See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/220616485

Authenticated Algorithms for Byzantine Agreement

Article in SIAM Journal on Computing - November 1983

DOI: 10.1137/0212045 - Source: DBLP

CITATIONS
315

2 authors:

Danny Dolev
Hebrew University of Jerusalem

360 PUBLICATIONS 13,446 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

ot ENnsemble View project

All content following this page was uploaded by Danny Dolev on 03 June 2014.

The user has requested enhancement of the downloaded file.

READS
1,915

H. Raymond Strong
IBM

66 PUBLICATIONS 2,492 CITATIONS

SEE PROFILE

ResearchGate

https://www.researchgate.net/publication/220616485_Authenticated_Algorithms_for_Byzantine_Agreement?enrichId=rgreq-801fc5d854097ec7253dd896073c84b9-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYxNjQ4NTtBUzoxMDQwMDEyMzIxNzkyMjFAMTQwMTgwNzIzNTAyNQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/220616485_Authenticated_Algorithms_for_Byzantine_Agreement?enrichId=rgreq-801fc5d854097ec7253dd896073c84b9-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYxNjQ4NTtBUzoxMDQwMDEyMzIxNzkyMjFAMTQwMTgwNzIzNTAyNQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Ensemble-3?enrichId=rgreq-801fc5d854097ec7253dd896073c84b9-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYxNjQ4NTtBUzoxMDQwMDEyMzIxNzkyMjFAMTQwMTgwNzIzNTAyNQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-801fc5d854097ec7253dd896073c84b9-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYxNjQ4NTtBUzoxMDQwMDEyMzIxNzkyMjFAMTQwMTgwNzIzNTAyNQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Danny_Dolev?enrichId=rgreq-801fc5d854097ec7253dd896073c84b9-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYxNjQ4NTtBUzoxMDQwMDEyMzIxNzkyMjFAMTQwMTgwNzIzNTAyNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Danny_Dolev?enrichId=rgreq-801fc5d854097ec7253dd896073c84b9-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYxNjQ4NTtBUzoxMDQwMDEyMzIxNzkyMjFAMTQwMTgwNzIzNTAyNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Hebrew_University_of_Jerusalem?enrichId=rgreq-801fc5d854097ec7253dd896073c84b9-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYxNjQ4NTtBUzoxMDQwMDEyMzIxNzkyMjFAMTQwMTgwNzIzNTAyNQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Danny_Dolev?enrichId=rgreq-801fc5d854097ec7253dd896073c84b9-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYxNjQ4NTtBUzoxMDQwMDEyMzIxNzkyMjFAMTQwMTgwNzIzNTAyNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/H_Strong?enrichId=rgreq-801fc5d854097ec7253dd896073c84b9-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYxNjQ4NTtBUzoxMDQwMDEyMzIxNzkyMjFAMTQwMTgwNzIzNTAyNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/H_Strong?enrichId=rgreq-801fc5d854097ec7253dd896073c84b9-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYxNjQ4NTtBUzoxMDQwMDEyMzIxNzkyMjFAMTQwMTgwNzIzNTAyNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/IBM2?enrichId=rgreq-801fc5d854097ec7253dd896073c84b9-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYxNjQ4NTtBUzoxMDQwMDEyMzIxNzkyMjFAMTQwMTgwNzIzNTAyNQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/H_Strong?enrichId=rgreq-801fc5d854097ec7253dd896073c84b9-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYxNjQ4NTtBUzoxMDQwMDEyMzIxNzkyMjFAMTQwMTgwNzIzNTAyNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Danny_Dolev?enrichId=rgreq-801fc5d854097ec7253dd896073c84b9-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYxNjQ4NTtBUzoxMDQwMDEyMzIxNzkyMjFAMTQwMTgwNzIzNTAyNQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

SIAM J. COMPUT. © 1983 Society for Industrial and Applied Mathematics
Vol. 12, No. 4, November 1983 0097-5397/83/1204-0005 $01.25/0

AUTHENTICATED ALGORITHMS FOR BYZANTINE AGREEMENT*

D. DOLEVt aND H. R. STRONG*

Abstract. Reaching agreement in a distributed system in the presence of faulty processors is a central
issue for reliable computer systems. Using an authentication protocol, one can limit the undetected behavior
of faulty processors to a simple failure to relay messages to all intended targets. In this paper we show
that, in spite of such an ability to limit faulty behavior, and no matter what message types or protocols are
allowed, reaching (Byzantine) agreement requires at least ¢+ 1 phases or rounds of information exchange,
where ¢ is an upper bound on the number of faulty processors. We present algorithms for reaching agreement
based on authentication that require a total number of messages sent by correctly operating processors
that is polynomial in both ¢ and the number of processors, n. The best algorithm uses only ¢+ 1 phases
and O(nr) messages.

