whai@bles. These variables (and
also instances of modules) are declared by the notation:

var_declaration :: VAR var_list

var_list :: identifier . type_specifier ;
| var_list identifier . type_specifier ;

A variable declaration specifies the identifier of the variables and its type. A \dea
can take the values only from the domain of its type. In paldic a variable of @numeration
type may take only the values enumerated intffpe specifier of the declaration.

Input Variables

IVAR s (input variables) are used to label transitions of thet€i&tate Machine. The difference
between the syntax for the input and state variables déidasais the keyword indicating the
beginning of a declaration:

ivar_declaration :: | VAR ivar_list
ivar_list :: identifier . simple_type_specifier ;
| ivar_list identifier . simple_type_specifier ;

Another difference between input and state variables isitipait variables cannot be instances
of modules. The usage of input variables is more limited thaerusage of state variables which
can occur everywhere both in the model and specificationsielainput variables cannot occur
in:

e Left-side of assignments. For example all these assigrsa@atnot allowed:

IVAR i : boolean;
ASSIGN
init(i) := TRUE;

next(i) := FALSE;
e INIT statements. For example:

IVAR i : boolean;
VAR s : boolean;
INIT i =s

20



e Scope ofnext expressions. For example:

IVAR i : boolean;

VAR s : boolean;

TRANS i -> s —thisis allowed

TRANS next(i -> s)  —thisis NOT allowed

e Some specification kindsSCTLSPEC SPEC INVARSPEC COMPUTHEPSLSPEC For
example:

IVAR i : boolean;
VAR s : boolean;
SPEC AF (i -> s) —thisis NOT allowed
LTLSPEC F (X i -> s) —thisisallowed

e Anywhere in the FSM when checking invariants with BMC and ‘h&JAL” algorithm.
See at page 66 for further information.

Examples
Below are examples of input and state variable declarations

VAR a : boolean;
VAR b : 0..1;
IVAR c : {TRUE, FALSE};

The variables, b are state variables, ads an input variable; all of them are bbolean type.
In the following examples:

VAR d : {stopped, running, waiting, finished 4
VAR e : {2, 4, 2,0 }
VAR f: {1, a 3,d, q, 4 }

the variablesl, e andf are ofenumeration types, and all their possible values are specified in
thetype specifiers of their declarations.

VAR g : word[3];
The variableg is of 3-bits-wideword type (i.eword[3]).
VAR k : array -1..1 of array {0, TRUE};

The variablek is an array oboolean elements with indexes -1, 0 and 1.

2.3.2 DEFI NE Declarations

In order to make descriptions more concise, a symbol candmeméed with a common expres-
sion, and DEFI NE declaration introduces such a symbol. The syntax for tind ki declaration
is:

define_declaration :: DEFI NE define_body
define_body :: identifier 1= simple_expr
| define_body identifier 1= simple_expr
DEFI NE associates aitentifier on the left hand side of the: =' with an expression

on the right side. A define statement can be considered as eomat’henever a define

21



identifier occurs in an expression, thdentifier is syntactically replaced by the ex-
pression it is associated with. The associated expressiatways evaluated in the context of
the expression where thdentifier is met (see Section 2.3.15 [Context], page 30 for an
explanation of contexts). Forward references to definecosisrare allowed but circular defini-
tions are not, and result in an error. The difference betvdedined symbols and variables is that
while variables are statically typed, definitions are not.

2.3.3 CONSTANTS Declarations

CONSTANTS declarations allow the user to explicitly declare symbobostants that might oc-
cur or not within the FSM that is being defin6@ONSTANTS declarations are expecially useful
in those conditions that require symbolic constants to oooty in DEFI NEs body (e.g. in gen-
erated models). For an example of usage see also the commmaed _boolean _model . A
constant is allowed to be declared multiple times, as dfiefitst declaration any further decla-
ration will be ignored CONSTANTS declarations are an extension of the original SMV grammar,
and they are supported since NuSMV 2.4. The syntax for tiigd &f declaration is:

constants_declaration :: CONSTANTS constants_body ;

constants_body :: identifier
| constants_body , identifier

2.3.4 | NI T Constraint

The set of initial states of the model is determined Hyoalean expression under theNl T
keyword. The syntax of alNIT constraint is:

init_constrain :: INI T simple_expr [ ;]

Since the expression in thRIT constraint is asimple _expression , it cannot contain the
next () operator. The expression also has to be of typelean. If there is more than one
INIT constraint, the initial set is the conjunction of all of tlT constraints.

2.3.5 | NVAR Constraint

The set of invariant states can be specified usibg@ean expression under theNVAR key-
word. The syntax of aiNVAR constraint is:

invar_constraint :: I NVAR simple_expr [ ;]

Since the expression in th¥VAR constraint is &imple _expression , it cannot contain the
next () operator. If there is more than oidVAR constraint, the invariant set is the conjunction
of all of theINVAR constraints.

2.3.6 TRANS Constraint

The transition relation of the model is a set of current étabet state pairs. Whether or not a
given pair is in this set is determined by a boolean exprasgitroduced by th& RANS keyword.
The syntax of &RANSconstraint is:

trans_constraint :: TRANS next_expr [ ;]

It is an error for the expression to be not of thaolean type. If there is more than oiERANS
constraint, the transition relation is the conjunction lbb& TRANSconstraints.

22



2.3.7 ASSI GN Constraint

An assignment has the form:

assign_constraint :: ASSI GN assign_list

assign_list :: assign ;
| assign_list assign ;

assign ::
complex_identifier . = simple_expr
| init ( complex_identifier ) := simple_expr
| next ( complex_identifier ) = next_expr
On the left hand side of the assignmeittentifier denotes the current value of a vari-

able, i ni t (identifier ) ' denotes its initial value, anchext (identifier ) ' denotes
its value in the next state. If the expression on the rightirgide evaluates to a neet expres-
sion such asnteger number  or symbolic constant , the assignment simply means
that the left hand side is equal to the right hand side. On therdand, if the expression eval-
uates to a set, then the assignment means that the left ldenib giontained in that set. It is an
error if the value of the expression is not contained in tmgeaof the variable on the left hand
side.
Semantically assignments can be expressed using other édronstraints:

ASSIGN a := exp; is equivalent tdNVAR a in exp;
ASSIGN init(a) := exp; is equivalent tdNIT a in exp;
ASSIGN next(a) = exp; is equivalent tofRANS next(a) in exp;

Notice that, an additional constraint is forced when asgigmts are used with respect to their
corresponding constraints counterpart: when a variabdssgned a value that it is not an ele-
ment of its declared type, an error is raised.
The allowed types of the assignment operator are:
:= :boolean* boolean
: boolean * boolean set
. integer * integer
: integer * integer set
: symbolic enum * symbolic enum
: symbolic enum * symbolic set
: integers-and-symbolic enum * integers-and-symbolic enum
: integers-and-symbolic enum * integers-and-symbolic set
> word[N] * word[N]
- boolean * word[1]
: word[1] * boolean
Before checking the assignment for being correctly typld,implicit type conversion can be
applied to theight operand.

Rules for assignments

Assignments describe a system of equations that say howShedvolves through time. With
an arbitrary set of equations there is no guarantee thatéiGolexists or that it is unique. We
tackle this problem by placing certain restrictive syntaailes on the structure of assignments,
thus guaranteeing that the program is implementable.

The restriction rules for assignments are:

e The single assignment rule- each variable may be assigned only once.

23



e The circular dependency rule— a set of equations must not have “cycles” in its depen-
dency graph not broken by delays.

The single assignment rule disregards conflicting definti@nd can be formulated as: one
may either assign a value to a variable',“or to “next ( x) " and “i ni t ( x) ", but not both.
For instance, the following are legal assignments:

Example 1| x : =expr 1 ;

Example2| init( x) :=expr 1;

Example 3| next( x) :=expr 1 ;

Example4| init( x) :=expr 1;
next ( X) :=expr 2;

while the following are illegal assignments:

Example 1| x : =expr 1 ;
X = expra;
Example2| init( x) :=expr 1;
init(x):=expra;
Example 3| x : =expr 1 ;
init(x):=expra;
Example 4| x : =expr 1 ;
next ( X) :=expr 2;

If we have an assignment like: =y ; , then we say that depends ory. A combinatorial
loopis a cycle of dependencies not broken by delays. For instéine@ssignments:

X =y,
y =X

form a combinatorial loop. Indeed, there is no fixed order ol we can computg andy,
since at each time instant the valuexofdepends on the value @f and vice-versa. We can
introduce a “unit delay dependency” using tiext () operator.

X =Y,
next(y) := x;

In this case, there is a unit delay dependency betweandy. A combinatorial loop is a cycle
of dependencies whose total delay is zero. I@SWV combinatorial loops are illegal. This
guarantees that for any set of equations describing thevlwetaf variable, there is at least one
solution. There might be multiple solutions in the case afasigned variables or in the case of
non-deterministic assignments such as in the followingrepte,

next(x) := case x=1 : 1;
1: {01}
esac;

2.3.8 FAI RNESS Constraints

A fairness constraint restricts the attention onlydin execution pathsWhen evaluating speci-
fications, the model checker considers path quantifiersptyamly to fair paths.

NUSMYV supports two types of fairness constraints, namelyigastonstraints and com-
passion constraints. A justice constraint consists of mfba f , which is assumed to be true
infinitely often in all the fair paths. In NSMV, justice constraints are identified by keywords

24



JUSTI CE and, for backward compatibilitfsAl RNESS. A compassion constraint consists of a
pair of formulas(p,q) ; if property p is true infinitely often in a fair path, then also formuja
has to be true infinitely often in the fair path. InUISMV, compassion constraints are identified
by keywordCOVPASSI ON. 7 If compassion constraints are used, then the model musonet ¢
tain any input variables. Currently, I MV does not enforce this so it is the responsibility of
the user to make sure that this is the case.

Fairness constraints are declared using the followingesy(ell expressions are expected to
beboolean):

fairness_constraint ::
FAI RNESS simple_expr [ ;]
| JUSTI CE simple_expr [ ;]
| COWVPASSI ON ( simple_expr , simple_expr ) [;]

A path is considered fair if and only if it satisfies all the stmaints declared in this manner.

2.3.9 MODULE Declarations

A module declaration is an encapsulated collection of datitans, constraints and specifica-
tions. A module declaration also opens a new identifier sc@pece defined, a module can be
reused as many times as necessary. Modules are used in sagtttaiveach instance of a mod-
ule refers to different data structures. A module can caritatances of other modules, allowing
a structural hierarchy to be built. The syntax of a moduldatation is as follows:

module :: MODULE identifier [ ( module_parameters )] [module_body]

module_parameters ::
identifier
| module_parameters , identifier

module_body ::
module_element
| module_body module_element

module_element ::
var_declaration
ivar_declaration
define_declaration
constants_declaration
assign_constraint
trans_constraint
init_constraint
invar_constraint
fairness_constraint
ctl_specification
invar_specification
Itl_specification
compute_specification
isa_declaration

The identifier immediately following the keywordVODULE is the name associated with
the module. Module names have a separate name space in grarprand hence may clash

7In the current version of NSMV, compassion constraints are supported only for BDDetasTL
model checking. We plan to add support for compassion caingdralso for CTL specifications and in
Bounded Model Checking in the next releases ofSWV.

25



with names of variables and definitions. The optional listd&tifiers in parentheses are the
formal parameters of the module.

2.3.10 MODULE Instantiations

An instanceof a module is created using tAR declaration (see Section 2.3.1 [State Variables],
page 20) with a module type specifier (see Section 2.3.1 [Bygeeifiers], page 19). The syntax
of amodule type specifier is:

module_type_specifier ::
| identifier [ ( [ parameter_list ] ) 1]
| process identifier [ ( [ parameter_list ] ) ]

parameter_list ::

simple_expr
| parameter_list , simple_expr
A variable declaration with enodule type specifier introduces a name for the module
instance. Thenodule type specifier provides the name of the instantiating module and

also a list of actual parameters, which are assigned to tmealoparameters of the module.
An actual parameter can be any legahple expression (see Section 2.2.4 [Simple and
Next Expressions], page 18). Itis an error if the number tdi@marameters is different from
the number of formal parameters. Whenever formal parasmetzur in expressions within the
module, they are replaced by the actual parameters. Thensienod module instantiation is
similar to call-by-referenc@.

Here are examples:

MODULE main
VAR
a : boolean;
b : foo(a);

MODULE foo(x)
ASSIGN
X = 1;

the variablea is assigned the valuk. This distinguishes the call-by-reference mechanism from
a call-by-value scheme.
Now consider the following program:

MODULE main
DEFINE

a = 0;
VAR

b : bar(a);
MODULE bar(x)
DEFINE

a = 1;

y =X

8This also means that the actual parameters are analyzed aothext of the variable declaration where
the module is instantiated, not in the context of the exjwasshere the formal parameter occurs.

26



In this program, the value of is 0. On the other hand, using a call-by-name mechanism, the
value ofy would bel, sincea would be substituted as an expressionxor
Forward references to module names are allowed, but circgdarences are not, and result in
an error.

The keywordpr ocess is explained in Section 2.3.12 [Processes], page 28.

2.3.11 References to Module Components (Variables and Dedis)
and Array Elements in Expressions

As described in Section 2.2.3 [Variables and Defines], pagjedefines and variables can

be referenced in expressions eariable _identifiers and define _identifiers
respectively, both of which areomplex identifiers . The syntax of acomplex
identifier is:

complex_identifier ::

identifier
| complex_identifier . identifier
| complex_identifier [ simple_expression ]
| self

Every variable and define used in an expression should bareecl It is possible to have
forward references when a variable or define identifier isl tsetually before the corresponding
declaration.

Notations with. (<DOT> are used to access the components of modules. For exafmple, i
is an instance of a module (see Section 2.3.10 [MODULE Itistéons], page 26 for information
about instances of modules) then the expressian identifies the componert of the module
instancem This is precisely analogous to accessing a component ofictsted data type.

Note that actual parameters of a module can potentially bwices of other modules.
Therefore, parameters of modules allow access to the coanp®f other module instances,
as in the following example:

MODULE main
VAR
a : bar;
m : foo(a);

MODULE bar
VAR
g : boolean;
p : boolean;

MODULE foo(c)
DEFINE
flag := c.q | c.p;

Here, the value ofrh.flag ’is the logicalORof ‘a.p 'and ‘a.q .

Individual elements of an array are accessed in the typasdlidbn with the index required
given in square brackets. For exampleaifidentifies an array, the expressica{N] ’identifies
element N of array ‘a’. It is an error for the expressiofN' to evaluate to a number outside the
subscript bounds of arrag’, or to a symbolic value. For example, for a module definition

MODULE main
VAR
a : array -1 .. 4 of boolean;

27



aa : array -1 .. 4 of array 0 .. 2 of boolean;
b : -1.4;

expressionsd[-1] ’and ‘aa[3][0] are legal, whereasa[5] ’'and ‘a[b] ’are not.
It is possible to refer to the name that the current modulebleas instantiated to by using
thesel f built-in identifier.

MODULE container(init_valuel, init_value2)
VAR cl : counter(init_valuel, self);
VAR c¢2 : counter(init_value2, self);

MODULE counter(init_value, my_container)

VAR v: 1..100;
ASSIGN

init(v) := init_value;
DEFINE

greatestCounterInContainer := v >= my_container.cl.v &
vV >= my_container.c2.v;

MODULE main
VAR c¢ : container(14, 7);
SPEC

c.cl.greatestCounterinContainer;

In this example an instance of the moduatmtainer  is passed to the sub-modueunter

In the main module,c is declared to be an instance of the modobmtainer , which de-
clares two instances of the modueunter . Every instance of theounter module has a
definegreatestCounterinContainer which specifies the condition when this particular
counter has the greatest value in the container it belongs to. Smater needs access to
the parentontainer  to access all theounters in thecontainer

2.3.12 Processes

Processes are used to model interleaving concurrengyroéessis a module which is instan-
tiated using the keywordpr ocess’ (see Section 2.3.10 [MODULE Instantiations], page 26).
The program executes a step by non-deterministically ¢chgasprocess, then executing all of
the assignment statements in that process in parallelirtpicit that if a given variable is not
assigned by the process, then its value remains unchangae. tihat only assignments of the
form

ASSIGN next( var _nane) = ... ;

are influenced by processes. All other kinds of assignmemntsl constraints (such 8RANS
INVAR, etc) are always in force, independent of which procesdéstasl for execution.

Each instance of a process has a speb@blean variable associated with it, called
running . The value of this variable i& if and only if the process instance is currently se-
lected for execution. No two processes may be running ataimegime.

Note that in the presence of processes NuSMV internally adesl| special variables
running and_process _selector _. These names should NOT be used in user’'s own dec-
larations, but they can be referenced for example in theitian relation of a module.

Furthermore, if the user declarbigrocesses, there will g+1 processes allocated, as the
modulemain has always its own process associated. In the following plathere are three
processpl, p2 andmain :

MODULE my_module
-- my module definition...

28



MODULE main
VAR
pl : process my_module;
p2 : process my_module;

2.3.13 A Program and thermai n Module
The syntax of a NSMV program is:

program :: module_list

module_list ::
module
| module_list module

There must be one module with the namain and no formal parameters. The moduiain
is the one evaluated by the interpreter.

2.3.14 Namespaces and Constraints on Declarations

Identifiers in the NUSMV input language may reference five different entities:dmies, vari-
ables, defines, module instances, and symbolic constants.

Module identifiers have their own separate namespace. Mddehtifiers can be used in
module type specifiers only, and no other kind of identifiers can be used there (see
Section 2.3.10 [MODULE Instantiations], page 26). Thusdmie identifiers may be equal to
other kinds of identifiers without making the program ambigsi However, no two modules
should be declared with the same identifier. Modules caneotidrlared in other modules,
therefore they are always referenced by simigéntifiers

Variable, define, and module instance identifiers are inited in a program when the mod-
ule containing their declarations is instantiated. Indlie module the variables, defines and
module instances may be referenced by the singaetifiers . Inside other modules, their
simple identifiers should be preceded by the identifier ofrttzglule instance containing their
declaration and (<DOT>. Such identifiers are callecbmplex identifier . Thefull
identifier is a complex identifier which references a variable, define, or a module in-
stance from inside theain module.

Let us consider the following:

MODULE main
VAR a : boolean;
VAR b : foo;
VAR ¢ : moo;

MODULE foo
VAR q : boolean;

e . moo;

MODULE moo

DEFINE f := 0 < 1;
MODULE not_used

VAR n : boolean;
VAR t : used;

29



MODULE used
VAR k : boolean;

The full identifier of the variable is a, the full identifier of the variablg (from the module
foo ) is b.q , the full identifier of the module instanae (from the modulefoo ) is b.e , the
full identifiers of the defind (from the modulemoo) areb.e.f andc.f , because two module
instances contain this define. Notice that, the variablaadk as well as the module instance
t do not have full identifiers because they cannot be accessetdnfiain (since the module
not _used is not instantiated).

In the NUSMV language, variable, define, and module instances bétbnge namespace,
and no two full identifiers of different variable, define, oodule instances should be equal.
Also, none of them can be redefined.

A symbolic constant can be introduced by a variable declaration if its type djgaci
enumerates theymbolic constant . For example, the variable declaration

VAR a : {OK, FAIL, waiting };

declares the variable as well as thesymbolic constants OK , FAIL andwaiting . The
full identifiers of thesymbolic constants are equal to their simplielentifiers with
the additional condition — the variable whose declaratieciares thesymbolic constants

also has a full identifier.

Symbolic constants have a separate hamespace, so their identifiers may pdtentia
be equal, for example, variable identifiers. It is an errothé same identifier in an expression
can simultaneously refer tosymbolic constant and a variable or a define. gymbolic
constant may be declared an arbitrary number of times, but it must otaded at least once,
if it is used in an expression.

2.3.15 Context

Every module instance has its owantext in which all expressions are analyzed. The context
can be defined as the full identifiers of variables declarethénmodule without their simple
identifiers. Let us consider the following example:

MODULE main
VAR a : foo;
VAR b : moo;

MODULE foo
VAR ¢ : moo;

MODULE moo
VAR d : boolean;

The context of the modulmain is” (emptyY, the context of the module instanagand inside
the module€foo ) is‘a.” , the contexts of modulmoomay be'b.”  (if the module instanck
is analyzed) anth.c.’ (if the module instanca.c is analyzed).

2.3.16 | SA Declarations

There are cases in which some parts of a module could be sharexg different modules, or
could be used as a module themselves. USNV it is possible to declare the common parts as
separate modules, and then useltB& declaration to import the common parts inside a module
declaration. The syntax of asa _declaration is as follows:

9The modulemain is instantiated with the so called empty identifier whichraatnbe referenced in a
program.

30



isa_declaration :: | SA identifier

whereidentifier must be the name of a declared module. T3 _declaration can be
thought as a simple macro expansion command, because thebtite module referenced by
anISA command is replaced to th8A _declaration

Warning: | SA is a deprecated feature and will be removed from future opssiof
NuUSMV. Therefore, avoid the use tBA _declarations . Use module instances instead.

2.4 Specifications

The specifications to be checked on the FSM can be expresseaporal logics like Compu-
tation Tree Logic CTL, Linear Temporal Logic LTL extendedwPast Operators, and Property
Specification Language (PSL) [psl03] that includes CTL aiid with Sequencial Extended
Regular Expressions (SERE), a variant of classical regidgressions. It is also possible to an-
alyze quantitative characteristics of the FSM by specifyigal-time CTL specifications. Spec-
ifications can be positioned within modules, in which casy thre preprocessed to rename the
variables according to their context.

CTL and LTL specifications are evaluated by 8MV in order to determine their truth or
falsity in the FSM. When a specification is discovered to beefaNuSMV constructs and prints
a counterexample, i.e. a trace of the FSM that falsifies tbpepty.

2.4.1 CTL Specifications

A CTL specification is given as a formula in the temporal I0@iEL, introduced by the keyword
‘CTLSPEC' (however, deprecated keywor@PEC can be used instead.) The syntax of this
specification is:

ctl_specification :: CTLSPEC ctl_expr ;
| SPEC ctl_expr ;

The syntax of CTL formulas recognized byulSMV is as follows:

E [ ctl_expr U ctl_expr ] -- exists until
A [ ctl_expr U ctl_expr ] - forall until

ctl_expr ::
simple_expr -- a simple boolean expression
| ( ctl_expr )
| ! ctl_expr -- logical not
| ctl_expr & ctl_expr -- logical and
| ctl_expr | ctl_expr -- logical or
| ctl_expr xor ctl_expr -- logical exclusive or
| ctl_expr -> ctl_expr -- logical implies
| ctl_expr <-> ctl_expr -- logical equivalence
| EG ctl_expr -- exists globally
| EX ctl_expr -- exists next state
| EF ctl_expr -- exists finally
| AG ctl_expr -- forall globally
| AX ctl_expr -- forall next state
| AF ctl_expr -- forall finally
I
I

Sincesimple _expr cannot contain th@ext operator,ctl _expr cannot contain it either.
Thectl _expr should also be hoolean expression.
Intuitively the semantics of CTL operators is as follows:

e EX pistrue in a state if there existsa states’ such that a transition goes frosno s’
andpis true ins’.

31



e AX pistrue in a state if for all statess’ where there is a transition frosto s, pis true
ins’.

e EF pis true in a statey if there existsa series of transitionsy — s1, s1 — s2, ...,
Sn—1 — Sn SUch thapis true ins,,.

e AF pistrueinastate if for all series of transitionsy — s1,s1 — S2,...,5n—1 — Sn
pistrueins,.

e EG pistruein a statg if there existan infinite series of transitions — s1, s1 — s2,
... such thapis true ineverys;.

e AG p istruein a state if for all infinite series of transitionsy — s1, s1 — s2, ... p
is true ineverys;.

e E[p U q] istrue in a state if there exista series of transitionsy — s1, s1 — s,
..,8n—1 — Syp SUch thapis true ineverystate fromsy to s,,—1 andqis true in state,,.

e Al p U q] istruein a statey if for all series of transitionsg — s1, s1 — s2, ...,
Sn—1 — Sn, P IS true ineverystate froms to s,,—1 andqis true in states,,.

A CTL formula is true if it is true inall initial states.
For a detailed description about the semanticB®E operators, please see [psl03].

2.4.2 Invariant Specifications

Itis also possible to specify invariant specifications vgiplecial constructs. Invariants are propo-
sitional formulas which must hold invariantly in the modeélhe corresponding command is
I NVARSPEC, with syntax:

invar_specification :: I NVARSPEC simple_expr ;
This statement is equivalent to
SPEC AG simple_expr ;

but can be checked by a specialised algorithm during redihamalysis. Fairness constraints
are not taken into account during invariant checking.

2.4.3 LTL Specifications
LTL specifications are introduced by the keywdr@iL SPEC. The syntax of this specification is:

Itl_specification :: LTLSPEC Itl_expr [ 0]

The syntax of LTL formulas recognized byd$MV is as follows:

Itl_expr ::
simple_expr -- a simple boolean expression
| ( Itl_expr )
| ! Itl_expr -- logical not
| Itl_expr & Itl_expr -- logical and
| Itl_expr | Itl_expr -- logical or
| Itl_expr xor Itl_expr -- logical exclusive or
| Itl_expr -> It_expr  -- logical implies
| Itl_expr <-> ltl_expr -- logical equivalence
-- FUTURE
| X Itl_expr -- next state
| G Itl_expr -- globally
| F Itl_expr -- finally
| Itl_expr U Itl_expr -- until

32



| Itl_expr V Itl_expr -- releases

-- PAST

| Y Itl_expr -- previous state

| Z Itl_expr -- not previous state not
| H Itl_expr -- historically

| O Itl_expr -- once

| Itl_expr S Itl_expr -- since

| Itl_expr T Itl_expr -- triggered

Intuitively the semantics of LTL operators is as follows:
e X pistrue attime if pistrue attime: + 1.
e F pistrue attimet if pis true atsometimet’ > t¢.

G pis true at timet if pis true atall timest’ > ¢.

e p U q is true at timet if g is true atsometime ¢ > ¢, andfor all time ¢ (such that
t<t" <t)pistrue.

p V g istrue attime if g holds atall time steps’ > ¢ up to and including the time step
t” wherep also holds. Alternatively, it may be the case thateverholds in which case
g must hold inall time steps’ > t.

e Y pistrue attime > 0if pholds attimet — 1. Y p is falseat timet,.

e Z pisequivalent tor p with the exception that the expressiortrise at timet,.
e H pistrue attimet if p holds inall previous time steps < t.

e O pistrue attimet if p held inat least oneof the previous time steps$ < t.

e p S qistrue at timet if g held at timet’ < ¢ andp holds inall time steps front’ to ¢
inclusive.

e p T qistrue attimet if p held at timet’ < ¢ andq holds inall time steps front’ to ¢
inclusive. Alternatively, ifp hasneverbeen true, thegq must hold in all time steps from
to tot.

An LTL formula is true if it is true at the initial time¢ = 0.

In NUSMV, LTL specifications can be analyzed both by means of B2Bell reasoning, or
by means of SAT-based bounded model checking. In the casebffased reasoning, 0N sMV
proceeds according to [CGH97]. For each LTL specificatigabteau of the behaviors falsifying
the property is constructed, and then synchronously coetpadth the model. With respect to
[CGH97], the approach is fully integrated withinu$MYV, and allows full treatment of past
temporal operators. Note that the counterexample is gitema such a way to show that the
falsity of a LTL specification may contain state variablesichhhave been introduced by the
tableau construction procedure.

In the case of SAT-based reasoning, a similar tableau eariin is carried out to encode the
paths of limited length, violating the property.U$MV generates a propositional satisfiability
problem, that is then tackled by means of an efficient SATesdBCCZ99].

In both cases, the tableau constructions are completeigpeaent to the user.

2.4.4 Real Time CTL Specifications and Computations

NuSMV allows for Real Time CTL specifications [EMSS91]. uUSMV assumes that each
transition takes unit time for execution. RTCTL extends slyatax of CTL path expressions
with the following bounded modalities:

rtctl_expr ::
ctl_expr
| EBF range rtctl_expr
| ABF range rtctl_expr

33



EBG range rtctl_expr
ABG range rtctl_expr

A [ rtctl_expr BU range rtctl_expr ]
E [ rtctl_expr BU range rtctl_expr ]
range :: integer_number .. integer_number

Intuitively, the semantics of the RTCTL operators is asdab:

e EBF m . n prequires that there exists a path starting from a state, thatlpropertyp
holds in a future time instamf withm < i <n

e ABF m . n prequires that for all paths starting from a state, propptiglds in a future
time instant, withm <: <n

e EBG m . n p requires that there exists a path starting from a state, thatipropertyp
holds in all future time instaniswithm < <n

e ABG m . n p requires that for all paths starting from a state, propertyolds in all
future time instants, withm < i <n

e E[ p BUmM.n g ] requires that there exists a path starting from a state, thath
propertyq holds in a future time instanf with m < ¢ < n, and propertyp holds in all
future time instantg, withm < j <1

e A[ p BUm.n g ],requiresthatfor all paths starting from a state, propghglds
in a future time instant with m < i < n, and property holds in all future time instants
j,withm < j <i
Real time CTL specifications can be defined with the follonsggtax, which extends the syntax
for CTL specifications.

rtctl_specification :: SPEC rtctl_expr [ 0]

With the COMPUTE statement, it is also possible to compute quantitativermédion on the
FSM. In particular, it is possible to compute the exact boondhe delay between two specified
events, expressed as CTL formulas. The syntax is the fallpwi

compute_specification :: COWPUTE compute_expr [ ;1]
where
compute_expr :: M N [ rtctl_expr , rtctl_expr ]

| MAX [ rtctl_expr , rtctl_expr ]

M N [start , final] returns the length of the shortest path from a statart to a state
in final. For this, the set of states reachable fratartis computed. If at any point, we encounter
a state satisfyindjnal, we return the number of steps taken to reach the state. Iéd finint is
reached and no computed states interfeat theninfinity is returned.
MAX [start , final] returns the length of the longest path from a statgtant to a state
in final. If there exists an infinite path beginning in a statesiart that never reaches a state
in final, theninfinity is returned. If any of the initial or final states is empty,rthendefineds
returned.

It is important to remark here that if the FSM is not total .(iiecontains deadlock states)
COVPUTE may produce wrong results. It is possible to check the FSNhagdeadlock states
by calling the commandheck _fsm.

34



2.4.5 PSL Specifications

NuSMV allows for PSL specifications as from version 1.01 of P@hguage Reference Manual
[psl03]. PSL specifications are introduced by the keywdPSLSPEC. The syntax of this
declaration (as from the PSL parsers distributed by IBML]PS:

psispec_declaration :: "PSLSPEC " psl_expr ";"
where

psl_expr ::
psl_primary_expr

| psl_unary_expr

| psl_binary_expr

| psl_conditional_expr

| psl_case_expr

| psl_property

The first five classes define the building blockspgst _property and provide means of com-
bining instances of that class; they are defined as follows:

psl_primary_expr ::

number ;7 a numeric constant
| boolean ;; a boolean constant
| var_id ;; a variable identifier
| { pslexpr , .. , pslexpr }
| { psl_expr " {" psl_expr , ., "psl_expr" 1
| ( psl_expr )

psl_unary_expr ::

+ psl_primary_expr
| - psl_primary_expr
| ! psl_primary_expr
psl_binary_expr ::

psl_expr + psl_expr
| psl_expr uni on psl_expr
| psl_expr in psl_expr
| psl_expr - psl_expr
| psl_expr *  psl_expr
| psl_expr | psl_expr
| psl_expr % psl_expr
| psl_expr == psl_expr
| psl_expr 1= psl_expr
| psl_expr < psl_expr
| psl_expr <= psl_expr
| psl_expr > psl_expr
| psl_expr >= psl_expr
| psl_expr & psl_expr
| psl_expr | psl_expr
| psl_expr xor psl_expr
psl_conditional_expr ::

psl_expr ? psl_expr : psl_expr
psl_case_expr :
case
psl_expr : psl_expr
psl_expr : psl_expr ;
endcase

35



Among the subclasses p&l _expr we depict the claspsl _bexpr that will be used in the
following to identify purely boolean, i.e. not temporal pegssions. The class of PSL properties
psl _property is defined as follows:

psl_property ::
replicator psl_expr ;; a replicated property
| FL_property abort psl_bexpr
| psl_expr <-> psl_expr
| psl_expr -> psl_expr
| FL_property
| OBE_property
replicator ::
forall var_id [index_range] i n value_set
index_range ::
[ range ]
range :
low_bound : high_bound
low_bound ::
number
| identifier
high_bound ::
number
| identifier
| inf ;; inifite high bound
value_set ::
{ value_range , .. , value_range }
| bool ean
value_range ::
psl_expr
| range

The instances dfL_property  are temporal properties built using LTL operators and SEREs
operators, and are defined as follows:

FL_property ::

;7 PRIMITIVE LTL OPERATORS

X FL_property

| X! FL_property

| F FL_property

| G FL_property

| [ FL_property U FL_property ]
| [ FL_property W FL_property ]
; SIMPLE TEMPORAL OPERATORS
al ways FL_property

never FL_property

next FL_property

next! FL_property

eventual | y! FL_property

FL_property until! FL_property
FL_property until FL_property
FL_property until!_ FL_property
FL_property until _ FL_property

I
I
I
I
I
I
I
I
I
| FL_property bef ore! FL_property
| FL_property bef ore FL_property

| FL_property bef ore! _ FL_property

36



| FL_property bef ore_ FL_property
;; EXTENDED NEXT OPERATORS

| X [number] ( FL_property )

| XU [number] ( FL_property )

| next [number] ( FL_property )

| next! [number] ( FL_property )
next _a [range] ( FL_property )
next _a! [range] ( FL_property )
next e [range] ( FL_property )
next _e! [range] ( FL_property )

I
I
I
I
| next_event! ( psl_bexpr ) ( FL_property )

| next_event ( psl_bexpr ) ( FL_property )

| next_event! ( psl_bexpr ) [ number ] ( FL_property )

| next_event ( psl_bexpr ) [ number ] ( FL_property )

| next_event_a! ( psl_bexpr ) [pslexpr ] ( FL_property )
| next_event_a ( psl_bexpr ) [psl_expr ] ( FL_property )
| next_event _e! ( psl_bexpr ) [pslexpr 1 ( FL_property )
| next_event_e ( psl_bexpr ) [psl_expr ] ( FL_property )
;; OPERATORS ON SEREs

| sequence ( FL_property )
| sequence |-> sequence [ !]
| sequence |=> sequence [ !]
| al ways sequence

| G sequence

| never sequence

| eventual |l y! sequence

| within! ( sequence_or_psl_bexpr , psl_bexpr ) sequence
| within ( sequence_or_psl_bexpr , psl_bexpr ) sequence

| within!_ ( sequence_or_psl_bexpr , psl_bexpr ) sequence
| within_ ( sequence_or_psl_bexpr , psl_bexpr ) sequence

1

| whilenot! ( psl_bexpr ) sequence
| whilenot ( psl_bexpr ) sequence
| whilenot!_ ( psl_bexpr ) sequence
| whilenot_ ( psl_bexpr ) sequence
sequence_or_psl_bexpr ::
sequence
| psl_bexpr

Sequences, i.e. istances of clasguence , are defined as follows:

sequence ::
{ SERE}

SERE :
sequence

| psl_bexpr

;; COMPOSITION OPERATORS

| SERE ; SERE

| SERE : SERE

| SERE & SERE

37



| SERE && SERE

| SERE | SERE

;7 RegExp QUALIFIERS

| SERE [* [count] ]

| [* [count] ]

| SERE [ +]

| [+]

| psl_bexpr [= count ]

| psl_bexpr [-> count ]
count ::

number
| range

Istances ofOBEproperty are CTL properties in the PSL style and are defined as follows:

OBE_property ::
AX OBE_property
| AG OBE_property
| AF OBE_property
| A [ OBE_property U OBE_property ]
| EX OBE_property
| EG OBE_property
| EF OBE_property
| E[ OBE_property U OBE_property ]

The NUSMV parser allows to input any specification based on the granabove, but currently,
verification of PSL specifications is supported only for tiBEDsubset, and for a subset of PSL
for which it is possible to define a translation into LTL. Fbetspecifications that belong to these
subsets, it is possible to apply all the verification techa&gjthat can be applied to LTL and CTL
Specifications.

2.5 Variable Order Input

It is possible to specify the order in which variables shaagear in the BDD’s generated by
NuSMV. The file which gives the desired order can be read in ugiegi option in batch
mode or by setting thmput _order _file environment variable in interactive mode.

2.5.1 Input File Syntax

The syntax for input files describing the desired variabledng is as follows, where the file
can be considered as a list of variable names, each of whishlmewon a separate line:

vars_list :: EMPTY
| var_list_item vars_list

var_list_item :: complex_identifier
| complex_identifier . integer_number

WhereEMPTY means parsing nothing.
This grammar allows for parsing a list of variable names efftilowing forms:

Complete_Var_Name -- to specify an ordinary variable
Complete_Var_Name[index] -- to specify an array variable e lement
Complete_Var_Name.NUMBER -- to specify a specific bit of a

-- scalar variable

38



whereComplete _Var _Nameis just the name of the variable if it appears in the moddikeN,
otherwise it has the module name(s) prepended to the siaexdmple:

modl1.mod2...modN.varname

wherevarname is a variable inmodN and modN.varname is a variable inmodN-1, and
so on. Note that the module nam®in is implicitely prepended to every variable name and
therefore must not be included in their declarations.
Any variable which appears in the model file, but not the drdgfile is placed after all the others
in the ordering. Variables which appear in the ordering fileriot the model file are ignored. In
both cases NSMYV displays a warning message stating these actions.

Comments can be included by using the same syntax as regulaMV files. That is, by
starting the line with- .

2.5.2 Scalar Variables

A variable, which has a finite range of values that it can tékencoded as a set bbolean
variables. These boolean variables represent the binaiyagents of all the possible values for
the scalar variable. Thus, a scalar variable that can tdkes#érom 0 to 7 would require three
boolean variables to represent it.

Itis possible not only to declare the position of a scalaralde in the ordering file, but each
of theboolean variables which represent it.
If only the scalar variable itself is named then all the bealeariables which are actually used
to encode it are grouped together in the BDD package.
Variables which are grouped together will always remairt teeach other in the BDD package
and in the same order. When dynamic variable re-orderingrised out, the group of variables
are treated as one entity and moved as such.
If a scalar variable is omitted from the ordering file theniil ae added at the end of the variable
order and the specific-bit variables that represent it vélignoouped together. However, if any
specific-bit variables have been declared in the orderieg($ite below) then these will not be
grouped with the remaining ones.
It is also possible to specify that specific-bit variables ptaced elsewhere in the ordering.
This is achieved by first specifying the scalar variable némibe desired location, then simply
specifyingComplete _Var _Name.i atthe position where you want that bit variable to appear:

Complete _Var Name

Complete _Var _Name.i

The result of doing this is that the variable representiegthbit is located in a different position
to the remainder of the variables representing the restebits. The specific-bit variables
varname.0, ..., varname.i-1, varname.i+1, ..., varnamarélgrouped together as before.

If any one bit occurs before the variable it belongs to, threai@ing specific-bit variables
are not grouped together:

Complete _Var _Name.i

Complete _Var Name

The variable representing th& bit is located at the position given in the variable orderngl
the remainder are located where the scalar variable naneelardd. In this case, the remaining
bit variables will not be grouped together.