Key words. authentication, reliable distributed systems, Byzantine agreement, consistency, unanimity

1. Introduction. In this paper we consider algorithms for achieving agreement
among multiple processors. The context for this agreement is a network of unreliable
processors that have a means for conducting several synchronized phases of informa-
tion exchange, after which they must all agree on some set of information. We will
assume for simplicity that this set of information consists of a single value from some
set of values V.

The type of agreement we will study is called Byzantine agreement (LSP),
unanimity (Db) or interactive consistency (PSL). It results when in the presence of
undetected faulty processors, all correct (nonfaulty) processors are able to agree either
on a value or on the conclusion that the originator of the value is faulty. More explicitly,
Byzantine agreement is achieved when

(I) all correct processors agree on the same value, and

(IT) if the sender is correct, then all correct processors agree on its value.

Implicit in (I) and (II) is the idea that the agreement is synchronous in the sense
that all processors reach this agreement at the same time. In other words, there must
be some real time at which each of the processors has completed the execution of its
algorithm for reaching agreement, and this time must be known and agreed on by all
processors in advance.

Our analysis of the problem is based on the worst case assumption that faulty
processors are not predictable and possibly even malicious. An algorithm should
sustain any strange behavior of faulty processors, even a collusion to prevent the
correct processors from reaching agreement. Even if the correct processors cannot
identify the faulty processors, they must still reach Byzantine agreement. The algorithm
should not depend in any way on anticipated behavior of faulty processors.

We establish an exact lower bound for the number of phases of information
exchange required. This lower bound (¢ +1) was known for the case in which only
unauthenticated messages are exchanged (FL). We have generalized the proof given
by Lynch and Fischer to apply to any kind of message. The lower bound result is
somewhat surprising in our context. It indicates that even though we allow correct
processors to exchange any kind of verifiable information, and even though we restrict
the possible behavior of faulty processors to simply failing to relay messages, Byzantine

* Received by the editors January 4, 1982, and in revised form September 28, 1982. This paper is a
revision of material that appeared in IBM Research Report RJ3342. It does not include all the material
in the earlier report. It does contain an improvement of earlier results.

+ IBM Research Laboratory, San Jose, California 95193.

656

"

AUTHENTICATED ALGORITHMS FOR BYZANTINE AGREEMENT 657

agreement cannot be reached in ¢ or fewer phases. Note that if we relax (I) slightly
as in crusader agreement (Da), then we can obtain agreement within two phases.

The algorithms considered provide a method for a single processor to send a
single value to all other processors. Generalizations to many processors sending values
to each other will be obvious.

We assume some reliable means of communication by which any correct processor
can send a message to any other correct processor. For example, this reliability might
be achieved by sending duplicate messages along many paths in a network. In any
case, for this paper, unless otherwise stated, we assume a completely connected, totally
reliable communication network, and in counting the total number of messages sent,
we ignore any duplication or repetition inherent in the communication medium. Note
that we only count the messages sent by correct processors.

For algorithms using authentication, we assume a protocol that will prevent any
processor from introducing a new value or message into the information exchange
and claiming to have received it from another (DH), (RSA). In a typical authentication
protocol (PSL), the transmitter appends a signature to the message to be sent. This
signature contains a sample. portion of the message encoded in such a way that any
receiver can verify that the message is authentic and that it was sent by the sender,
but no processor can forge the signature of another. Thus no processor can change
the content of a message undetectably.

All previous algorithms for reaching Byzantine agreement are exponential in the
number of messages (O(n') where n is the number of processors and ¢ is an upper
bound on the number of undetected faulty processors). The new results presented
here include algorithms polynomial in the number of bits exchanged, using authentica-
tion. If d is the number of phases and m is the total number of messages, then the
algorithms previously presented used d =¢+1 and m = O(n°).

Lynch and Fischer established a lower bound of ¢+41 for d, but their proof
depended on disallowing any authentication protocol. Here we establish the same
lower bound in a general context allowing authentication. Note, however, that our
proof does not depend on the use of any particular-authentication protocol. In fact
it contains no reference to authentication or any other particular type of message.

We present an algorithm for Byzantine agreement with d =¢+1 and m = O(n?),
and a modification with d =¢+2 and m = O(nt). These algorithms are first presented
in the context of a complete network and then generalized to arbitrary networks with
sufficient connectivity. The total number of messages is on the order of the number
of edges in the network, but the more general networks require more phases. Finally
we present an algorithm that achieves the lower bound ¢+1 for number of phases
and also requires only O(nt) messages.

2. Histories. In order to give proofs of correctness and especially to establish
lower bounds, we will describe the message related behavior of the collection of
processors during the phases of information exchange as a single object of directed
graphs called phases. We intend the notion of history to capture any synchronous
information exchange behavior, including any number of authentication protocols and
the exchange of arbitrary message types. The lower bound result of § 3 can be extended
to asynchronous algorithms with a suitable generalization of the notion of phase.

A phase is a directed graph with nodes corresponding to processors and with
labels on the edges. A label represents the information sent from a given processor
to another during the given phase. We assume that when no message is sent there is
no edge. An n processor history is a finite sequence of n node phases, with nodes

658 D. DOLEV AND H. R. STRONG

labelled by the names of the processors, together with a special initial phase called
phase 0, such that phase 0 contains only a single inedge to one processor called the
sender. (The assumption is that the inedge at phase O carries the value that the sender
is to send.) Figures 1 and 2 represent histories with labels and phase 0 omitted.

FiG. 1. A six processor four phase F1G. 2. The result of hiding sender s at
history with edge labels and phase 0 phase 1.
omitted.

A subhistory of a history H is a copy of H with some edges removed. For each
history H and processor p there is a unique subhistory pH called the subhistory
according to p, consisting of only the edges with target p. Thus, the subhistory according
to the sender includes the value it is supposed to send even if it sends nothing.

An agreement algorithm on a class of histories C consists of a correctness rule (a
function which given a subhistory according to p and an edge in a phase to be added
to the history as the next phase, produces a possibly empty label for that edge) and
a decision function (a function from subhistories according to processors of histories
in C to the union of V with a symbol 0 representing “sender fault”). With respect

AUTHENTICATED ALGORITHMS FOR BYZANTINE AGREEMENT 659

to a given correctness rule, a processor p is said to be correct at phase k if each edge
from p in phase k has the label produced by the correctness rule operating on the
subhistory according to p of the previous & —1 phases. A processor p is correct for
history H if it is correct at each phase of H. Observe that the difference between Fig.
1 and Fig. 2 is that in the first, all processors are correct (assuming some appropriate
correctness rule) while in the second, the sender is faulty. We call a history ¢-faulty
(with respect to a correctness rule) if at most ¢ of its processors are incorrect.

A correctness rule is actually a union of possibly distinct correctness rules, one
for each processor. Likewise, the decision function is a union of individual decision
functions.

An example of a simple correctness rule is the rule that each processor simply
sign and relay (according to the authentication protocol) each incoming message of
the previous phase to every other processor.

We say Byzantine agreement can be achieved for n processors with at most t faults
within d phases if there is an agreement algorithm for the class C of n processor,
t-faulty (with respect to the correctness rule of the algorithm), d phase histories so
that the decision function F dbeys the rules for Byzantine agreement:

(I) if p and q are correct for H in C then FpH = FqH, and

(IT) if the sender is correct at the first phase of H and p is correct for H in C
then FpH = v where v is the sender’s value.

Note that we do not define Byzantine agreement for n <3 or for ¢ >n. In the
context of an authentication protocol, the class C of histories is assumed to be limited
to those consistent with the semantics of authentication.

3. The lower bound result.

THEOREM 1 (LSP). Byzantine agreement with authentication can be achieved for
n processors with at most t faults within t + 1 phases, assuming n >t+1.