39



This is just a short-hand way of writing each individual sfieit variable in the ordering file.
The following are equivalent:

Complete _Var _Name.O Complete _Var _Name.0
Complete _Var Name.1l Complete _Var Name

Complete _Var _Name.N-1

where the scalar variableomplete _Var _Namerequires N boolean variables to encode all the
possible values that it may take. It is still possible to tBpecify other specific-bit variables at
later points in the ordering file as before.

2.5.3 Array Variables

When declaring array variables in the ordering file, eaclividdal element must be specified
separately. It is not permitted to specify just the name efafray. The reason for this is that
the actual definition of an array in the model file is esselgt@khorthand method of defining a
list of variables that all have the same type. Nothing is gdihy declaring it as an array over
declaring each of the elements individually, and there iglifference in terms of the internal
representation of the variables.

2.6 Clusters Ordering

When NUSMYV builds a clusterized BDD-based FSM during model comsion, an initial sim-
ple clusters list is roughly constructed by iterating tigialist of variables and by constructing
the clusters by picking the transition relation associdtedach variable in the list. Later, the
clusters list will be refined and improved by applying thestéuing alghorithm that the user
previoulsy selected (see partitioning methods at pageoB.fufther information).

In [WIKWLvdBRO6], Wendy Johnston and others from Universit Queensland, showed
that choosing a good ordering for the initial list of variedlthat is used to build the clusters
list may lead to a dramatic improvement of performances.y e experiments in a modified
version of NUSMV, by allowing the user to specify a variable ordering toused when con-
structing the initial clusters list. The prototype code baen included in version 2.4.1, that
offers the new optiotrans _order _file to specify a file containing a variable ordering (see
at page 44 for further information).

Grammar of the clusters ordering file is the same of variatulering file presented in section
2.5 at page 38.

40



Chapter 3

Running NuSMV interactively

The main interaction mode of DMV is through an interactive shell. In this modesSMV
enters a read-eval-print loop. The user can activate thieusamMNuSMV computation steps
as system commands with different options. These stepsheaaftre be invoked separately,
possibly undone or repeated under different modalitieses&hsteps include the construction
of the model under different partitioning techniques, matecking of specifications, and the
configuration of the BDD package. The interactive shell of9\MV is activated from the system
prompt as follows (NuSMV>is the default NNSMV shell prompt):

system _prompt> NuSMWV -int <RET>
NuSMvV>

A NUSMV command is a sequence of words. The first word specifiesdhenand to be
executed. The remaining words are arguments to the invofletnand. Commands separated
by a ;' are executed sequentially; theu$MV shell waits for each command to terminate
in turn. The behavior of commands can depend on environmamahbles, similar to “csh”
environment variables.

Itis also possible to make DWSMV read and execute a sequence of commands from a file,
through the command line optier oad:

system _prompt> NuSMWV -int -load cmdfile <RET>

-load cmd-file Starts the interactive shell and then execute$SMV com-
mands from filecmd-file If an error occurs during a com-
mand execution, commands that follow will not be executed.
See also the variable on_failure  _script _quits
The option- | oad must be used withi nt to be effective.

In the following we present the possible commands followethie related environment vari-
ables, classified in different categories. Every commarssvars to the optiorh by printing out
the command usage. When output is paged for some commartis(ep), it is piped through
the program specified by the UNIRAGERshell variable, if defined, or through the UNIX com-
mand “more”. Environment variables can be assigned a valtiethe “set” command. Com-
mand sequences tol$ MV must obey the (partial) order specified in the Figure 3lépicted
at page 86. For instance, it is not possible to evaluate Cpkessions before the model is built.

A number of commands and environment variables, like thasdiy with file names,
accept arbitrary strings. There are a few reserved chasasteich must be escaped if they are
to be used literally in such situations. See the sectionri®sg thehistory command, on

41



page 79, for more information.
The verbosity of NSMV is controlled by the following environment variable.

verboselevel Environment Variable|

Controls the verbosity of the system. Possible values aegéns fromD (no messages) to
4 (full messages). The default valueQis

3.1 Model Reading and Building

The following commands allow for the parsing and compiliatid the model into a BDD.

read_model - Reads a NuSMV file into NuSMV. Command|

read _-model [-h] [-i model-file]

Reads a NSMV file. If the -i option is not specified, it reads from the file specified in
the environment variablimput _file

Command Options:

-i model-file Sets the environment variableinput _file to
model-file , and reads the model from the specified file.

input file Environment Variable|

Stores the name of the input file containing the model. It aasdi by the “set” command
or by the command line optioni'. There is no default value.

pp-_list Environment Variable|

Stores the list of pre-processors to be run on the input filerbet is parsed by NSMV.
The pre-processors are executed in the order specifieddyahable. The argument must
either be the empty string (specifying that no pre-proassace to be run on the input
file), one single pre-processor name or a space seperatefidie-processor names inside
double quotes. Any invalid names are ignored. The defanlbme.

flatten_hierarchy - Flattens the hierarchy of modules Command|

flatten  _hierarchy [-h]

This command is responsible of the instantiation of modatesprocesses. The instantia-
tion is performed by substituting the actual parameterghf®formal parameters, and then
by prefixing the result via the instance name.

backward_compatibility Environment Variable|

It is used to enable or disable type checking and other feafoirovided by NuSMV 2.4.

If set to1 then the type checking is turned off, andiSMV behaves as the old versions
w.r.t. type checking and other features like writing of #agéd and booleanized SMV files.
If set to 0 then the type checking is turned on, and whenever a type isresrcountered
while compiling a NUSMV program the user is informed and the execution stopped. A
default it set tdD.

type_checking warning_on Environment Variable|

42



Enables notification of warning messages generated by pleectyecking. If set t@, then
messages are disregarded, otherwise if séttteey are notified to the user. As default it
settol.

show.vars - Shows model’s symbolic variables and their values Command |

show_vars [-h] [-s] [-i] [-m | -0 output-file]

Prints symbolic input and state variables of the model wigirtrange of values (as defined
in the input file).

Command Options:

-S Prints only state variables.

i Prints only input variables.

-m Pipes the output to the program specified by BEBGER
shell variable if defined, else through the UNIX command
“more”.

-0 output-file Writes the output generated by the command to
output-file

encodevariables - Builds the BDD variables necessary to comp Command

the model into a BDD.

encode _variables [-h] [-i order-file]

Generates the boolean BDD variables and the ADD needed tmerpropositionally the
(symbolic) variables declared in the model. The variablescaeated as default in the
order in which they appear in a depth first traversal of theangy.

The input order file can be partial and can contain variabtgsdeclared in the model.
Variables not declared in the model are simply discardedabbes declared in the model
which are not listed in the ordering input file will be creattd appended at the end of
the given ordering list, according to the default ordering.

Command Options:

-i order-file Sets the environment variableput _order _file to
order-file , and reads the variable ordering to be used
from file order-file . This can be combined with the
write _order command. The variable ordering is written
to a file, which can be inspected and reordered by the user,
and then read back in.

input _order_file Environment Variable|

Indicates the file name containing the variable orderingetaged in building the model
by the ‘encode _variables ' command. There is no default value.

write _order_dumps_bits Environment Variable|

Changes the behaviour of the commawite _order .

When this variable is setyrite _order will dump the bits constituting the boolean en-
coding of each scalar variable, instead of the scalar Variggelf. This helps to work
at bits level in the variable ordering file. See the commamide _order for further
information. The default value 3.

43



write _order - Writes variable order to file. Command |

write _order [-h] [-b] [(-0 | -f) order-file]

Writes the current order of BDD variables in the file specifigal the-o option. If no
option is specified the environment varialdetput _order _file will be considered.

If the variableoutput _order _file is unset (or set to an empty value) then standard
output will be used.

By default, the bits constituting the scalar variables éimp are not dumped. When a
variable bit should be dumped, the scalar variable whichbibéelongs to is dumped
instead if not previously dumped. The result is a variabtiedng containing only scalar
and boolean model variables.

To dump single bits instead of the corresponding scalaaktes, either the optiof can
be specified, or the environment varialbleite _order _dumps_bits must be previ-
ously set.

When the boolean variable dumping is enabled, the singdenbitoccur within the result-
ing ordering file in the same position that they occur at BDile

Command Options:

-b Dumps bits of scalar variables instead of the
single scalar variables. See also the \variable
write _order _dumps_bits

-0 order-file Sets the environment variableutput _order _file to
order-file and then dumps the ordering list into that
file.

-f order-file Alias for the -o option. Supplied for backward
compatibility.

output_order _file Environment Variable|

The file where the current variable ordering has to be writtéthe default value is
‘temp.ord "’

vars_order_type Environment Variable|

Controls the manner variables are ordered by default, wheariable ordering is not
specified.

e inputs_before. Input variables are forced to be ordeteeforestate variables (de-
fault).
e inputs_after. Input variables are forced to be ordeuwter state variables.

e lexicographic. Input and state variables will be ordered as they are datlarthe
input smv file, in a lexicographic order.

build_model - Compiles the flattened hierarchy into a BDD Command|

build _model [-h] [-f] [-m Method]

Compiles the flattened hierarchy into a BDD (initial statemariants, and transition
relation) using the method specified in the environmentabdeipartition _method
for building the transition relation.

44



Command Options:

-m Method Sets the environment variableartition _method to
the valueMethod , and then builds the transition relation.
Available methods aréMonolithic , Threshold and
Iwls95CP .

-f Forces model construction. By default, only one partition
method is allowed. This option allows to overcome this de-
fault, and to build the transition relation with differerenti-
tioning methods.

partition _method Environment Variable|

The method to be used in building the transition relatiord smcompute images and
preimages. Possible values are:

e Monolithic. No partitioning at all.

e Threshold. Conjunctive partitioning, with a simple threshold heticis Assign-
ments are collected in a single cluster until its size grower the value specified
in the variableconj _part _threshold . It is possible (default) to use affinity
clustering to improve model checking performance. &éaity variable.

e |wIs95CP. Conjunctive partitioning, with clusters generated amieoed according
to the heuristic described in [RAM®5]. Works in conjunction with the variables
image _cluster _size , image ‘W1 image ‘W2 image W3 image W4 It is
possible (default) to use affinity clustering to improve ralochecking performance.
Seeaffinity variable. Itis also possible to avoid (default) preordgioficlusters
(see [RAP95]) by setting théwls95preorder variable appropriately.

conj_part_threshold Environment Variable|

The limit of the size of clusters in conjunctive partitioginThe default value i® BDD
nodes.

affinity Environment Variable|

Enables affinity clustering heuristic described in [MHSQ®]ssible values aor 1. The
default value isl.

trans_order _file Environment Variable|

Reads the a variables list from fite file, to be used when clustering the transition rela-
tion. This feature has been provided by Wendy Johnston,ddsity of Queensland. The
results of Johnston’s research have been presented at Fd/ire®@amilton, Canada. See
[WIKWLVABRO6].

image cluster_size Environment Variable|

One of the parameters to configure the behaviour ofh&d5CPpartitioning algorithm.
image _cluster _size is used as threshold value for the clusters. The defaulevialu
1000 BDD nodes.

imageW{1,2,3,4 Environment Variable|

The other parameters for thels95CP partitioning algorithm. These attribute different
weights to the different factors in the algorithm. The défaalues ares, 1, 1, 6 respec-
tively. (For a detailed description, please refer to [R7B].)

45



iwls95preorder Environment Variable|

Enables cluster preordering following heuristic desatiiie [RAP'95], possible values
are0 or 1. The default value i§. Preordering can be very slow.

image.verbosity Environment Variable|

Sets the verbosity for the image methHeds95CPR, possible values ai@or 1. The default
value isO.

print _iwls950ptions- Prints the Iwls95 Options. Command|

print  _iwls950ptions [-h]
This command prints out the configuration parameters oMHe395 clustering algorithm,
i.e.image _verbosity ,image _cluster _size andimage W1,2,3,4 }.

go- Initializes the system for the verification. Command |
go [-h] [-]
This command initializes the system for verification. It iguwalent to the

command sequencesad _model, flatten _hierarchy , encode _variables ,
build _flat _model, build _model .

If some commands have already been executed, then onlyrianiag ones will be in-
voked.

Command Options:

-f Forces model construction even when Cone Of Influence is
enabled.
processmodel - Performs the batch steps and then returns cont Command

to the interactive shell.

process _model [-h] [-f] [-r] [-I model-file] [-m Method]

Reads the model, compiles itinto BDD and performs the mddetking of all the specifi-
cation contained init. If the environment varialibeward _search has been set before,
then the set of reachable states is computed. If the optiois specified, the reordering
of variables is performed and a dump of the variable ordeisngerformed accordingly.
This command simulates the batch behavior oSV and then returns the control to
the interactive shell.

Command Options:

-f Forces the model construction even when Cone Of Influence
is enabled.
-r Forces a variable reordering at the end of the computation,

and dumps the new variables ordering to the default order-
ing file. This options acts like the command line option
-reorder

46



-i model-file Sets the environment variableinput _file to

file model-file , and reads the model from file
model-file
-m Method Sets the environment variableartition _method to

Method and uses it as partitioning method.

write _flat_model - Writes a flat model to a file Command |

write _flat _model [-h] [-0 filename]

Writes the currently loaded SMV model in the specified filagahaving flattened it.
Processes are eliminated and a corresponding equivalet@l isgrinted out.

If no file is specified, the file specified via the environment rialale
output _flatten _model file is used if any, otherwise standard output is
used.

Command Options:
-0 filename Attempts to write the flat SMV model iflename

output_flatten_modelLfile Environment Variable|

The file where the flattened model has to be written. The defalue is stdout .

write _booleanmodel- Writes a flat and boolean model to a file Command |

write _boolean _model [-h] [-0 filename]
Writes the currently loaded SMV model in the specified filagahaving flattened and

booleanized it. Processes are eliminated and a corresgpeduivalent model is printed
out.

If no file is specified, the file specified via the environment rialale
output _boolean _model file is used if any, otherwise standard output is
used.

Command Options:

-0 filename Attempts to write the flat and boolean SMV model in
filename

In NuSMV 2.4 scalar variables are dumpedDRiEFI NEs whose body is their boolean
encoding.

This allows the user to still express and see parts of therg@teboolean model in terms
of the original model’s scalar variables names and valuas séll keeping the generated
model purely boolean.

Also, symbolic constants are dumped withi@B@STANTS statement to declare the values
of the original scalar variables’ for future reading of trengrated file.

When NUSMV detects that there were triggered one or more dynamitlegimgs in the
BDD engine, the commandrite _boolean _model also dumps the current variables
ordering, if the optioroutput _order _file is set.

The dumped variables ordering will contain single bits @lacvariables depending on the
current value of the optiowrite _order _dumps_bits . See commandrite _order

for further information about variables ordering.

output_booleanmodelfile Environment Variable|

47



The file where the flattened and booleanized model has to emriThe default value is
‘stdout .

output_word_format Environment Variable|

This variable sets in which bageord[e] constants are outputted (during traces, counterex-
amples, etc, printing). Possible values are 2, 8, 10 and bée that if a part of an input
file is outputted (for example, if a specification express®autputted) then thevord[e]
constants remain in same format as they were written in et ifile.

3.2 Commands for Checking Specifications
The following commands allow for the BDD-based model cheglof a NUuSMV model.

computereachable- Computes the set of reachable states Command |

compute _reachable [-h]

Computes the set of reachable states. The result is thertasgdplify image and preim-
age computations. This can result in improved performafaresiodels with sparse state
spaces. Sometimes this option may slow down the perfornsarmeeause the computation
of reachable states may be very expensive. The environmaeiableforward _search

is set during the execution of this command. Since versidrD2the computation of the
reachable states is automatically performed as the varfablard _search is set by
default.

print _reachable states- Prints out the number of reachable state Command|

print _reachable _states [-h] [-V]

Prints the number of reachable states of the given modelertoose mode, prints also the
list of all reachable states. The reachable states are dethfuneeded.

checkfsm - Checks the transition relation for totality. Command|

check fsm [-h] [-m | -0 output-file]

Checks if the transition relation is total. If the transiti@lation is not total then a potential
deadlock state is shown.

Command Options:

-m Pipes the output generated by the command to the pro-
gram specified by thPAGERshell variable if defined, else
through the UNIX command “more”.

-0 output-file Writes the output generated by the command to the file
output-file

At the beginning reachable states are computed in orderarmagtee that deadlock states
are actually reachable.

checkfsm Environment Variable|

Controls the activation of the totality check of the traiwsit relation during the
process _model call. Possible values afeor 1. Default value i9.

48



print _fsm_stats- Prints out information about the fsm and cluste Command
ing.

print _fsm_stats [-h] | [-m] | [-0 output-file]

This command prints out information regarding the fsm archeduster. In particular for
each cluster it prints out the cluster number, the size ofcthster (in BDD nodes), the
variables occurring in it, the size of the cube that has toumntjfied out relative to the
cluster and the variables to be quantified out.

Command Options:

-m Pipes the output generated by the command to the pro-
gram specified by thBAGERshell variable if defined, else
through the UNIX command “more”.

-0 output-file Writes the output generated by the command to the file
output-file
print _fair _states- Prints out the number of fair states Command|

print _fair _states [-h] [-V]

Prints the number of fair states of the given model. In veehusde, prints also the list of
all fair states.

print _fair _transitions - Prints out the number of fair states Command|

print _fair _transitions [-h] [-V]

Prints the number of fair transitions of the given model. énbose mode, prints also the
list of all fair transitions. The transitions are displayesistate-input pairs.

checkctlspec- Performs fair CTL model checking. Command |

check _ctlspec [-h] [-m | -0 output-file] [-n number | -p

"ctl-expr [IN context]"]

Performs fair CTL model checking.

A ctl-expr to be checked can be specified at command line using oppon
Alternatively, option-n can be used for checking a particular formula in the property
database. If neithen nor-p are used, all the SPEC formulas in the database are checked.

Command Options:
-m Pipes the output generated by the command in processing
SPECs to the program specified by tiRAGERshell vari-
able if defined, else through the UNIX command “more”.

-0 output-file Writes the output generated by the command in processing
SPECs to the fileoutput-file

-p "ctl-expr [IN A CTL formula to be checked.context is the module

context]" instance name which the variablesditt-expr must be
evaluated in.

49



-n number Checks the CTL property with indexumber in the prop-
erty database.

If the ag-only _search environment variable has been set, then a specializedthigor
to check AG formulas is used instead of the standard modekatg algorithms.

Since version 2.4.1 this command substitutiesck _spec that isdeprecated

checksspec- Performs fair CTL model checking. Command|

check _spec [-h] [-m | -0 output-file] [-n number | -p
"ctl-expr [IN context]"]
Performs fair CTL model checking.

Since version 2.4.1 this commanddsprecatedout still provided for backward compati-
bility reasons. Useheck _ctlspec instead.

ag.only_search Environment Variable|

Enables the use of an ad hoc algorithm for checking AG formul@iven a formula of
the formAG alpha the algorithm computes the set of states satisfgipina and checks
whether it contains the set of reachable states. If thistish@ocase, the formula is proved
to be false.

forward _search Environment Variable|

Enables the computation of the reachable states duringréeess _model command
and when used in conjunction with tlag_only _search environment variable enables
the use of an ad hoc algorithm to verify invariants. Sincesiger 2.4.0, this option is set
by default.

Itl _tableau_forward _search Environment Variable|

Forces the computation of the set of reachable states faabheau resulting from BDD-
based LTL model checking, performed by commaheéck _ltlspec . If the variable
Itl _tableau _forward _search is not set (default), the resulting tableau will inherit
the computation of the reachable states from the modelaibled. If the variable is set, the
reachable states set will be calculated for the maddifor the tableau resulting from LTL
model checking. This might improve performances of the camicheck _ltlspec
but may also lead to a dramatic slowing down. This variabke éféect only when the
calculation of reachable states for the model is enablesf¢gsard _search ).

checkinvar - Performs model checking of invariants Command|

check _invar [-h] [-m | -0 output-file] [-n number | -p

"invar-expr [IN context]"]

Performs invariant checking on the given model. An invariara set of states. Checking
the invariant is the process of determining that all sta¢astable from the initial states lie
in the invariant. Invariants to be verified can be providegiawple formulas (without any
temporal operators) in the input file via tidVARSPECkeyword or directly at command
line, using the optionp .