Proof. For the correctness rule, at phase i let each node sign and relay every
incoming message with 7 different signatures to exactly those processors that have not
already signed it. Note that messages are distinct even though they carry the same
value, if they have travelled distinct paths. The function F, operating on a subhistory,
will delete messages that do not conform to the correctness rule (including those with
repeated signatures) and then extract every authenticated (from the sender) value
from V carried by the remaining messages. If exactly one value v is extracted, then
F will produce v as output; otherwise, F will produce 0.

Let H be a t-faulty history with ¢+ 1 phases, consistent with the semantics of
authentication. At the end of phase ¢, each message carries ¢ signatures (not counting
that of the current recipient). Thus each value that appears in the correct messages
of H will have been seen by some correct processor. Therefore, each correct processor
will have the same set of extracted values after r+ 1 phases. [

The following lower bound result is the principal result of this section. It shows
that the result of Theorem 1 is tight.

THEOREM 2. Byzantine agreement cannot be achieved for n processors with at
most t faults within t or fewer phases, provided n >t +1.

The proof of Theorem 2 is inspired by, but a nontrivial generalization of, the
proof given by Lynch and Fischer for the restricted case without authentication (FL).
Lynch and Fischer used the n > 3¢ result of (PSL) to show that any algorithm for
Byzantine agreement must be uniform. Assuming uniformity, they established an
equivalence relation on their version of ¢-faulty histories and obtained a contradiction
by showing that too many histories were contained in a single equivalence class. Their

660 D. DOLEV AND H. R. STRONG

proof of this equivalence relied on the ability to preserve equivalence while changing
one message at a time. Their proof of this ability, without using the uniformity
assumption, is essentially the proof of the base case in the induction that follows.

Proof of Theorem 2. Assume that Byzantine agreement can be achieved for some
n>t+1 within ¢ phases. Let R be the correctness rule and let F be the decision
function on subhistories such that (R, F) achieves Byzantine agreement on # processor,
depth ¢, t-faulty histories.

Let C be the class of n processor, depth ¢, t-faulty histories that have a critical
sequence such that all incorrect processors appear on the sequence and any incorrect
node appears at or after the level corresponding to the order its label appears on the
sequence. The class C contains histories that exhibit serial faultiness, in the sense that
the set of faulty processors is allowed to increase by at most one processor per phase,
starting with no faults before phase 1, and once allowed in the set these faulty
processors may exhibit their faultiness at any node corresponding to a phase at or
after their entry. Note that any nodes corresponding to such a faulty processor may
be correct.

Define an equivalence relation on histories in C by saying H is equivalent to H'
if, whenever p is correct for H and q is correct for H', then FpH'= FpH. Note that
C includes histories in which all processors behave correctly. Since we assume V' has
more than one value, this means that there must be histories in C that are not
equivalent, But, as we will show, C is a single equivalence class. Under an appropriate
definition of (R, F), both Fig. 1 and Fig. 2 could describe histories from the set C.
However, in Fig. 2 the result of the algorithm must be independent of any information
from the sender since the sender sends nothing. This fact is the key idea behind the
contradiction we obtain.

We say that a processor is hidden at phase k if it has no outedges at k or any
later phase. We will also refer to the node at phase k as hidden if the processor is.
In particular we will show by induction on the phase k that, if r is a node representing
a processor at phase k of history H in C, then:

(a) there is a history H' in C, equivalent to H, identical to H through phase k
except for outedges of r, with r correct and all processors correct after phase k; and

(b) if all other nodes at phase k are correct, then there is a history H' in C,
equivalent to H, identical to H through phase k except for outedges of », with r
hidden and all other processors correct after phase k.

Note that if a processor labels a hidden node, then changing the information on
its inedge cannot affect the subhistory according to any other processor. In Fig. 2 the
sender is hidden at phase 1.

In short we will show by induction that we can correct a node at any phase or
hide a node if all other nodes at its phase are correct, and that the resulting history
will be in C and equivalent to the one from which we started, while all changes will
be to the outedges of the particular node and to edges at later phases. Thus we will
have shown that every history in C is equivalent to any history in which the root is
hidden and all other processors are correct.

Case 1. Letk = t.