Option-n can be used for checking a particular invariant of the modeleither-n nor
-p are used, all the invariants are checked.

During checking of invariants all the fairness conditiossa@ciated with the model are
ignored.

50



If an invariant does not hold, a proof of failure is demonistia This consists of a path
starting from an initial state to a state lying outside thaifant. This path has the property
that it is the shortest path leading to a state outside thaismt.

51



Command Options:
-m Pipes the output generated by the program in processing
INVARSPECSs to the program specified by tHRAGER
shell variable if defined, else through the UNIX command

“more”.
-0 output-file Writes the output generated by the command in processing
INVARSPEG:s to the fileoutput-file
-p "invar-expr [IN The command line specified invariant formula to be verified.
context]" context is the module instance name which the variables

in invar-expr must be evaluated in.

checkltlspec- Performs LTL model checking Command|

check _ltlspec [-h] [-m | -0 output-file] [-n number | -p

"ltl-expr [IN context]"]

Performs model checking of LTL formulas. LTL model checkiageduced to CTL model
checking as described in the paper by [CGH97].

A ltl-expr to be checked can be specified at command line using ogiior\lterna-
tively, option-n can be used for checking a particular formula in the propdatabase. If
neither-n nor-p are used, all the LTLSPEC formulas in the database are ctiecke

Command Options:

-m Pipes the output generated by the command in process-
ing LTLSPEG to the program specified by tHeAGER
shell variable if defined, else through the UNIX command

“more”.

-0 output-file Writes the output generated by the command in processing
LTLSPEG to the fileoutput-file

-p "ltl-expr [IN An LTL formula to be checked.context is the module

context]" instance name which the variableslilkexpr must be
evaluated in.

-n number Checks the LTL property with indemumber in the prop-

erty database.

compute- Performs computation of quantitative characteristics Command|

compute [-h] [-m | -0 output-file] [-n number | -p

"compute-expr [IN context]"]

This command deals with the computation of quantitativerattaristics of real time sys-
tems. It is able to compute the length of the shortest (lagegh from two given set of
states.

MAX [ alpha , beta ]
MIN [ alpha , beta ]

Properties of the above form can be specified in the input iilehe keywordCOMPUTE
or directly at command line, using optiep .

If there exists an infinite path beginning in a statestart that never reaches a state in
final, theninfinity is returned. If any of the initial or final states is empty,rthmdefineds
returned.

52



Option-n can be used for computing a particular expression in the mdideeither -n
nor-p are used, all the COMPUTE specifications are computed.

It is important to remark here that if the FSM is not total .(itecontains deadlock states)
COVPUTE may produce wrong results. It is possible to check the FSNhagdeadlock
states by calling the commartieck _fsm.

Command Options:

-m Pipes the output generated by the command in process-
ing COMPUT& to the program specified by tHeAGER
shell variable if defined, else through the UNIX command
“more”.

-0 output-file Writes the output generated by the command in processing
COMPUT#to the fileoutput-file

-p "compute-expr [IN A COMPUTE formula to be checked. context

context]" is the module instance name which the variables in
compute-expr  must be evaluated in.
-n number Computes only the property with indeximber .
check property - Checks a property into the current list of prope Command

ties, or a newly specified property

check _property [-h] [-n number] | [(-<c | -l | -i | -s | -q )
[-p "formula [IN context]"]]
Checks the specified property taken from the property lishdols the new specified prop-
erty and checks it. It is possible to checkKL, CTL, INVAR, PSL and quantitative
(COMPUTHproperties. Every newly inserted property is inserted eretked.
Command Options:

-C Checks all theCTL properties not already checked. If -p is

used, the given formula is expected to b€ formula.

| Checks all theLTL properties not already checked. If -p is
used, the given formula is expected to beTa. formula.

-i Checks all theNVAR properties not already checked. If
-p is used, the given formula is expected to bEN¥AR

formula.

-S Checks all thePSL properties not already checked.-fif is
used, the given formula is expected to bR formula.

-q Checks all theCOMPUTgroperties not already checked. If
-p is used, the given formula is expected to BB@QMPUTE
formula.

-p "formula [IN Checks the formula specified on the command-line.

context]" context is the module instance name which the variables

in formula must be evaluated in.

add_property - Adds a property to the list of properties Command |

add _property [-h] [(-c | -l | -i | - | -S) -p "formula

[IN context]"]

Adds a property in the list of properties. It is possible teeriLTL, CTL, INVAR,

PSL and quantitativeQOMPUTEproperties. Every newly inserted property is initialized
to unchecked. A type option must be given to properly exethgéeommand.

53



Command Options:

-C Adds aCTL property.

-l Adds anLTL property.

i Adds anINVAR property.

-S Adds aPSL property.

-q Adds a quantitativeGOMPUTproperty.

-p "formula [IN Adds the formula  specified on the command-line.
context]" context is the module instance name which the variables

informula must be evaluated in.

3.3 Commands for Bounded Model Checking

In this section we describe in detail the commands for doimdy @ontrolling Bounded Model
Checking in NUSMV. Bounded Model Checking is based on the reduction of thented
model checking problem to a propositional satisfiabilitplgem. After the problem is gen-
erated, NSMV internally calls a propositional SAT solver in order todian assignment which
satisfies the problem. Currentiyd$MV supplies three SAT solvers: SIM, Zchaff and MiniSat.
Notice that Zchaff and MiniSat are for non-commercial pwg®only. They are therefore not
included in the source code distribution or in some of thatyirdistributions of NSMV.

Some commands for Bounded Model Checking use incrememgatitims. These algo-
rithms exploit the fact that satisfiability problems genedafor a particular bounded model
checking problem often share common subparts. So infoomaibtained during solving of
one satisfiability problem can be used in solving of anothes. oThe incremental algorithms
usually run quicker then non-incremental ones but requB&®& solver with incremental inter-
face. Atthe moment, only Zchaff and MiniSat offer such amifgce. If none of these solvers
are linked to NUSMV, then the commands which make use of the incrementatitiges will
not be available.

Itis also possible to generate the satisfiability problerthatit calling the SAT solver. Each
generated problem is dumped in DIMACS format to a file. DIMAGS &e standard format used
as input by most SAT solvers, so it is possible to usegSNMV with a separate external SAT
solver. Atthe moment, the DIMACS files can be generated oplgdmmands which do not use
incremental algorithms.

bmc_setup- Builds the model in a Boolean Epression format. Command|

bmc_setup [-h]

You must call this command before use any other bmc-relatethtand. Only one call
per session is required.

go_bmc - Initializes the system for the BMC verification. Command |

go_bmc [-h] []

This command initializes the system for verification. It igualent to the
command sequenceead _model , flatten _hierarchy , encode _variables ,
build _boolean _model ,bmc_setup . If some commands have already been executed,
then only the remaining ones will be invoked.

Command Options:

-f Forces model construction even when Cone Of Influence is
enabled.

54



sexpinlining Environment Variable|

This variable enables the Sexp inlining when the booleanaisduilt. Sexp inlining is
performed in a similar way to RBC inlining (see system vdegabc _inlining ) but the
underlying structures and kind of problem are differentauese inlining is applied at the
Sexp level instead of the RBC level.

Inlining is applied to initial states, invariants and triias relations. By default, Sexp
inlining is disabled.

rbc_inlining Environment Variable|

When set, this variable makes BMC perform the RBC inlinindole committing any

problem to the SAT solver. Depending on the problem strectund length, the inlining
may either make SAT solving much faster, or slow it down drécally. Experiments

showed an average improvement in time of SAT solving when RBi€ing is enabled.

RBC inlining is enabled by default.

The idea about inlining was taken from [ABEQO] by Parosh A&izdulla, Per Bjesse and
Niklas Eén.

checkltlspec_bmc - Checks the given LTL specification, or all LT Command
specifications if no formula is given. Checking parameteesthe
maximum length and the loopback value

check _tlspec  _bmc [-h | -n idx | -p "formula [IN context]"]

[-k max _length] [-I loopback] [-0 filename]

This command generates one or more problems, and calls 9¥dr $or each one. Each
problem is related to a specific problem bound, which in@s&®m zero () to the given
maximum problem length. Hermaax_length is the bound of the problem that system is
going to generate and solve. In this context the maximumlenolibound is represented
by the-k command parameter, or by its default value stored in the@mvient variable
bmc_length . The single generated problem also depends ofottygback parameter
you can explicitly specify by the option, or by its default value stored in the environ-
ment variabldomc_loopback

The property to be checked may be specified usingrth@x or the-p "formula"
options. If you need to generate a DIMACS dump file of all gatet problems, you must
use the optiono "filename"

Command Options:

-n index indexs the numeric index of a valid LTL specification for-
mula actually located in the properties database.

-p "formula [IN Checks theformula specified on the command-line.

context]" context is the module instance name which the variables
in formula must be evaluated in.

-k maxlength maxlengthis the maximum problem bound to be checked.

Only natural numbers are valid values for this option. If no
value is given the environment varialbdenclengthis con-
sidered instead.

55



-l loopback Theloopbackvalue may be:

e a natural number in (Omaxlength-1). A positive sign
(‘+") can be also used as prefix of the number. Any in-
valid combination of length and loopback will be skipped

during the generation/solving process.
e a negative number in (-1bmclength. In this casdoop-

backis considered a value relative meaxlength Any in-
valid combination of length and loopback will be skipped

during the generation/solving process.
e the symbol X', which means “no loopback”.

e the symbol *’, which means “all possible loopbacks from

zero tolength-T' .
-0 filename filenames the name of the dumped dimacs file. It may con-

tain special symbols which will be macro-expanded to form
the real file name. Possible symbols are:

e @F: model name with path part.

e @f: model name without path part.

e @k: current problem bound.

e @I: current loopback value.

e @n: index of the currently processed formula in the prop-

erty database.
o @@: the ‘@’ character.

checkltlspec_bmc_onepb- Checks the given LTL specification, Command
all LTL specifications if no formula is given. Checking pasiars
are the single problem bound and the loopback value

check _ltlspec  _bmc.onepb [-h | -n idx | -p "formula"

[IN context]] [-k length] [-| loopback] [-0 filename]

As commandcheck _ltispec _bmc but it produces only one single problem with
fixed bound and loopback values, with no iteration of the fgwbbound from zero to
max_length.

Command Options:

-n index indexs the numeric index of a valid LTL specification for-
mula actually located in the properties database. The-valid
ity of indexvalue is checked out by the system.

-p "formula [IN Checks theformula specified on the command-line.

context]" context is the module instance name which the variables
informula must be evaluated in.

-k length lengthis the problem bound used when generating the sin-

gle problem. Only natural numbers are valid values for
this option. If no value is given the environment variable
bmc_ength is considered instead.

-I  loopback Theloopbackvalue may be:

e a natural number in (Omaxlength-J). A positive sign
('+") can be also used as prefix of the number. Any in-
valid combination of length and loopback will be skipped
during the generation/solving process.

56



e a negative number in (-1bmclength. In this casdoop-
backis considered a value relative kength Any invalid
combination of length and loopback will be skipped during

the generation/solving process.
e the symbol X', which means “no loopback” .

e the symbol *’, which means “all possible loopback from

zero tolength-1'.
-0 filename filenames the name of the dumped dimacs file. It may con-

tain special symbols which will be macro-expanded to form
the real file name. Possible symbols are:

e @F: model name with path part.

e @f: model name without path part.

e @k: current problem bound.

e @I: current loopback value.

e @n: index of the currently processed formula in the prop-

erty database.
e @@: the '@’ character.

genltlspec.bmc - Dumps into one or more dimacs files the giv Command
LTL specification, or all LTL specifications if no formula iven.

Generation and dumping parameters are the maximum bound

the loopback value

gen_tlspec _bmc [-h | -n idx | -p "formula" [IN context]]

[-k max _length] [-I loopback] [-0 filename]

This command generates one or more problems, and dumps esgbrp into a dimacs
file. Each problem is related to a specific problem bound, iricreases from zero (0) to
the given maximum problem bound. In this short descriptemmgth is the bound of the

problem that system is going to dump out.

In this context the maximum problem bound is representedhéyniaxlengthparameter,

or by its default value stored in the environment varidiec_length

Each dumped problem also depends on the loopback you canigy@pecify by the-|
option, or by its default value stored in the environmentalale bmc_loopback .

The property to be checked may be specified usingrth&x or the-p "formula "
options.

You may specify dimacs file name by using the optionfilename , otherwise the
default value stored in the environment variablac_dimacs _flename  will be con-
sidered.

57



Command Options:

-n index indexs the numeric index of a valid LTL specification for-
mula actually located in the properties database. The-valid
ity of index value is checked out by the system.

-p "formula [IN Checks theformula  specified on the command-line.
context]" context is the module instance name which the variables
in formula must be evaluated in.

-k maxlength maxlengthis the maximum problem bound used when in-
creasing problem bound starting from zero. Only natural
numbers are valid values for this option. If no value is
given the environment variablemclengthvalue is consid-
ered instead.

-l loopback Theloopbackvalue may be:

e a natural number in (Omaxlength-J). A positive sign
('+") can be also used as prefix of the number. Any in-
valid combination of bound and loopback will be skipped
during the generation and dumping process.

e a negative number in (-1bmclength. In this casdoop-
backis considered a value relative meaxlength Any in-
valid combination of bound and loopback will be skipped

during the generation process.
e the symbol X', which means “no loopback”.

e the symbol *’, which means “all possible loopback from

zero tolength-1'.
-0 filename filenames the name of dumped dimacs files. If this options

is not specified, variablbmcdimacsfilenamewill be con-
sidered. The file name string may contain special symbols
which will be macro-expanded to form the real file name.
Possible symbols are:

e @F: model name with path part.

e @f: model name without path part.

e @k: current problem bound.

e @I: current loopback value .

e @n: index of the currently processed formula in the prop-

erty database.
e @@: the ‘@’ character.

genltlspec_bmc_onepb- Dumps into one dimacs file the proble Command
generated for the given LTL specification, or for all LTL dfiec

cations if no formula is explicitly given. Generation andhthing

parameters are the problem bound and the loopback value

gen_ltlspec _bmc.onepb [-h | -n idx | -p "formula”
[IN context]] [-k length] [-] loopback] [-0 filename]

Asthegen _tlspec _bmccommand, but it generates and dumps only one problem given
its bound and loopback.
Command Options:

-n index indexs the numeric index of a valid LTL specification for-
mula actually located in the properties database. The-valid
ity of indexvalue is checked out by the system.

58



-p "formula [IN Checks theformula specified on the command-line.
context]" context is the module instance name which the variables
informula must be evaluated in.

-k length lengthis the single problem bound used to generate and
dump it. Only natural numbers are valid values for this
option. If no value is given the environment variable
bmc_length is considered instead.

-l loopback Theloopbackvalue may be:

e a natural number in (®ength-1). A positive sign ('+’) can
be also used as prefix of the number. Any invalid combi-
nation of length and loopback will be skipped during the
generation and dumping process.

e negative number in (-1Jength. Any invalid combination
of length and loopback will be skipped during the genera-
tion process.

e the symbol X', which means “no loopback”.

e the symbol *’, which means “all possible loopback from
zero tolength-1.

-0 filename filenamés the name of the dumped dimacs file. If this op-

tions is not specified, variablemc_dimacs _filename

will be considered. The file name string may contain spe-
cial symbols which will be macro-expanded to form the real
file name. Possible symbols are:

e @F: model name with path part

e @f: model name without path part

e @k: current problem bound

e @I: current loopback value

e @n: index of the currently processed formula in the prop-
erty database

e @@: the '@’ character

checkltlspec_bmc_inc - Checks the given LTL specification, or ¢ Command
LTL specifications if no formula is given, using an increraéat-

gorithm. Checking parameters are the maximum length and

loopback value

check _ltlspec  _bmc.inc [-h | -n idx | -p "formula [IN
context]"] [-k max _length] [-| loopback]

For each problem this command incrementally generates seigfiability subproblems
and calls the SAT solver on each one of them. The incremetgatitam exploits the
fact that subproblems have common subparts, so informatiteined during a previous
call to the SAT solver can be used in the consecutive onesicalbg this command does
the same thing asheck _ltlspec  _bmc (see the description on page 55) but usually
runs considerably quicker. A SAT solver with an incrementaérface is required by
this command, therefore if no such SAT solver is providechttiess command will be
unavailable.

Command Options:

-n index indexs the numeric index of a valid LTL specification for-
mula actually located in the properties database.

59



-p "formula [IN Checks theformula specified on the command-line.
context]" context is the module instance name which the variables
informula must be evaluated in.

-k maxlength maxlength is the maximum problem bound must be
reached. Only natural numbers are valid values for this
option. If no value is given the environment variable
bmclengthis considered instead.

-|  loopback Theloopbackvalue may be:

e a natural number in (Omaxlength-1). A positive sign
(‘+") can be also used as prefix of the number. Any in-
valid combination of length and loopback will be skipped

during the generation/solving process.
e a negative number in (-1bmclength. In this casdoop-

backis considered a value relative maaxlength Any in-
valid combination of length and loopback will be skipped

during the generation/solving process.
e the symbol X', which means “no loopback”.

e the symbol *’, which means “all possible loopback from
zero tolength-T' .

checkltlspec_sbmc - Checks the given LTL specification, or ¢ Command
LTL specifications if no formula is given. Checking paramsesze
the maximum length and the loopback value

check _ltlspec  _sbmc [-h | -n idx | -p "formula [IN context]"]

[-k max _length] [-] loopback] [-0 filename]

This command generates one or more problems, and calls S¥dr $or each one. The
BMC encoding used is the one by of Latvala, Biere, Heljankd dunttila as described

in [LBHJO5]. Each problem is related to a specific problemrzhuvhich increases from
zero (0) to the given maximum problem length. Herexlength is the bound of the
problem that system is going to generate and solve. In tigegbthe maximum problem
bound is represented by the command parameter, or by its default value stored in the
environment variablémc_length . The single generated problem also depends on the
loopback parameter you can explicitly specify by tHe option, or by its default value
stored in the environment varialidenc_loopback .

The property to be checked may be specified usingrth@x or the-p "formula"
options. If you need to generate a DIMACS dump file of all gatet problems, you must
use the optiono "filename"

Command Options:

-n index indexs the numeric index of a valid LTL specification for-
mula actually located in the properties database.

-p "formula [IN Checks theformula  specified on the command-line.

context]" context is the module instance name which the variables

in formula must be evaluated in.

-k maxlength maxlengthis the maximum problem bound to be checked.
Only natural numbers are valid values for this option. If no
value is given the environment varialbdenclengthis con-
sidered instead.

60



-l loopback Theloopbackvalue may be:

e a natural number in (Omaxlength-1). A positive sign
(‘+") can be also used as prefix of the number. Any in-
valid combination of length and loopback will be skipped

during the generation/solving process.
e a negative number in (-1bmclength. In this casdoop-

backis considered a value relative meaxlength Any in-
valid combination of length and loopback will be skipped

during the generation/solving process.
e the symbol X', which means “no loopback”.

e the symbol *’, which means “all possible loopbacks from

zero tolength-T' .
-0 filename filenames the name of the dumped dimacs file. It may con-

tain special symbols which will be macro-expanded to form
the real file name. Possible symbols are:

e @F: model name with path part.

e @f: model name without path part.

e @k: current problem bound.

e @I: current loopback value.

e @n: index of the currently processed formula in the prop-

erty database.
o @@: the ‘@’ character.

checkltlspec_sbmc.inc - Checks the given LTL specification, « Command
all LTL specifications if no formula is given. Checking pasiars
are the maximum length and the loopback value

check tlspec  _sbmc.inc [-h | -n idx | -p "formula [IN

context]"] [-k max _length] [-0 filename] [-N] [-c]

This command generates one or more problems, and calls $Adr or each one. The In-
cremental BMC encoding used is the one by of Heljanko, Jargtid Latvala, as described

in [KHLO5]. For each problem this command incrementally giertes many satisfiability
subproblems and calls the SAT solver on each one of them. fathem is related to

a specific problem bound, which increases from zé)aq the given maximum problem
length. Heremaxlength is the bound of the problem that system is going to generate
and solve. In this context the maximum problem bound is sepred by thek command
parameter, or by its default value stored in the environmanablebmc_length

The property to be checked may be specified usingrth@x or the-p "formula"
options. If you need to generate a DIMACS dump file of all gatet problems, you must
use the optiono "filename"

Command Options:

-n index indexs the numeric index of a valid LTL specification for-
mula actually located in the properties database.

-p "formula [IN Checks theformula specified on the command-line.

context]" context is the module instance name which the variables
informula must be evaluated in.

-k maxlength maxlengthis the maximum problem bound to be checked.

Only natural numbers are valid values for this option. If no
value is given the environment varialbdenclengthis con-
sidered instead.

61



-0 filename filenames the name of the dumped dimacs file. It may con-
tain special symbols which will be macro-expanded to form
the real file name. Possible symbols are:

e @F: model name with path part.

e @f: model name without path part.
e @k: current problem bound.

e @I: current loopback value.

e @n: index of the currently processed formula in the prop-

erty database.
e @@: the ‘@’ character.

-N Does not perform virtual unrolling.
-C Performs completeness check.
genltlspec_sbmc- Dumps into one or more dimacs files the giv Command

LTL specification, or all LTL specifications if no formula iven.
Generation and dumping parameters are the maximum bound
the loopback values.

gen_tlspec _sbmc [-h | -n idx | -p "formula [IN context]"]

[-k max _length] [-I loopback] [-0 filename]

This command generates one or more problems, and dumps esitbrp into a dimacs
file. The BMC encoding used is the one by of Latvala, Bierejaddo and Junttila as de-
scribed in [LBHJO5]. Each problem is related to a specifibfam bound, which increases
from zero () to the given maximum problem length. Herex length is the bound of
the problem that system is going to generate and dump. lcohiext the maximum prob-
lem bound is represented by tHe command parameter, or by its default value stored in
the environment variablbmc_length . The single generated problem also depends on
theloopback parameter you can explicitly specify by the option, or by its default
value stored in the environment varialiec_loopback

The property to be used for tghe problem dumping may be spdaifsing then idx

or the-p "formula” options. You may specify dimacs file nhame by using the op-
tion -o "filename" , otherwise the default value stored in the environmentatdei
bmc_dimacs _filename  will be considered.

Command Options:

-n index indexs the numeric index of a valid LTL specification for-
mula actually located in the properties database.

-p "formula [IN Dumps theformula specified on the command-line.

context]" context is the module instance name which the variables
in formula must be evaluated in.

-k maxlength maxlengthis the maximum problem bound to be generated.

Only natural numbers are valid values for this option. If no
value is given the environment varialbdenclengthis con-
sidered instead.

-l loopback Theloopbackvalue may be:

e a natural number in (Omaxlength-1). A positive sign
(‘+") can be also used as prefix of the number. Any in-
valid combination of length and loopback will be skipped
during the generation/solving process.

62



e a negative number in (-1bmclength. In this casdoop-
backis considered a value relative meaxlength Any in-

valid combination of length and loopback will be skipped

during the generation/solving process.
e the symbol X', which means “no loopback”.

e the symbol *’, which means “all possible loopbacks from

zero tolength-T' .

-0 filename filenames the name of the dumped dimacs file. It may con-
tain special symbols which will be macro-expanded to form

the real file name. Possible symbols are:

e @F: model name with path part.

e @f: model name without path part.
e @k: current problem bound.

e @I: current loopback value.

e @n: index of the currently processed formula in the prop-

erty database.
e @@: the ‘@’ character.

bmc_length Environment Variable|

Sets the generated problem bound. Possible values are amalmaumber, but must be
compatible with the current value held by the variaecloopback The default value is
10.

bmc_loopback Environment Variable|

Sets the generated problem loop. Possible values are:
e Any natural number, but less than the current value of thebblrbmclength In
this case the loop point is absolute.

e Any negative number, but greater than or equabtoelength In this case specified
loop is the loop length.

e The symbol X', which means “no loopback”.

e The symbol *’, which means “any possible loopbacks”.

The default value is.

bmc_dimacs filename Environment Variable|

This is the default file name used when generating DIMACS leraldumps. This variable
may be taken into account by all commands which belong to émdttspecbmc family.
DIMACS file name can contain special symbols which will be @axged to represent the
actual file name. Possible symbols are:

e @F The currently loaded model name with full path.

e @f The currently loaded model name without path part.

e @nThe numerical index of the currently processed formulaéyitoperty database.

e @k The currently generated problem length.

e @I The currently generated problem loopback value.

e @@The ‘@’ character.

The default value is@f_k@kl@!| _.n@n".

63



bmc_sbmc gf_fg_opt

Environment Variable|

Controls whether the system exploits an optimization whenfigpming SBMC on formu-
lae in the formF'Gp or GF'p. The default value i& (active).

checkinvar_bmc - Generates and solves the given invariant, or . Command

invariants if no formula is given

check _invar _bmc [-h | -n idx | -p "formula" [IN context]]

[-a alg] [-0 filename]

In Bounded Model Checking, invariants are proved usingdtida. For this, satisfiability
problems for the base and induction step are generated add adbver is invoked on
each of them. At the moment, two algorithms can be used toepimxariants. In one
algorithm, which we call “classic”, the base and inductiteps are built on one state and
one transition, respectively. Another algorithm, which e&l “een-sorensson” [ES04],
can build the base and induction steps on many states argitivan. As a result, the
second algorithm is more powerful.

Also, notice that during checking of invariants all the fi@iss conditions associated with

the model are ignored.

Command Options:
-n index

-p "formula [IN
context]"

-k maxlength

indexis the numeric index of a valid INVAR specification
formula actually located in the property database. The va-
lidity of indexvalue is checked out by the system.

Checks theformula specified on the command-line.
context is the module instance name which the variables
in formula must be evaluated in.

maxlength is the maximum problem bound that can be

reached. Only natural numbers are valid values for this op-
tion. Use this option only if the “een-sorensson” algorithm

is selected. If no value is given the environment variable
bmclengthis considered instead.

-a alg alg specifies the algorithm. The value canddassic  or
een-sorensson . If no value is given the environment
variablebmcinvar_alg is considered instead.

-0 filename filenames the name of the dumped dimacs file. It may con-
tain special symbols which will be macro-expanded to form
the real file name. Possible symbols are:

e @F: model name with path part
e @f: model name without path part
e @n: index of the currently processed formula in the prop-
erties database
o @@: the ‘@’ character
gen.invar_bmc - Generates the given invariant, or all invariants Command

no formula is given

gen_invar _bmc [-h | -n idx | -p "formula [IN context]"]

[-o filename]

At the moment, the invariants are generated using “clasggdrithm only (see the de-
scription ofcheck _invar _bmcon page 64).

64



Command Options:
-n index indexis the numeric index of a valid INVAR specification
formula actually located in the property database. The va-
lidity of indexvalue is checked out by the system.

-p "formula [IN Checks theformula specified on the command-line.

context]" context is the module instance name which the variables
in formula must be evaluated in.

-0 filename filenamé the name of the dumped dimacs file. If you do

not use this option the dimacs file name is taken from the
environment variablemc_invar _dimacs _filename

File name may contain special symbols which will be
macro-expanded to form the real dimacs file name. Possi-
ble symbols are:

e @F: model name with path part
e @f: model name without path part
e @n: index of the currently processed formula in the prop-

erties database
o @@: the '@’ character

checkinvar_bmc_inc - Generates and solves the given invarial Command
or all invariants if no formula is given, using incrementadpe-
rithms

check _invar _bmc.inc [-h | -n idx | -p "formula” [IN context]]

[-a algorithm]

This command does the same thingchagck _invar _bmc (see the description on page
64) but uses an incremental algorithm and therefore uswailg considerably quicker.
The incremental algorithms exploit the fact that satisfigbproblems generated for a
particular invariant have common subparts, so informatiotained during solving of one
problem can be used in solving another one. A SAT solver witinaremental interface
is required by this command. If no such SAT solver is provitleh this command will be
unavailable.

There are two incremental algorithms which can be used: 'Darad “ZigZag”. Both
algorithms are equally powerful, but may show differenf@enance depending on a SAT
solver used and an invariant being proved. At the moment;Diual” algorithm cannot
be used if there are input variables in a given model. Fortemafdil information about
algorithms, consider [ES04].

Also, notice that during checking of invariants all the fess conditions associated with
the model are ignored.
Command Options:

-n index indexis the numeric index of a valid INVAR specification
formula actually located in the property database. The va-
lidity of indexvalue is checked out by the system.

-p "formula [IN Checks theformula  specified on the command-line.
context]" context is the module instance name which the variables
in formula must be evaluated in.

65



-k maxlength maxlength is the maximum problem bound that can be
reached. Only natural numbers are valid values for this
option. If no value is given the environment variable
bmclengthis considered instead.

-a alg alg specifies the algorithm to use. The value cardbael
or zigzag . If no value is given the environment variable
bmcinc_invar_alg is considered instead.

bmc_invar _alg Environment Variable|

Sets the default algorithm used by the commelnelck _invar _bmc. Possible values are
classic andeen-sorensson . The default value islassic

bmc_inc_invar _alg Environment Variable|

Sets the default algorithm used by the commeheck _invar _bmc.inc . Possible val-
ues aradual andzigzag . The default value isual .

bmc._invar _dimacsfilename Environment Variable|

This is the default file name used when generating DIMACSriaanps. This variable
may be taken into account by the commageh _invar _bmc. DIMACS file name can
contain special symbols which will be expanded to repretfenactual file name. Possible
symbols are:

e @F The currently loaded model name with full path.
e @f The currently loaded model name without path part.

e @n The numerical index of the currently processed formula i@ gnoperties
database.

e @@The ‘@’ character.

The default value is@f.invar _n@n".

sat.solver Environment Variable|

The SAT solver’s name actually to be used. Default SAT sav&IM. Depending on the
NuSMV configuration, also the Zchaff and MiniSat SAT solvera ba available or not.
Notice that Zchaff and MiniSat are for non-commercial pwgmonly.

bmc_simulate - Generates a trace of the model from O (zero) to Command|

bmc_simulate [-h | -k ]

bmc_simulate  does not require a specification to build the problem, bexanty the
model is used to build it. The problem length is represenyetié-k command parameter,
or by its default value stored in the environment varidiec_length

Command Options:
-k length lengths the length of the generated simulation.

66



3.4 Commands for checking PSL specifications

The following command allow for model checking of PSL spesifions.

checkpslspec- Performs PSL model checking Command|

check _psispec [-h] [-m | -0 output-file] [-n number | -p

"psl-expr [IN context]"] [-b [-]] [-0] [-1] [-k

bmc_lenght] [-| loopback]]

Depending on the characteristics of the PSL property andvemptions, the commands
applies CTL-based model checking, or LTL-based, posshmiynded model checking.

A psl-expr  to be checked can be specified at command line using oggiolterna-
tively, option-n can be used for checking a particular formula in the propéatyabase.
If neither-n nor-p are used, all the PSLSPEC formulas in the database are chdtke
option-b is used, LTL bounded model checking is applied, otherwis#lmsed model
checking is applied. For LTL bounded model checking, ogtidn and-l can be used to
define the maximum problem bound, and the value of the lodploathe single generated
problems respectively; their values can be stored in the@mwent variablebmclenght
andbmcloopback Single problems can be generated by using optlon By using op-
tion-i the incremental version of bounded model checking is aetilzaBounded model
checking problems can be generated and dumped in a file by aption-g .

Command Options:

-m Pipes the output generated by the command in process-
ing PSLSPEG to the program specified by tHeAGER
shell variable if defined, else through the UNIX command

“more”.

-0 output-file Writes the output generated by the command in processing
PSLSPEGs to the fileoutput-file

-p "psl-expr [IN A PSL formula to be checkedcontext is the module

context]" instance name which the variablesgsl-expr must be
evaluated in.

-n number Checks the PSL property with indesumber in the prop-
erty database.

-b Applies SAT-based bounded model checking. The SAT

solver to be used will be chosen according to the current
value of the system variabgat _solver

-i Applies incremental SAT-bounded model checking if avail-
able, i.e. if an incremental SAT solver has been linked to
NuSMV. This option can be used only in combination with
the option-b .

-g Dumps DIMACS version of bounded model checking prob-
lem into a file whose name depends on the system variable
bmc_dimacs _flename . This feature is not allowed in
combination of the optioA .

67



-k bmclength

-l loopback

Generates a single bounded model checking problem with
fixed bound and loopback values, it does not iterate incre-
menting the value of the problem bound.

bmclengthis the maximum problem bound to be checked.
Only natural numbers are valid values for this option. If no
value is given the environment varialbdenclengthis con-
sidered instead.

Theloopbackvalue may be:

e a natural number in (Omaxlength-1). A positive sign
(‘+") can be also used as prefix of the number. Any in-
valid combination of length and loopback will be skipped

during the generation/solving process.
e a negative number in (-1bmclength. In this casdoop-

backis considered a value relative maaxlength Any in-
valid combination of length and loopback will be skipped

during the generation/solving process.
e the symbol X', which means “no loopback”.

e the symbol *’, which means “all possible loopbacks from
zero tolength-T If no value is given the environment vari-
ablebmcloopbackis considered instead..

3.5 Simulation Commands

In this section we describe the commands that allow to sitada\NUSMV specification. See
also the section Section 3.6 [Traces], page 70 that desdtiigecommands available for manip-

ulating traces.

pick_state- Picks a state from the set of initial states Command |

pick _state [-h] [-v] [-r | -i [-@]] [-c "constraints"]

Chooses an element from the set of initial states, and makés current state
(replacing the old one). The chosen state is stored as thetfite of a new trace ready to
be lengthened bgteps states by thesimulate command. The state can be chosen
according to different policies which can be specified vimomnd line options. By
default the state is chosen in a deterministic way.

Command Options:
-V

Verbosely prints out chosen state (all state variables, oth
erwise it prints out only the labell of the state chosen,
wheret is the number of the new trace, that is the number
of traces so far generated plus one).

Randomly picks a state from the set of initial states.

Enables the user to interactively pick up an initial statee T
user is requested to choose a state from a list of possible
items (every item in the list doesn’t show state variables un
changed with respect to a previous item). If the number of
possible states is too high, then the user has to specify some
further constraints as “simple expression”.

68



-a Displays all state variables (changed and unchanged with
respect to a previous item) in an interactive picking. This
option works only if thei options has been specified.

-c "constraints" Usesconstraints to restrict the set of initial states in
which the state has to be pickedonstraints must be
enclosed between double quotes$ .

showedstates Environment Variable|

Controls the maximum number of states showed during anactige simulation session.
Possible values are integers frdnto 100. The default value i25.

simulate - Performs a simulation from the current selected state Command |

simulate [-h] [-p | -v] [r | -i [-a@]] [-c "constraints"]

steps

Generates a sequence of at mestps states (representing a possible execution of
the model), starting from theurrent state . The current state must be set via the
pick _state orgoto _state commands.

It is possible to run the simulation in three ways (accordioglifferent command line
policies): deterministic (the default mode), random artdriactive.

The resulting sequence is stored in a trace indexed with t@gen number taking into
account the total number of traces stored in the system.eTikaa different behavior in
the way traces are built, according to howrent statds set: current stateis always put
at the beginning of a new trace (so it will contain at most stefd states) except when it
is the last state of an existent old trace. In this case thérate is lengthened by at most
steps states.

69



Command Options:
P

-V

-c "constraints"

steps

3.6 Traces

Prints current generated trace (only those variables whose
value changed from the previous state).

Verbosely prints current generated trace (changed and un-
changed state variables).

Picks a state from a set of possible future states in a random
way.

Enables the user to interactively choose every state of the
trace, step by step. If the number of possible states is too
high, then the user has to specify some constraints as simple
expression. These constraints are used only for a single sim
ulation step and artorgottenin the following ones. They
are to be intended in an opposite way with respect to those
constraints eventually entered with thiek _state com-
mand, or during an interactive simulation session (when the
number of future states to be displayed is too high), that are
local only to a single step of the simulation and érgyotten

in the next one.

To improve readability of the list of the states which theruse
must pick one from, each state is presented in terms of dif-
ference with respect of the previous one.

Displays all the state variables (changed and unchanged)
during every step of an interactive session. This option
works only if the-i option has been specified.

Performs a simulation in which computation is restricted
to states satisfying thosmnstraints . The desired se-
qguence of states could not exist if such constraints were too
strong or it may happen that at some point of the simulation
a future state satisfying those constraints doesn’t exist:
that case a trace with a number of states less heps

trace is obtained. Noteconstraints must be enclosed
between double quotés™ .

Maximum length of the path according to the constraints.
The length of a trace could contain less tis4@ps states:
this is the case in which simulation stops in an intermediate
step because it may not exist any future state satisfyirggtho
constraints.

A trace is a sequence of states-inputs pairs correspondiagossible execution of the model.
Each pair contains the inputs that caused the transitiomdgonew state, and the new state
itself. The initial state has no such input values defined deés not depend on the values of
any of the inputs. The values of any constants declarddERINE sections are also part of a
trace. If the value of a constant depends only on state \tasghen it will be treated as if it
is a state variable too. If it depends only on input varialhes it will be treated as if it is an
input variable. If however, a constant depends upon bothtiapd state variables, then it gets
displayed in a seperate “combinatorial” section. Sinceviilges of any such constants depend
on one or more inputs, the initial state does not containsiision either.

70



Traces are created byd$MV when a formula is found to be false; they are also genérate
as a result of a simulation (Section 3.5 [Simulation Comnsgnplage 68). Each trace has a
number, and the states-inputs pairs are numbered withinabe. Tracen has states/inputs.1,
n.2, n.3, "..” wheren.1lrepresents the initial state.

3.6.1 Inspecting Traces

The trace inspection commands ot MV allow for navigation along the labelled states-inputs
pairs of the traces produced. During the navigation, theeeurrent stateand thecurrent trace
is the trace theurrent statebelongs to. The commands are the following:

goto_state- Goes to a given state of a trace Command |

goto _state [-h] state _label

Makesstate _label thecurrent state This command is used to navigate along traces
produced by NSMV. During the navigation, there iscairrent stateand thecurrent trace
is the trace theurrent statebelongs to.

print _current _state- Prints out the current state Command|

print _current _state [-h] [-V]
Prints the name of theurrent statdf defined.
Command Options:
-V Prints the value of all the state variables of therent state

3.6.2 Displaying Traces

NuSMYV comes with three trace plugins (see Section 3.7 [TraggiR$], page 73) which can be
used to display traces in the system. Once a trace has beeragghby NNSMV it is printed
to stdout using the trace explanation plugin which has been set asuttient default. The
commandshow_traces (see Section 3.5 [Simulation Commands], page 68) can theisdxd
to print out one or more traces using a different trace pluggwell as allowing for output to a
file.

3.6.3 Trace Plugin Commands
The following commands relate to the plugins which are add in NUSMV.

show plugins - Shows the available trace explanation plugins Command |

show_plugins [-h] [-n plugin-no | -a]
Command Options:

-n plugin-no Shows the plugin with the index number equal to
plugin-no
-a Shows all the available plugins.

Shows the available plugins that can be used to display a twaéch has been generated
by NUSMV, or that has been loaded with tread _trace command. The plugin that is
used to read in a trace is also shown. The current defaulipisignarked with {D] ”.