(a) Let r be an incorrect node at phase k of history H in C. If we correct the
outedges of r one at a time, then for each individual change there is a processor
correct for H that sees the same subhistory after the change as before. Thus each
individual change preserves equivalence with H. Since we cannot make any correct
node incorrect, each individual change preserves membership in C. Changes are only

AUTHENTICATED ALGORITHMS FOR BYZANTINE AGREEMENT 661

made to the outedges of r. The final result H' has r correct and all processors trivially
correct after k.

(b) Let r be a node at phase k in history H and C and let all other nodes at
phase k be correct. Proceeding as in (a), we remove the outedges of r, one at a time.
Here we may change 7 from correct to incorrect but since there were no other incorrect
nodes at phase k we could replace the kth entry in the critical sequence by the label
of r, preserving membership in C. The rest of the argument is the same as that for (a).

Case 2. Assume the induction hypotheses (a) and (b) for all phases after k.

(a) Let r be an incorrect node at phase & of a history H in C. The following steps
will preserve membership in C and equivalence to H and change only outedges of »
and edges at later phases,

1. Correct all nodes after phase k (induction hypothesis (a)).

2. While incorrect outedges of r remain,

replace position £ +1 in the critical sequence by s, a target of an incorrect
outedge e from r;
hide s at phase k +1 (induction hypothesis (b)) ;
correct e (some correct processor will see the same subhistories both before
and after the change);
correct all nodes at phase k& +1 (induction hypothesis (a)).
End of while,

The final result H' will have r and all processors after phase k correct.

(b) Assume all processors correct at phase k and let r be a node at phase k. The
following steps will preserve membership in C and equivalence to H and change only
outedges of r and edges at later phases.

1. Correct all nodes at phase k + 1 (induction hypothesis (a)).

2. Replace the kth position in the critical sequence by the label of .

3. While outedges of r remain,

replace position k£ +1 in the critical sequence by s, a target of an outedge
e from r;
hide s at phase £ +1 (induction hypothesis (b));
remove e (some correct processor will see the same subhistories both before
and after the change);
correct all processors after phase k£ (induction hypothesis (a)).
End of while.

4. Hide the processor labelling r at phase k + 1 (induction hypothesis (b)). The
final result H' will have r hidden at phase k and all other processors after phase k
correct.

This completes the proof of Theorem 2. [

Remark. Whenever it is defined, Byzantine agreement can be achieved for n
processors within n —1 phases. Thus the provision n >t + 1 is necessary for the lower
bound of Theorem 2.

4. Polynomial algorithms using authentication. As mentioned in the introduc-
tion, we assume the existence of some authentication technique that prevents faulty
processors from undetectably changing the content of messages.

For purposes of counting messages we supply the following specific syntax for
the labels on the edges of directed graphs called phases.

(1) The set of values V is contained in the set of atomic messages.

(2) A label is either an atomic message (an authentication) or a sequence of

labels.

662 D. DOLEV AND H. R. STRONG

(3) An authentication is a label of the form
(label a) p,

where p is the name of a processor and label a is a label.
(4) A sequence of labels is a label of the form

label a, label b,

where label a and label & are labels.
Note that (a, b, ¢)p is not the same label as (a)p, b(p), (c)p.
A label a is part of label b if either:
(i) a=b;
(ii) there is a label ¢ and a process or p such that a is part of ¢ and b =(c)p; or

(iii) there are labels ¢ and d such that b =c¢, d and a is part of ¢ or d.

A message is a label with no commas.

Thus, at any phase any processor can send any message to any other processor,
except that no processor can alter an authenticated message received at a previous
phase and forward it as an authenticated message at the next phase, nor can any
processor pretend to have received an authenticated message it did not receive and
forward that as an authenticated message. In the rest of this paper, attention will be
restricted to histories consistent with the semantics of authentication. In particular, if
(a)q is part of a label on an edge from processor p then either p = q or (a)q appears
as part of a label on an inedge to p in a previous phase.

The basic idea behind the following two algorithms is to minimize the number
of messages on each edge by restricting the cases in which a processor must relay a
message. In the proof of Theorem 1, we assume a complete graph, so that when a
correctly authenticated value is revealed to a correct processor, all correct processors
will have it at the next phase. For Theorem 3 we restrict the number of values about
which a processor must relay information. For Theorems 4 and 5 we restrict the paths
over which messages travel so that when a correct processor receives a correctly
authenticated value, other correct processors will receive it within some constant
number of phases. Finally, for Theorem 6, we restrict the number of processors that
are required to relay information. In this case when a correct relay processor receives
a correctly authenticated value, the others will receive it one phase later, but correct
processors that are not relay processors may receive the value long before it is known
to the others.