71



All the available plugins are displayed by default if no coamd options are given.

default_trace_plugin Environment Variable|

This determines which trace plugin will be used by defaulewkraces that are generated
by NUSMYV are to be shown. The values that this variable can takerdepn which trace
plugins are installed. Use the commasitbw _plugins to see which ones are available.
The default value i§.

showtraces- Shows the traces generated in a NuSMV session Command |

show_traces [-h] [-v] [-f] [-m | -0 output-file] [-p

plugin-no]

[-a | trace  _number]

Shows the traces currently stored in system memory, if aydéSault it shows the last
generated trace, if any.

Command Options:
-v Verbosely prints traces content (all state variables,rotise
it prints out only those variables that have changed their
value from previous state). This option only applies when
the Basic Trace Explainer plugin is used to display the trace

-t Prints only the total number of currently stored traces.
-a Prints all the currently stored traces.
-m Pipes the output through the program specified by the

PAGERshell variable if defined, else through the UNIX
command “more”.

-0 output-file Writes the output generated by the command to
output-file

-p plugin-no Uses the specified trace plugin to display the trace.

trace _number The (ordinal) identifier number of the trace to be printed.

This must be the last argument of the command. Omitting
the trace number causes the most recently generated trace to
be printed.

If the XML Format Output plugin is being used to save genefataces to a file with the

intent of reading them back in again at a later date, then@mytrace should be saved per
file. This is because the trace reader does not currentlyosuppltiple traces in one file.

read_trace - Loads a previously saved trace Command |

read _trace [-h | -i file-name]

Command Options:

-i file-name Reads in a trace from the specified file. Note that the file
must only contain one trace.

Loads a trace which has been previously output to a file wighXML Format Output
plugin. The model from which the trace was originally getedanust be loaded and built
using the commandgo” first.

Please note that this command is only available on systeshbdalve the Expat XML parser
library installed.

72



3.7 Trace Plugins
NuSMYV comes with three plugins which can be used to diaplaycettaat has been generated:

Basic Trace Explainer
States/Variables Table
XML Format Printer

There is also a plugin which can read in any trace which has bagut to a file by the
XML Format Printer. Note however that this reader is onlyilade on systems that have the
Expat XML parser library installed.

Once a trace has been generated it is outpustdout using the currently selected plu-
gin. The commandhow_traces can be used to output any previuosly generated, or loaded,
trace to a specific file.

3.7.1 Basic Trace Explainer

This plugin prints out each state (the current values of tré@ables) in the trace, one after the
other. The initial state contains all the state variablasthair initial values. States are numbered
in the following fasion:

trace _number.state _number

There is the option of printing out the value of every vargahbi each state, or just those
which have changed from the previous one. The one that is esmedbe chosen by selecting
the appropriate trace plugin. The values of any constanishadepend on both input and state
variables are printed next. It then prints the set of inpuigtvcause the transition to a new state
(if the model contains inputs), before actually printing tiew state itself. The set of inputs and
the subsequent state have the same number associated to them

In the case of a looping trace, if the next state to be prirdéde same as the last state in the
trace, a line is printed stating that this is the point whaeelbop begins.

With the exception of the initial state, for which no inputwes are printed, the output syntax
for each state is as follows:

-> Input: TRACE_NO.STATE_NO <-
[ = for each input var (being printed), i */
INPUT_VARI = VALUE

-> State: TRACE_NO.STATE_NO <-

[ = for each state var (being printed), j: */
STATE_VARj = VALUE
/= for each combinatorial constant (being printed), k: */

CONSTANTK = VALUE

where INPUT_VAR STATEVAR and CONSTANThave the relevant module names
prepended to them (seperated by a period) with the exceptittre module fnain ” .

The version of this plugin which only prints out those valéshwhose values have changed
is the initial default plugin used by BISMV.

3.7.2 States/Variables Table

This trace plugin prints out the trace as a table, either tithstates on each row, or in each
column. The entries along the state axis are:

SO C111S1 ..CniIn Sn

73



where SO0 is the initial state, and; gives the values of the input variables which caused
the transition from staté;_; to stateS;. C; gives the values of any combinatorial constants,
where the value depends on the values of the state variabétateS; —; and the values of input
variables in staté);.

The variables in the model are placed along the other axik tBa values of state variables
are displayed in the State row/column, only the values ofiiryariables are displayed in the
Input row/column and only the values of combinatorial canss are displayed in the Constants
row/column. All remaining cells have ' displayed.

3.7.3 XML Format Printer

This plugin prints out the trace either gtdout or to a specified file using the command
show_traces . If traces are to be output to a file with the intention of theeaing loaded
again at a later date, then each trace must be saved in ateefileraThis is because the XML
Reader plugin does not currently support multiple tracedilge

The format of a dumped XML trace file is as follows:

<?XML_VERSION_STRING?>
<counter-example type=TRACE_TYPE desc=TRACE_DESC>

/= for each state, i */
<node>
<state id=i>
/= for each state var, j: */

<value variable=j>VALUE</value>

</state>
<combinatorial id=i+1>

/ * for each combinatorial constant, k: */
<value variable=k>VALUE</value>

</combinatorial>
<input id=i+1>

/= for each input var, I: */
<value variable=I>VALUE</value>

</input>
</node>

</counter-example>

Note that for the last state in the trace, there is no inpui@edn the node tags. This is
because the inputs section gives the new input values whigbecthe transition to the next state
in the trace. There is also no combinatorial section as thedds on the values of the inputs
and are therefore undefined when there are no inputs.

3.7.4 XML Format Reader

This plugin makes use of the Expat XML parser library and @k an only be used on systems
where this library is available. Previously generateddsdor a given model can be loaded using

74



this plugin provided that the original model filaas been loaded, and built using the command
go.

When a trace is loaded, it is given the smallest availabletraimber to identify it. It can
then be manipulated in the same way as any generated trace.

3.8 Interface to the DD Package

NuUSMV uses the state of the art BDD package CUDD [Som98]. Cbatter the BDD package
can very important to tune the performance of the system.attiqular, the order of variables
is critical to control the memory and the time required byragiens over BDDs. Reordering
methods can be activated to determine better variable srifeorder to reduce the size of the
existing BDDs.

Reordering of the variables can be triggered in two ways: by tiser, or by the
BDD package. In the first way, reordering is triggered by thteractive shell command
dynamic _var _ordering  with the-f option.

Reordering is triggered by the BDD package when the numberodés reaches a given
threshold. The threshold is initialized and automaticalijusted after each reordering by the
package. This s called dynamic reordering, and can be edabldisabled by the user. Dynamic
reordering is enabled with the shell commatyhamic _var _ordering  with the option-e ,
and disabled with thed option.

reorder_method

Environment Variable|

Specifies the ordering method to be used when dynamic variabrdering is fired. The
possible values, corresponding to the reordering metheaitable with the CUDD pack-
age, are listed below. The default valuesif

sift:

random:

random _pivot:

sift _converge:

symmetry _sift:

Moves each variable throughout the order to find an opti-
mal position for that variable (assuming all other variable
are fixed). This generally achieves greater size reductions
than the window method, but is slower.

Pairs of variables are randomly chosen, and swapped in
the order. The swap is performed by a series of swaps of
adjacent variables. The best order among those obtained
by the series of swaps is retained. The number of pairs
chosen for swapping equals the number of variables in the
diagram.

Same agandom, but the two variables are chosen so
that the first is above the variable with the largest num-
ber of nodes, and the second is below that variable. In case
there are several variables tied for the maximum number
of nodes, the one closest to the root is used.

Thesift method is iterated until no further improvement
is obtained.

This method is an implementation of symmetric sifting. It
is similar to sifting, with one addition: Variables that be-
come adjacent during sifting are tested for symmetry. If
they are symmetric, they are linked in a group. Sifting
then continues with a group being moved, instead of a sin-
gle variable.

170 be exactM; C Ms, whereM; is the model from which the trace was generated, &fgis the
currently loaded, and built, model. Note however, that thé&y mean that the trace is not valid for the model

Mo.

75



symmetry _sift _converge:

window2:
window3:
window4:

window2 _converge:
window3 _converge:
window4 _converge:

group _sift:

group _sift _converge:

annealing:
genetic:
exact:

linear:

linear _conv:

Thesymmetry sift method is iterated until no further
improvement is obtained.

Permutes the variables within windowsroadjacent vari-
ables, wher@ can be either 2, 3 or 4, so as to minimize the
overall BDD size.

Thewindow {2,3,4 } method is iterated until no further
improvement is obtained.

This method is similar tssymmetry _sift , but uses
more general criteria to create groups.

Thegroup _sift method is iterated until no further im-
provement is obtained.

This method is an implementation of simulated annealing
for variable ordering. This method is potentially very slow

This method is an implementation of a genetic algorithm
for variable ordering. This method is potentially very slow

This method implements a dynamic programming ap-
proach to exact reordering. It only stores one BDD at a
time. Therefore, it is relatively efficient in terms of mem-
ory. Compared to other reordering strategies, it is very
slow, and is not recommended for more than 16 boolean
variables.

This method is a combination of sifting and linear
transformations.

Thelinear method is iterated until no further improve-
ment is obtained.

dynamic_var_ordering - Deals with the dynamic variable order Command

ing.

dynamic _var _ordering [-d] [-e <method>] [-f <method>] [-h]

Controls the application and the modalities of (dynamidjialzle ordering. Dynamic
ordering is a technique to reorder the BDD variables to redhe size of the existing
BDDs. When no options are specified, the current status amynordering is displayed.
At most one of the optionse , -f , and-d should be specified. Dynamic ordering may
be time consuming, but can often reduce the size of the BDBmalically. A good
point to invoke dynamic ordering explicitly (using thie option) is after the commands
build _model, once the transition relation has been built. It is posstblesave the
ordering found usingwrite _order in order to reuse it (usindpuild _model -i
order-file ) in the future.

Command Options:
-d Disable dynamic ordering from triggering automatically.

-e <method> Enable dynamic ordering to trigger automatically whenever
a certain threshold on the overall BDD size is reached.
<method> must be one of the following:

76



sift: Moves each variable throughout the order to find an
optimal position for that variable (assuming all other vari
ables are fixed). This generally achieves greater size re-

ductions than the window method, but is slower.
random: Pairs of variables are randomly chosen, and

swapped in the order. The swap is performed by a series of
swaps of adjacent variables. The best order among those
obtained by the series of swaps is retained. The number of
pairs chosen for swapping equals the number of variables

in the diagram.
random_pivot: Same agsandom, but the two variables

are chosen so that the first is above the variable with the
largest number of nodes, and the second is below that vari-
able. In case there are several variables tied for the maxi-

mum number of nodes, the one closest to the root is used.
sift_converge Thesift method is iterated until no further

improvement is obtained.

symmetry_sift: This method is an implementation of sym-
metric sifting. It is similar to sifting, with one addition:
Variables that become adjacent during sifting are tested
for symmetry. If they are symmetric, they are linked in
a group. Sifting then continues with a group being moved,

instead of a single variable.
symmetry_sift_converge The symmetry_sift method is

iterated until no further improvement is obtained.
window{2,3,4}: Permutes the variables within windows
of "n” adjacent variables, where "n” can be either 2, 3 or

4, so as to minimize the overall BDD size.
window{2,3,4}_converge Thewindow{2,3,4} method is
iterated until no further improvement is obtained.
group_sift: This method is similar teymmetry_sift, but
uses more general criteria to create groups.
group_sift_converge The group_sift method is iterated
until no further improvement is obtained.

annealing This method is an implementation of simu-

lated annealing for variable ordering. This method is po-
tentially very slow.

genetic This method is an implementation of a genetic
algorithm for variable ordering. This method is poteniall

very slow.
exact This method implements a dynamic programming

approach to exact reordering. It only stores a BDD at a
time. Therefore, it is relatively efficient in terms of mem-
ory. Compared to other reordering strategies, it is very
slow, and is not recommended for more than 16 boolean
variables.

77



e linear: This method is a combination of sifting and linear

transformations. ] o ]
e linear_converge Thelinear method is iterated until no

further improvement is obtained.
-f <method> Force dynamic ordering to be invoked immediately. The val-

ues for<method> are the same as in optiea .

print _bdd_stats- Prints out the BDD statistics and parameters Command|

print _bdd _stats [-h]

Prints the statistics for the BDD package. The amount ofrmfdion depends on the
BDD package configuration established at compilation tifitee configurtion parameters
are printed out too. More information about statistics aachmeters can be found in the
documentation of the CUDD Decision Diagram package.

setbdd_parameters - Creates a table with the value of all cur Command
rently active NuSMV flags and change accordingly the cordiger
parameters of the BDD package.

set _bdd _parameters [-h] [-s]

Applies the variables table of thed$MV environnement to the BDD package, so the
user can set specific BDD parameters to the given value. Tmsmand works in con-
junction with theprint _bdd_stats andset commands.print _bdd_stats first
prints a report of the parameters and statistics of the sib@édmanager. By using the
commandset , the user may modify the value of any of the parameters of tickeillying
BDD package. The way to do it is by setting a value in the véei@©DD.parameter

name whereparameter name is the name of the parameter exactly as printed by the
print _bdd _stats command.

Command Options:

-S Prints the BDD parameter and statistics after the
modification.

3.9 Administration Commands
This section describes the administrative commands affieyehe interactive shell of NISMV.

! - shelLcommand Command |

“l1 " executes a shell command. The “sheimmand” is executed by calling “bin/sh -c
shelLcommand”. If the command does not exists or you have not tie to execute it,
then an error message is printed.

alias - Provides an alias for a command Command|

alias [-h] [<name> [<string>]]

The alias command, if given no arguments, will print the definition df eurrent
aliases. Given a single argument, it will print the definitaf that alias (if any). Given two
arguments, the keywordname> becomes an alias for the command stritggring>
replacing any other alias with the same name.

78



Command Options:
<name> Alias
<string> Command string

It is possible to create aliases that take arguments by us$iaghistory substitution
mechanism. To protect the history substitution charac®érffom immediate expansion,
it must be preceded by &\' when entering the alias.

For example:

NuSMV> alias read "read _model -i %:1.smv ; set

input _order _file %:1.ord"

NuSMV> read short

will create an alias ‘read’, execute "readodel -i short.smv; set inpwdgrdecfile
short.ord”. And again:

NuSMV> alias echo2 "echo Hi ; echo % x "

NuSMV> echo2 happy birthday

will print:

Hi

happy birthday !

CAVEAT: Currently there is no check to see if there is a ciacudependency in the alias
definition. e.g.

NuSMV> alias foo "echo print _bdd _stats; foo"

creates an alias which refers to itself. Executing the conthfi@o will result an infinite
loop during which the commangtint _bdd _stats  will be executed.

echo- Merely echoes the arguments Command|

echo [-h] [-0 filename [-a]] <string>

Echoes the specified string either to standard output, filettame  if the option-o is
specified.

Command Options:

-0 filename Echoes to the specified filename instead of to standard out-
put. If the option-a is not specified, the filélename
will be overwritten if it already exists.

-a Appends the output to the file specified by optian, in-
stead of overwritting it. Use only with the optien .

help - Provides on-line information on commands Command |

help [-a] [-h] [<command>]

If invoked with no argumentkelp prints the list of all commands known to the command
interpreter. If a command name is given, detailed infororafor that command will be
provided.

Command Options:

-a Provides a list of all internal commands, whose names begin
with the underscore character’{’by convention.

history - list previous commands and their event numbers Command|

79



history [-h] [<num>]
Lists previous commands and their event numbers. This islxUike history mechanism
inside the USMV shell.

Command Options:

<num> Lists the last<cnum> events. Lists the last 30 events if
<num>is not specified.

History Substitution:

The history substitution mechanism is a simpler versionhef ¢sh history substitution
mechanism. It enables you to reuse words from previouslgdygmmmands.

The default history substitution character is the ‘%’ (‘8 default for shell escapes, and
‘# marks the beginning of a comment). This can be changemgusieset command. In
this description '%’ is used as the histochar. The ‘%’ can appear anywhere in a line.
A line containing a history substitution is echoed to theesorafter the substitution takes
place. ‘%’ can be preceded by a ‘in order to escape the s$utisti, for example, to enter
a ‘%’ into an alias or to set the prompt.

Each valid line typed at the prompt is saved. If thigtory  variable is set (see help page
for set ), each line is also echoed to the history file. You can uséigtery command
to list the previously typed commands.

Substitutions:
At any point in a line these history substitutions are awdéa

Command Options:

%:0 Initial word of last command.

%:n n-th argument of last command.

%$ Last argument of last command.

Y All but initial word of last command.

%% Last command.

%stuf Last command beginning with “stuf”.

%n Repeat the n-th command.

%-n Repeat the n-th previous command.

“old “new Replace “old” with “new” in previous command. Trailing

spaces are significant during substitution. Initial spaces
not significant.

print _usage- Prints processor and BDD statistics. Command |

print _usage [-h]
Prints a formatted dump of processor-specific usage s$tatisthd BDD usage statistics.
For Berkeley Unix, this includes all of the information irethetrusage()  structure.

quit - exits NuSMV. Command||

quit [-h] [-s]
Stops the program. Does not save the current network betiege

80



Command Options:

-S Frees all the used memory before quitting. This is slower,
and it is used for finding memory leaks.

reset- Resets the whole system. Command |

reset [-h]
Resets the whole system, in order to read in another modetoguetform verification on
it.

set- Sets an environment variable Command |

set [-h] [<name>] [<value>]

A variable environment is maintained by the command inttgr Theset command
sets a variable to a particular value, and tilmset command removes the definition of a
variable. Ifset is given no arguments, it prints the current value of all alles.

Command Options:
<name> Variable name
<value> Value to be assigned to the variable.

Interpolation of variables is allowed when using #& command. The variables are
referred to with the prefix of '$’. So for example, what follswan be done to check the
value of a set variable:

NuSMV> set foo bar

NuSMV> echo $foo

bar

The last line “bar” will be the output produced byu$MYV. Variables can be extended by
using the character ‘' to concatenate values. For example:

NuSMV> set foo bar

NuSMV> set foo $foo:foobar

NuSMV> echo $foo

bar:foobar

The variablefoo is extended with the valubobar . Whitespace characters may
be present within quotes. However, variable interpolatays the restriction that the
characters "’ and '/ may not be used within quotes. Thisdsatlow for recursive
interpolation. So for example, the following is allowed

NuSMV> set "foo bar" this

NuSMV> echo $"foo bar"

this

The last line will be the output produced byulSMV.

But in the following, the value of the variableo/bar will not be interpreted correctly:
NuSMV> set "foo/bar" this

NuSMV> echo $"foo/bar"

foo/bar

If a variable is not set by theet command, then the variable is returned unchanged.

Different commands use environment information for défgrpurposes. The command
interpreter makes use of the following parameters:

81



Command Options:
autoexec Defines a command string to be automatically executed af-
ter every command processed by the command interpreter.
This is useful for things like timing commands, or tracing
the progress of optimization.

open _path “open.path” (in analogy to the shell-variable PATH) is a list
of colon-separated strings giving directories to be sestch
whenever a file is opened for read. Typically the current di-
rectory (.) is the first item in this list. The standard system
library (typically NuSMVLIBRARY_PATH is always im-
plicitly appended to the current path. This provides a con-
venient short-hand mechanism for reaching standard jibrar

files.

nusmv _stderr Standard error (normally stderr)) can be re-directed to a
file by setting the variablausmv _stderr

nusmv_stdout Standard output (normally stdout)) can be re-directed to a

file by setting the variablausmv_stdout

source- Executes a sequence of commands from a file Command |

source [-h] [-p] [-s] [-X] <file> [<args>]
Reads and executes commands from a file.
Command Options:

-p Prints a prompt before reading each command.

-S Silently ignores an attempt to execute commands from a
nonexistent file.

-X Echoes each command before it is executed.

<file> File name.

Arguments on the command line after the filename are remeadbaut not evaluated.
Commands in the script file can then refer to these argumsinig the history substitution
mechanism. EXAMPLE:

Contents otest.scr

read _.model -i %:2
flatten  _hierarchy
build _variables
build _model
compute _fairness

Typing source test.scr short.smv on the command line will execute the
sequence

82



read _.model -i short.smv
flatten  _hierarchy

build _variables

build _model

compute _fairness

(In this cas&%:0 getssource , %:1 getstest.scr , and%:2 getsshort.smv .) If
you type alias st source test.scr and then typest short.smv bozo
you will execute

read _model -i bozo
flatten  _hierarchy
build _variables
build _model
compute _fairness

becausebozo was the second argument on the last command line typed. kr oth
words, command substitution in a script file depends on hansthipt file was invoked.
Switches passed to a command are also counted as positemaahg@ters. Therefore, if
you typest -x short.smv bozo , you will execute

read _.model -i short.smv
flatten  _hierarchy

build _variables

build _model

compute _fairness

To pass thex switch (or any other switch) tsource when the script uses posi-
tional parameters, you may define an alias. For instaatias srcx source

X .

See the variablen_failure  _script _quits for further information.

time - Provides a simple CPU elapsed time value Command |

time [-h]
Prints the processor time used since the last invocatiohedfimne command, and the
total processor time used sinc&yEMV was started.

unalias - Removes the definition of an alias. Command|

unalias [-h] <alias-names>
Removes the definition of an alias specified viadlias command.

Command Options:
<alias-names> Aliases to be removed

83



unset- Unsets an environment variable Command|

unset [-h] <variables>

A variable environment is maintained by the command inttgr Theset command
sets a variable to a particular value, and tinset command removes the definition of a
variable.

Command Options:

<variables> Variables to be unset.
usage- Provides a dump of process statistics Command |
usage [-h]

Prints a formatted dump of processor-specific usage s$tatisEor Berkeley Unix, this
includes all of the information in the getrusage() struetur

which - Looks for a file called "filename” Command|

which [-h] <file _hame>

Looks for a file in a set of directories which includes the eatrdirectory as well as those
in the NUSMV path. If it finds the specified file, it reports the found 'fl@ath. The
searching path is specified through #&& open _path command innusmvrc .

Command Options:
<file _name> File to be searched

3.10 Other Environment Variables

The behavior of the system depends on the value of some envinat variables. For instance, an
environment variable specifies the partitioning methodetaided in building the transition rela-
tion. The value of environment variables can be inspectddwadified with the “set” command.
Environment variables can be either logical or utility.

autoexec Environment Variable|

Defines a command string to be automatically executed afeay@ommand processed by
the command interpreter. This may be useful for timing comasaor tracing the progress
of optimization.

on_failure _script_quits Environment Variable|

When a non-fatal error occurs during the interactive mddlejriteractive interpreter sim-
ply stops the currently executed command, prints the reaftre problem, and prompts
for a new command. When set, this variables makes the commgargreter quit when
an error occur, and then quit6MV. This behaviour might be useful when the command
source is controlled by either a system pipe or a shell script. Uritlese conditions a
mistake within the script interpreted lspurce or any unexpected error might hang the
controlling script or pipe, as by default the interpreteruidosimply give up the current
execution, and wait for further commands. The default valuis environment variable
is 0.

84



filec Environment Variable|

Enables file completion a la “csh”. If the system has been deahpvith the “readline”
library, the user is able to perform file completion by typiig <TAB> key (in a way
similar to the file completion inside the “bash” shell). Iethystem has not been compiled
with the “readline” library, a built-in method to performdicompletion a la “csh” can be
used. This method is enabled with treet filec ' command. The “csh” file comple-
tion method can be also enabled if the “readline” library basen used. In this case the
features offered by “readline” will be disabled.

shell.char Environment Variable|

shell _char specifies a character to be used as shell escape. The defludtof this
environment variable id “.

history_char Environment Variable|

history _char specifies a character to be used in history substitutions d€fault value
of this environment variable i%4.

openpath Environment Variable|

open _path (in analogy to the shell-variablBATH is a list of colon-separated strings
giving directories to be searched whenever a file is openedeéal. Typically the current
directory () is first in this list. The standard system libralfySMVLIBRARY_PATH

is always implicitly appended to the current path. This jfes a convenient short-hand
mechanism for reaching standard library files.

nusmv_stderr Environment Variable|

Standard error (normallgtderr ) can be re-directed to a file by setting the variable
nusmv _stderr

nusmv_stdout Environment Variable|

Standard output (normallgtdout ) can be re-directed to a file by setting the internal
variablenusmv _stdout

nusmv_stdin Environment Variable|

Standard input (normallgtdin ) can be re-directed to afile by setting the internal variable
nusmv _stdin

85



go

reset go_bmc
read_model

| flatten_hierarchy |
| encode_variables | show_plugins

show_property

show_traces

show_vars

write_flat_model

build_boolean_model

| | write_order |

| build_model | | write_boolean_model |
check_ctlspec check_fsm goto_state
check_invar compute_reachable pick_state
check_ltlspec print_fsm_stats simulate

check_property
check_pslspec
compute

print_fair_states
print_fair_transitions
print_reachable_states

86

bmc_simulate
check_invar_bmc
check_invar_bmc_inc
check_ltlspec_bmc
check_ltlspec_bmc_inc

check_ltlspec_sbmc
check_ltlspec_sbmc_inc
check_pslspec
gen_invar_bmc
gen_ltlspec_bmc
gen_ltlspec_bmc_onepb
gen_ltlspec_sbmc

Figure 3.1: The dependency among8MV commands.

check_ltlspec_bmc_onepb




Chapter 4

Running NuSMV batch

When the-int  option is not specified, NSMV runs as a batch program, in the style of SMV,
performing (some of) the steps described in previous seatia fixed sequence.

system _prompt> NuSMWV [command |ine options] input-file <RET>

The program described imput-file is processed, and the corresponding finite state machine
is built. Then, ifinput-file contains formulas to verify, their truth in the specifiedusture is
evaluated. For each formula which is not true a counterel@mprinted.

The batch mode can be controlled with the following commamel dptions:

NUSMV [-h | -help] [-v vi]
[-s] [-old] [-old_div_op] [-dcx]
[-cpp] [-pre ppg [-ofm fmfile] [-obm  bmfile]
[-Ip] [-n idx] [-is] [-ic] [-ils] [-ips] [-ii]
[-ctt] [[-f] [-1]]I[-df] [-fit] [-AG] [-coi]
[ ivfile] [-0o ovfile] [t tv_file] [-reorder] [-dynamic] [-m method
[[-mona]|[-thresh cp-t]|[-cp cp-t]|[-iwls95 cp-t]]
[-noaffinity] [-iwls95preorder]
[-bmc] [-bmc  _ength K] [-sat _solver = namé
[-sin on|off] [-rin on|off]
[ input-filg

where the meaning of the options is described belompiit-fileis not provided in batch mode,
then the model is read from standard input.

-help
-h Prints the command line help.
-v verbose-level Enables printing of additional information on the internal

operations of NSMV. Settingverbose-levelo 1 gives the
basic information. Using this option makes you feel better,
since otherwise the program prints nothing until it finishes
and there is no evidence that it is doing anything at all. Set-
ting theverbose-levehigher than 1 enables printing of much
extra information.

87



-old

-old _div _op
-cpp

-pre  pps

-ofm fm.file
-obm bmfile
-Ip

-n idx

-is

-ic

-ils

-ips

-ii

-ctt

-f

Avoids to load the MNSMV commands con-
tained in ~/.nusmvrc or in .nusmvrc or in
${NUSMVLIBRARY_PATH }/master.nusmvrc

Keeps backward compatibility with older versions of
NuSMV. This option disables some new features like type
checking and dumping of new extension to SMV files.
Enables the old semantics of ™ and “mod’ operations
(from NUSMV 2.3.0) instead of ANSI C semantics.

Runs preprocessor on SMV files before any of those speci-
fied with the -pre option.

Specifies a list of pre-processors to run (in the order given)
on the input file before it is parsed byd$MV. Note that if
the-cpp command is used, then the pre-processors speci-
fied by this command will be run after the input file has been
pre-processed by that pre-processopsis either one sin-

gle pre-processor name (with or without double quotes) or
itis a space-seperated list of pre-processor names cedtain
within double quotes.

prints flattened model to filn_file

Prints boolean model to fillen_file

Lists all properties in SMV model

Specifies which property of SMV model should be checked
Does not checlSPEC

Does not checCOMPUTE

Does not check TLSPEC

Does not checlPSLSPEC

Does not checkNVARSPEC

Checks whether the transition relation is total.

Computes the set of reachable states before evaluating CTL
expressions. Since NuSMV-2.4.0 this option is set by de-
fault, and it is provided for backward compatibility onlye&

also option -df.

Prints the number of reachable states before exiting. If
the -f option is not used, the set of reachable states is
computed.

Disable the computation of the set of reachable states. This
option is provided since NuSMV-2.4.0 to prevent the com-
putation of reachable states that are otherwise computed by
default.

88



-flt

-coi

-i iv_file
-0 ovfile
-t tvfile

-reorder

-dynamic
-m method

-mono
-thresh  cp.t

-cp cpt
-iwls95  cpt

-noaffinity
-iwls95preoder
-bmc

-bmc _length  k
-sat _solver name

Forces the computation of the set of reachable states for
the tableau resulting from BDD-based LTL model check-
ing (commandcheck _ltispec ). If the option-flt  is

not specified (default), the resulting tableau will inhéhie
computation of the reachable states from the model, if en-
abled. If the optionflt  is specified, the reachable states
set will be calculated for the modeind for the tableau
resulting from LTL model checking. This might improve
performances of the commaxtieck _ltlspec , but may
also lead to a dramatic slowing down. This options has ef-
fect only when the calculation of reachable states is edable
(see-f ).

Verifies only AG formulas using an ad hoc algorithm
(see documentation for tlegy _only _search environment
variable).

Enables cone of influence reduction
Reads the variable ordering from filefile.
Reads the variable ordering from fibe_file.

Reads a variable list from filev_file. This list defines
the order for clustering the transition relation. This fea-
ture has been provided by Wendy Johnston, University of
Queensland. The results of Johnston's et al. research have
been presented at FM 2006 in Hamilton, Canada. See
[WIKWLvdBRO6].

Enables variable reordering after having checked all the
specification if any.

Enables dynamic reordering of variables

Uses methodwhen variable ordering is enabled. Pos-
sible values for method are those allowed for the
reorder _method environment variable (see Section 3.8
[Interface to DD package], page 75).

Enables monolithic transition relation

conjunctive partitioning with threshold of each partitiset
to cp_t (DEFAULT, with cp_t=1000)

DEPRECATED: us¢hresh instead.

Enables Iwls95 conjunctive partitioning and sets the tiwes
old of each partition t@p_t

Disables affinity clustering
Enabledwls95CPpreordering

Enables BMC instead of BDD model checking (works only
for LTL properties and PSL properties that can be translated
into LTL)

Setsbmc_length variable, used by BMC

Setssat _solver variable, used by BMC so select the sat
solver to be used.

89



-sin

-rin

on,off

on,off

Enables (on) or disables (off) Sexp inlining, by setting-sys

tem variablesexp _inlining . Default value ioff .
Enables (on) or disables (off) RBC inlining, by setting sys-
tem variablerbc _inlining . Default value ison. The

idea about inlining was taken from [ABEOOQ] by Parosh Aziz
Abdulla, Per Bjesse and Niklas Eén.

90



Bibliography

[ABEOO]

[BCCZ99]

[BCL94]

[CBM90]

[CCGT02]

[CCGROO]

[CGH97]

[Dilgg]

[EMSS91]

[ES04]

[KHLO5]

P. A. Abdulla, P. Bjesse, and N. Eén. Symbolic resaility analysis based
on sat-solvers. IProceedings of Tools and Algorithms for Construction and
Analysis of Systems, 6th International Conference, TAGHISB, 2/0lume
1785 ofLecture Notes in Computer Scienpages 411-425. Springer, 2000.

A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symhmimodel checking
without bdds. InTools and Algorithms for Construction and Analysis of
Systems, In TACAS’9®arch 1999.

J.R. Burch, E.M. Clarke, D.E. Long, K.L. McMillan, andID.Dill. Sym-
bolic model checking for sequential circuit verificationn IEEE Trans-
actions on Computer-Aided Design of Integrated Circuitsl éystems,
13(4):401-424April 1994.

O. Coudert, C. Berthet, and J. C. Madre. Verificatadrsynchronous se-
guential machines based on symbolic execution.Inld. Sifakis, editor,
Proceedings of the International Workshop on Automatidfidation Meth-
ods for Finite State Systems, volume 407 of LNCS, pages 38588rlin
June 1990.

A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia,.\istore, M. Roveri,
R. Sebastiani, and A. Tacchella. Nusmv 2: An opensourcedoslymbolic
model checking. IProceedings of Computer Aided Verification (CAV,02)
2002.

A. Cimatti, E. Clarke, F. Giunchiglia, and M. RoveNusmv: a new sym-
bolic model checker. Imnternational Journal on Software Tools for Tech-
nology Transfer (STTT), 2(4March 2000.

E. Clarke, O. Grumberg, and K. Hamaguchi. Anothaklat Itl model
checking. InFormal Methods in System Design, 10(1):57—F&bruary
1997.

D. Dill. Trace theory for automatic hierarchical nication of speed-
independent circuits. IACM Distinguished Dissertations. MIT Pre4988.

E. Allen Emerson, A. K. Mok, A. Prasad Sistla, andSknivasan. Quan-
titative temporal reasoning. I[Bdmund M. Clarke and Robert P. Krushan,
editors, Proceedings of Computer-Aided Verification (8, volume 531
of LNCS, pages 136-145, Berlin, Germadyne 1991.

Niklas Eén and Niklas Sorensson. Temporal indichy incremental sat
solving. In Ofer Strichman and Armin Biere, editolectronic Notes in
Theoretical Computer Scienceolume 89. Elsevier, 2004.

T. Junttila K. Heljanko and T. Latvala. Incrementahd complete bounded
model checking for full PLTL. In K. Etessami and S. K. Rajarinad-
itors, Computer Aided Verification, 17 International Conference CAV
2005 number 3576 in Lecture Notes in Computer Science, pagek198—
Springer, 2005.

91



[LBHJO5] T. Latvala, A. Biere, K. Heljanko, and T. Junttil@imple is better: Efficient
bounded model checking for past LTL. In R. Cousot, edi@rification,
Model Checking, and Abstract Interpretation, 6th Intefoatl Conference
VMCAI 2005 number 3385 in Lecture Notes in Computer Science, pages
380-395. Springer, 2005.

[Mar85] A.J. Martin. The design of a self-timed circuit faisttibuted mutual exclu-
sion. InIn H. Fuchs and W.H. Freeman, editoBroceedings of the 1985
Chapel Hill Conference on VLSpages 245-260, New Yorko85.

[McM92] K.L. McMillan. The smv system - draft. InAvailable at
http://www.cs.cmu.edu/ modelcheck/smv/smvmanual.r2.2 .ps ,
1992.

[McM93] K.L. McMillan. Symbolic model checking. IKluwer Academic Publ.
1993.

[MHSO00] Moon, Hachtel, and Somenzi. Border-block tringdtam and conjunction
schedule in image computation. FMCAD, 2000.

[PSL] Language Front-End for Sugar Foundation Language.
http://lwww.haifa.il.ibm.com/projects/verificationfsar/parser.html.

[psl03] Accellera, Property Specification Language - Rafee Manual - Version
1.01. http://lwww.eda.org/vfv/docs/pkim-1.01.pdf, April 2003.

[RAPT95] R. K. Ranjan, A. Aziz, B. Plessier, C. Pixley, and R. K. fan. Effi-

cient bdd algorithms for fsm synthesis and verification.IHHEEE/ACM
Proceedings International Workshop on Logic SynthesigelTahoe (NV)
May 1995.

[sfVS96] "VIS: A system for Verification and The VIS Group Shesis”. Proceed-
ings of the 8th international conference on computer aidedfigation,
p428-432. InSpringer Lecture Notes in Computer Science, 1102, Edited
by R. Alur and T. Henzinger, New Brunswick, M996.

[Som98] F. Somenzi. Cudd: Cu decision diagram package —asel@.2.0. IDe-
partment of Electrical and Computer Engineering — Univigref Colorado
at Boulder May 1998.

[WIKWLvABRO6] P. A. Strooper W. Johnston K. Winter L. van dBarg and P. Robinson.
Model-based variable and transition orderings for efficgmbolic model
checking. InFM 2006: Formal Methodsnumber 4085 in Lecture Notes in
Computer Science, pages 524-540. Springer Berlin, 2006.

92



Appendix A

Compatibility with CMU SMV

The NUSMYV language is mostly source compatible with the origirakion of SMV distributed
at Carnegie Mellon University from which we started. In thjgpendix we describe the most
common problems that can be encountered when trying to as€M SMV programs with
NUSMV.

The main problem is variable names in old programs that ateflvith new reserved words.
The list of the new reserved words ofl$MV w.r.t. CMU SMV is the following:

F, G, X, U, V, These names are reserved for the LTL temporal operators.
W, H, O, Y, Z

S, T, B

CTLSPEC Itis used to introduce CTL specifications.

LTLSPEC Itis used to introduce LTL specifications.

INVARSPEC Itis used to introduce invariant specifications.
PSLSPEC Itis used to introduce PSL specifications.

IVAR Itis used to introduce input variables.

JUSTICE Itis used to introduce “justice” fairness constraints.
COMPASSION Itis used to introduce “compassion” fairness constraints.
CONSTANT It is used to force declaration of constants.

word Itis used to declare word type variables.

wordl Itis used to cast boolean expressions to word type.

bool Itis used to cast wordl expressions to boolean type.

TheIMPLEMENTSINPUT, OUTPUTstatements are not no longer supported ySWV.

NuSMV differs from CMU SMV also in the controls that are perfathon the input for-
mulas. Several formulas that are valid for CMU SMV, but thaédino clear semantics, are not
accepted by NSMV.

In particular:

e [tis no longer possible to write formulas containing nestedt .

TRANS
next(alpha & next(beta | next(gamma))) -> delta

e |t is no longer possible to write formulas containingekt ’ in the right hand side of
“normal” and “init” assignments (they are allowed in thehtidhand side of “next” assign-
ments), and with the statementSlVAR’ and ‘INIT .

INVAR

93



next(alpha) & beta

INIT
next(beta) -> alpha

ASSIGN
delta := alpha & next(gamma); -- normal assignments
init(gamma) := alpha & next(delta); -- init assignments

e |tis no longer possible to writeSPEC,  FAIRNESS statements containingnext .

FAIRNESS
next(running)
SPEC
next(x) & y

e The check for circular dependencies among variables hasdme more restrictive. We
say that variablex depends on variablg if x := f(y). We say that there is a circular
dependency in the definition &fif:

— xdepends on itself (e.gc = f(x,y) );

— xdepends oy andy depends o (e.g.x := f(y) andy :=f(x) or x :=f(z), z := f(y)
andy :=f(x) ).

In the case of circular dependencies among variables teeme fixed order in which
we can compute the involved variables. Avoiding circulgpeteencies among variables
guarantee that there exists an order in which the variallede computed. In NSMV
circular dependencies are not allowed.

In CMU SMV the test for circular dependencies is able to det&cular dependencies
only in “normal” assignments, and not in “next” assignmefiise circular dependencies
check of NUSMV has been extended to detect circularities also in “nagsignments.
For instance the following fragment of code is accepted by LCSMV but discarded by
NUSMV.

MODULE main
VAR
y : boolean;
X : boolean;
ASSIGN
next(x) = x & next(y);
next(y) =y & next(x);

Another difference betweend8MV and CMU SMV is in the variable order file. The vari-
able ordering file accepted byd$MV can be partial and can contain variables not declared in
the model. Variables listed in the ordering file but not desdidn the model are simply discarded.
The variables declared in the model but not listed in theatdeifile provided in input are created
at the end of the given ordering following the default ordgri All the ordering files generated
by CMU SMV are accepted in input from®SMV but the ordering files generated byySMV
may be not accepted by CMU SMV. Notice that there is no guesatitat a good ordering for
CMU SMV is also a good ordering for 6MV. In the ordering files for NSMV, identifier
_process _selector _can be used to control the position of the variable that eeepdocess
selection. In CMU SMV it is not possible to control the pasitiof this variable in the ordering;
it is hard-coded at the top of the ordering. A further diffeze about variable ordering consists
in the fact that in NNSMV it is allowed to specify single bits of scalar variablésthe example:

VAR x : 0..7;

NUSMV will create three variables.0 ,x.1 andx.2 that can be explicitly mentioned in
the variable ordering file to fine control their ordering.

94



Appendix B

Typing Rules

This appendix gives the explicit formal typing rules fouEMV'’s input language, as well as
notes on implicit conversion and casting.

In the following, an atomic constant is defined as being anyeece of characters starting
with a character in the s¢A-Za-z _} and followed by a possible empty sequence of characters
from the sef{ A-Za-z0-9 _$#- \}. An integer is any whole number, positive or negative.

B.1 Types

The main types recognised byu$MV are as follows:
boolean
integer
symbolic enum
integers-and-symbolic enum
boolean set
integer set
symbolic set
integers-and-symbolic set
word[N] (whereNis any whole numbel 1)
For more detalied description of existing types see Se@ibifiTypes], page 7.

B.2 Implicit Conversion

In certain situations NSMYV is able to carry out implicit conversion of types. There &vo
kind of implicit convertion. The first one converts expressof one type to a greater type. The
order to types is given in Figure B.1. For more informationtgpe ordering see Section 2.2.1
[Implicit Type Conversion], page 9.

Another kind of implicit type convertions changes the typaroexpression to its counterpart
set type. The Figure B.2 shows the direction of such convertiéiws more information oset
types and their counterpart types see Section 2.1.6 [Sesypage 8.

95



boolean word[1]

!
integer symbolic enum word[2]
l 1 word[3]

integers-and-symbolic enum

boolean set
!

integer set  symbolic set
| !

integers-and-symbolic set

Figure B.1: The ordering on the types inSMV

boolean — boolean set

integer — integer set

symbolic enum — symbolic set

integers-and-symbolic enum — integers-and-symbolic set

Figure B.2: Implicit convertion to counterpart types

B.3 Type Rules

The type rules are presented below with the operators oretharid the signatures of the rules
on the right. To save space, more than one operator may besdeftthand side, and it is also
the case that an individual operator may have more than gnatsire. For more information on
these expressions and their type rules see Section 2.24&sipns], page 9.

Constants

booleanconstant boolean

integerconstant integer

symbolicconstant symbolic enum

word_constant word[N] (whereN s the number of bits required)
rangeconstant  integer set

Variable and Define

variableidentifier : Type (whereType is the type of the variable)
defineidentifier :Type (whereType is the type of the define’s expression)

96



Arithmetic Operators

: boolean — integer
: integer — integer
: word[N] — word[N]
The implicit type conversion can be applied to the operand.

+,-,/,* : boolean * boolean — integer

:integer * integer — integer
: word[N] * word[N] — word[N]
The implicit type conversion can be applieddaweof the operands.

mod :integer * 2 — boolean

:integer * integer — integer
: word[N] * word[N] — word[N]
For operations on words, the result is taken moduiYo

>, <,>=,<=: boolean * boolean — boolean

: integer * integer — boolean
- word[N] * word[N] — boolean
: boolean * word[1] — boolean
: word[1] * boolean — boolean
The implicit type conversion can be applieddaweof the operands.

Logic Operators

I (negation) ‘boolean — boolean

: word[N] — word[N]

&, |,->,<->,xor ,xnor :boolean* boolean — boolean

: word[N] * word[N] — word[N]

I= : boolean * boolean — boolean

: integer * integer — boolean

: symbolic enum * symbolic enum — boolean

. integers-and-symbolic enum *
integers-and-symbolic enum — boolean

: word[N] * word[N] — boolean

: boolean * word[1] — boolean

: word[1] * boolean — boolean

The implicit type conversion can be applieddoneof the operands.

Bit-Wise Operators

(concatenation) word[N] * word[M] — word[N+M]
: boolean * word[N] — word[N+1]
: word[N] * boolean — word[N+1]

expi[ exp2, exps] : word[N]* integer * integer — word[exzps — exp2 + 1]

exressiongzrps andexps must evaluate to integers such thatGzpe < exps < N

<<, >> (shift) : word[N] * integer — word[N]

: word[N] * boolean — word[N]

97



Set Operators

{expi,exps,...,exp,} : equivalent to consecutivenion operations
union : boolean set * boolean set — boolean set
:integer set * integer set — integer set
: symbolic set * symbolic set — symbolic set
: integers-and-symbolic set * integers-and-symbolic set
— integers-and-symbolic set
Atfirst, if it is possible, the operands are converted torthet counterpart types,
then both operands are implicitly converted to a minimal c@n type
in : boolean set * boolean set — boolean set
:integer set * integer set — integer set
: symbolic set * symbolic set — symbolic set
: integers-and-symbolic set * integers-and-symbolic set
— integers-and-symbolic set
At first, if it is possible, the operands are converted torteet counterpart types,
then implicit convertion is performed on one of the operands

Case Expression

case condy resulty;
conds results;
cond,, resulty;
esac

cond; must be of typdoolean. If one of result; is of aset type then all otheresult,, are
converted to their counterpasét types. The overall type of the expression is such a minimal
type that eachresult; can be implicitly converted to.

Formula Operators

EX, AX EF, AF, EG AG
X,Y,Z,GHF, O :boolean — boolean
A-U,E-U,U, S : boolean * boolean — boolean
A-BU, E-BU : boolean * integer * integer * boolean — boolean
EBF, ABF, EBG ABG : integer * integer * boolean — boolean

98



Miscellaneous Operators

Integer. Integer :integer _number * integer _number — integer

bool - word[1] — boolean
wordl : boolean — word[1]
next , init : any type— the same type
0 : any type— the same type

= : boolean * boolean — no type
: boolean * boolean set — no type
: integer * integer — no type
:integer * integer set — no type
: symbolic enum * symbolic enum — no type
: symbolic enum * symbolic set — no type
: integers-and-symbolic enum *
integers-and-symbolic enum — no type
. integers-and-symbolic enum *
integers-and-symbolic set — no type
: word[N] * word[N] — no type
: boolean * word[1] — no type
: word[1] * boolean — no type
Implicit type conversion is performed on the right operantyo

99



Appendix C

Production Rules

This appendix contains the syntactic production rules fating a NUSMYV program.

Identifiers
identifier ::
identifier_first_character
| identifier identifier_consecutive_character

identifier_first_character :: one of
ABCDEFGHI JKLMNOPQRSTUVWXYZ
abcdefghijkl mnopgr stuvwxyz_

identifier_consecutive_character ::
identifier_first_character

| digit
| one of $ # \ -
digit :: oneof 0123456789

Note that there are certain reserved keyword which cannoisbd as identifiers (see page
6).

Variable and DEFINE Identifiers
define_identifier :: complex_identifier
variable_identifier :: complex_identifier

Complex Identifiers

complex_identifier ::

identifier
| complex_identifier . identifier
| complex_identifier [ simple_expression ]
| self

Integer Numbers

integer_number ::

100



- digit
| digit
| integer_number digit

Constants

constant ::
boolean_constant
integer_constant
symbolic_constant
word_constant
range_constant

boolean_constant :: one of
0 1 FALSE TRUE

integer_constant :: integer_number

symbolic_constant :: identifier

word_constant :: [word_width] word_base " word_value
word_width :: integer_number (>0)
word_base :: b| B|] ol O]l d| D| h| H
word_value ::
hex_digit

| word_value hex_digit

| word_value -
hex_digit :: one of

0123456789abcdef ABCDEF

Note that there are some additional restrictions on thetdramat of word constants (see
page 11).

range_constant ::
integer_number .. integer_number

Basic Expressions

basic_expr ::
constant -- a constant
| variable_identifier -- a variable identifier
| define_identifier -- a define identifier
| ( basic_expr )
| ! basic_expr -- logical/bitwise NOT
| basic_expr & basic_expr -- logical/bitwise AND
| basic_expr | basic_expr -- logical/bitwise OR
| basic_expr  xor basic_expr -- logical/bitwise exclusive OR
| basic_expr xnor basic_expr - logical/bitwise NOT xor
| basic_expr - > basic_expr -- logical/bitwise implication
| basic_expr <-> basic_expr -- logical/bitwise equivalence
| basic_expr = basic_expr -- equality
| basic_expr I = basic_expr -- inequality
| basic_expr < basic_expr -- less than



basic_expr > basic_expr -- greater than

|

| basic_expr <= basic_expr -- less than or equal
| basic_expr >= basic_expr -- greater than or equal
| basic_expr + basic_expr -- integer addition

| basic_expr - basic_expr - integer subtraction

| basic_expr *  basic_expr -- integer multiplication
| basic_expr / basic_expr - integer division

| basic_expr nod basic_expr - integer remainder

| basic_expr >> basic_expr -- bit shift right

| basic_expr << basic_expr - bit shift left

| basic_expr : 1 basic_expr -- word concatenation
| basic_expr [ integer_number . integer_number ]

-- word bits selection
wordl ( basic_expr ) -- boolean to word[1] convertion

|

| bool ( basic_expr ) - word[l] to boolean convertion

| basic_expr uni on basic_expr  -- union of set expressions
| { set_body_expr } -- set expression

| basic_expr i n basic_expr -- inclusion expression

| case_expr -- a case expression

| next ( basic_expr ) -- a next expression

set_body_expr ::
basic_expr
| set_body_expr , basic_expr

Case Expression

case_expr :: case case_body esac
case_body ::
basic_expr : basic_expr ;
| case_body basic_expr : basic_expr ;

Simple Expression

simple_expr :: basic_expr

Note that simple expressiogannotcontainnext operators.

Next Expression

next_expr :: basic_expr

Type Specifier

type_specifier ::
simple_type_specifier
| module_type_spicifier

simple_type_specifier ::
bool ean
| word [ integer_number ]
| { enumeration_type_body }
| integer_number .. integer_number
| array integer_number .. integer_number
of simple_type_specifier

enumeration_type_body ::

102



enumeration_type_value
| enumeration_type_body , enumeration_type_value

enumeration_type_value ::

symbolic_constant
| integer_number

Input Variable

ivar_declaration :: I VAR var_list

DEFINE Declaration

define_declaration :: DEFI NE define_body
define_body :: identifier 1= simple_expr
| define_body identifier ;= simple_expr

CONSTANTS Declaration
constants_declaration :: CONSTANTS constants_body ;

constants_body :: identifier
| constants_body , identifier

ASSIGN Declaration

assign_constraint :: ASSI GN assign_list

assign_list :: assign ;
| assign_list assign ;

assign ::
complex_identifier . = simple_expr
| init ( complex_identifier ) := simple_expr
| next ( complex_identifier ) = next_expr
TRANS Statement
trans_constraint :: TRANS next_expr [ ;]
INIT Statement
init_constrain :: INI T simple_expr [ ;]
INVAR Statement
invar_constraint :: I NVAR simple_expr [ ;]
Module Declarations
module :: MODULE identifier [ (module_parameters )] [module_body]

module_parameters ::
identifier

103



| module_parameters , identifier

module_body ::
module_element
| module_body module_element

module_element ::
var_declaration
ivar_declaration
define_declaration
constants_declaration
assign_constraint
trans_constraint
init_constraint
invar_constraint
fairness_constraint
ctl_specification
invar_specification
Itl_specification
compute_specification
isa_declaration

Module Type Specifier
module_type_specifier ::
| identifier [ ( [ parameter_list ] ) 1]
| process identifier [ ( [ parameter_list ] ) 1]

parameter_list ::
simple_expr
| parameter_list , simple_expr
ISA Declaration

isa_declaration :: | SA identifier

Warning: this is a deprecated feature and will eventually be remoxaa NUSMV. Use
module instances instead.

CTL Specification
ctl_specification :: SPEC ctl_expr ;
ctl_expr ::
simple_expr -- a simple boolean expression
| ( ctl_expr )
| ! ctl_expr -- logical not
| ctl_expr & ctl_expr -- logical and
| ctl_expr | ctl_expr -- logical or
| ctl_expr xor ctl_expr -- logical exclusive or
| ctl_expr -> ctl_expr -- logical implies
| ctl_expr <-> ctl_expr -- logical equivalence
| EG ctl_expr -- exists globally
| EX ctl_expr -- exists next state
| EF ctl_expr -- exists finally

104



| AG ctl_expr -- forall globally

| AX ctl_expr -- forall next state
| AF ctl_expr -- forall finally

| E [ ctl_expr U ctl_expr ] -- exists until

| A [ ctl_expr U ctl_expr ] - forall until

INVAR Specification

invar_specification :: I NVARSPEC simple_expr ;
This is equivalent to

SPEC AG simple_expr ;

but is checked by a specialised algorithm during reachwlaialysis.

LTL Specification

Itl_specification :: LTLSPEC Itl_expr [ 0]

Itl_expr ::
simple_expr -- a simple boolean expression
| ( Itl_expr )
| ' Itl_expr -- logical not
| Itl_expr & Itl_expr -- logical and
| Itl_expr | Itl_expr -- logical or
| Itl_expr xor Itl_expr -- logical exclusive or
| Itl_expr -> It_expr  -- logical implies
| Itl_expr <-> ltl_expr -- logical equivalence
-- FUTURE
| X Itl_expr -- next state
| G Itl_expr -- globally
| F Itl_expr -- finally
| Itl_expr U Itl_expr --until
| Itl_expr V Itl_expr -- releases
-- PAST
| Y Itl_expr -- previous state
| Z Itl_expr -- not previous state not
| H Itl_expr -- historically
| O Itl_expr -- once
| Itl_expr S Itl_expr -- since
| Itl_expr T Itl_expr -- triggered
Real Time CTL Specification
rtctl_specification :: SPEC rtctl_expr [ 0]
rtctl_expr ::
ctl_expr
| EBF range rtctl_expr
| ABF range rtctl_expr
| EBG range rtctl_expr
| ABG range rtctl_expr
| A [ rtctl_expr BU range rtctl_expr ]
| E [ rtctl_expr BU range rtctl_expr ]
range : integer_number integer_number

105



Itis also possible to compute quantative information fer BSM:

compute_specification ::
compute_expr :: M N [
| MAX [

PSL Specification

psispec_declaration ::

psl_expr ::
psl_primary_expr

| psl_unary_expr

| psl_binary_expr

| psl_conditional_expr

| psl_case_expr

| psl_property

psl_primary_expr ::
number

| boolean

| var_id

| { psl_expr

| { psl_expr "

| ( psl_expr

psl_unary_expr ::
+ psl_primary_expr

| - psl_primary_expr

| ! psl_primary_expr

psl_binary_expr ::

" psle
)

COVPUTE compute_expr [ ;]

]

rtctl_expr
rtctl_expr

rtctl_expr
rtctl_expr

"PSLSPEC " psl_expr ;"

;» a numeric constant
;; a boolean constant
;; a variable identifier

1}

psl_expr
Xpr

}

. "psl_expr"

psl_expr + psl_expr
| psl_expr uni on psl_expr
| psl_expr in psl_expr
| psl_expr - psl_expr
| psl_expr * psl_expr
| psl_expr | psl_expr
| psl_expr % psl_expr
| psl_expr == psl_expr
| psl_expr 1= psl_expr
| psl_expr < psl_expr
| psl_expr <= psl_expr
| psl_expr > psl_expr
| psl_expr >= psl_expr
| psl_expr & psl_expr
| psl_expr | psl_expr
| psl_expr xor psl_expr
psl_conditional_expr ::
psl_expr  ? psl_expr psl_expr
psl_case_expr :
case

psl_expr psl_expr
psl_expr psl_expr

endcase

106



Among the subclasses p&l _expr we depict the claspsl _bexpr that will be used in the
following to identify purely boolean, i.e. not temporal pegssions.

psl_property ::
replicator psl_expr ;; a replicated property
| FL_property abort psl_bexpr
| psl_expr <-> psl_expr
| psl_expr - > psl_expr
| FL_property
| OBE_property
replicator ::
forall var_id [index_range] i n value_set
index_range ::
[ range ]
range ::
low_bound : high_bound
low_bound ::
number
| identifier
high_bound ::
number
| identifier
| inf ;, inifite high bound
value_set ::
{ value_range , .. , value_range }
| bool ean
value_range ::
psl_expr
| range

FL_property ::

;» PRIMITIVE LTL OPERATORS

X FL_property

X! FL_property

F FL_property

G FL_property

[ FL_property U FL_property ]
[ FL_property W FL_property ]
;7 SIMPLE TEMPORAL OPERATORS
al ways FL_property
never FL_property
next FL_property
next! FL_property
eventual | y! FL_property

FL_property until! FL_property
FL_property until FL_property
FL_property until!_ FL_property
FL_property until _ FL_property

I
I
I
I
I
I
I
I
I
I
I
I
I
I
| FL_property bef ore! FL_property
| FL_property bef ore FL_property

| FL_property bef ore! _ FL_property
| FL_property bef ore_ FL_property
;. EXTENDED NEXT OPERATORS

| X [number] ( FL_property )

| XU [number] ( FL_property )

107



next [number] ( FL_property )
next! [number] ( FL_property )

I
I
| next_a [range] ( FL_property )

| next_a! [range] ( FL_property )

| next_e [range] ( FL_property )

| next_e! [range] ( FL_property )

| next_event! ( psl_bexpr ) ( FL_property )

| next_event ( psl_bexpr ) ( FL_property )

| next_event! ( psl_bexpr ) [ number ] ( FL_property )
| next_event ( psl_bexpr ) [ number ] ( FL_property )

| next_event _a! ( psl_bexpr ) [pslexpr 1 ( FL_property )
| next_event_a ( psl_bexpr ) [psl_expr ] ( FL_property )
| next_event _e! ( psl_bexpr ) [pslexpr 1 ( FL_property )
| next_event_e ( psl_bexpr ) [pslexpr ] ( FL_property )
;; OPERATORS ON SEREs

| sequence ( FL_property )
| sequence |-> sequence [ !]
| sequence |=> sequence [ !]
al ways sequence

G sequence

never sequence
eventual | y! sequence

| within! ( sequence_or_psl_bexpr , psl_bexpr ) sequence
| within ( sequence_or_psl_bexpr , psl_bexpr ) sequence

| within!_ ( sequence_or_psl_bexpr , psl_bexpr ) sequence
| within_ ( sequence_or_psl_bexpr , psl_bexpr ) sequence

)
)
1

| whilenot! ( psl_bexpr ) sequence
| whilenot ( psl_bexpr ) sequence
| whilenot!_ ( psl_bexpr ) sequence
| whilenot_ ( psl_bexpr ) sequence
sequence_or_psl_bexpr ::
sequence
| psl_bexpr

sequence ::
{ SERE}

SERE :
sequence

| psl_bexpr

; COMPOSITION OPERATORS

SERE ; SERE

SERE : SERE

SERE & SERE

SERE && SERE

SERE | SERE

; RegExp QUALIFIERS

| SERE [* [count] ]

[* [count] ]

| SERE [ +]

108



| [+]

| psl_bexpr [= count ]
| psl_bexpr [-> count ]
count ::
number
| range

OBE_property ::
AX OBE_property
| AG OBE_property
| AF OBE_property
| A [ OBE_property U OBE_property
| EX OBE_property
| EG OBE_property
| EF OBE_property
| E[ OBE_property U OBE_property

109