Let ¢ be the number of edges in the directed graph that has an edge between
two processors exactly when our algorithm may require some message along that edge.

THEOREM 3. Byzantine agreement can be achieved for n processors with at most
t faults within t + 1 phases using at most O{e) = O(n %) messages.

Proof. Our correctness rule will be a restriction of that of the proof of Theorem
1 so that no processor relays more than two messages to any other, regardless of the
number of messages received or the number of distinct paths incoming messages may
have travelled. At the beginning of phase i + 1, each processor totally (lexicographi-
cally) orders all messages received during the previous phase, discarding messages
that are not of the form (- - - ((v)p1)p2 -+ -)p; where v is a value not seen before, p;
is the signature of the sender, and all signatures are distinct. If a message carrying
value v is not discarded, then the processor is said to extract v. If the processor has
not yet relayed any messages, then it relays the first two with distinct values (the first
one if there are not two distinct values). If the processor has relayed only one message

AUTHENTICATED ALGORITHMS FOR BYZANTINE AGREEMENT 663

during all previous phases, then it relays the first of its messages. The relay process
consists of signing the message and forwarding it to all those whose signatures do not
already appear in the message. A processor relays a value only if it is either the first
or the second different value extracted. Once a processor has relayed two distinct
values, it stops processing messages for the algorithm and at the end it will decide
“sender fault,” i.e. the decision function F from the proof of Theorem 1 will
produce 0 for this processor. If it gets through ¢+1 phases without extracting any
value, F will also produce 0; but if it has extracted exactly one value v, then F will
produce v.

Each correct processor sends at most two messages over each edge. Thus, the
total number of messages sent by correct processors is bounded by twice the number
of edges, e.

If the sender correctly sends (v)s to each other processor, then authentication
prevents faulty processors from importing more values, so F will produce v for each
correct processor. If at phase ¢+1 a correct processor receives and does not discard
a message of the form (-« ((v)p1)pz * * *)Pr+1, then the first ¢ processors on the list of
signatures must be faulty, so the lastone must be correct and all other correct processors
have simultaneously received the same message. If, at the end of ¢ + 1 phases, a correct
processor has extracted only one value, then each correct processor has extracted
only that value, and the decision function F will produce the same value for each
correct processor. If any correct processor extracts more than one value, then all will.
Consequently, although the sets of extracted values may not agree, they yield sufficient
information to reach Byzantine agreement. U

If we restrict the number of possible edges to e = O(nt) by restricting the edges
available for transmission we can reduce the number of messages. First we show a
simple way to achieve this reduction that requires one extra phase.

THEOREM 4. Byzantine agreement can be achieved for n processors with at most
t faults within t +2 phases using at most O(nt) messages.

Proof. We further restrict the correctness rule of the proof of Theorem 3 by
arbitrarily choosing ¢ + 1 processors to be relay processors and requiring any nonrelay
processor to send messages only to relay processors (the sender is not a relay processor).
Now the number of messages is O(nt). If a correct processor extracts a new value by
phase ¢+2, then some correct processor extracted that value by phase ¢, so some
correct relay processor extracted it by phase ¢+ 1. Thus by phase +2 every correct
processor will have extracted either that value or two others from that relay processor.
If any correct processor extracts only one value by phase ¢+2, then every correct
processor must have extracted only that value. As in the proof of Theorem 3, although
the sets of extracted values may not agree, they yield sufficient information to reach
Byzantine agreement. 0.

The restricted network used in the proof of Theorem 4 is a ¢ + 1 connected graph.
It is straightforward to show that the graph must be at least ¢ + 1 connected in order
to reach Byzantine agreement (Da), (Db). In (LPS) ¢#+1 connectivity was shown to
be sufficient using an exponential number of messages. Here using methods similar
to those of (LPS) we generalize the algorithm of the proof of Theorem 4 to show that
t+1 connectivity is sufficient even for a polynomial number of messages.

The diameter of a graph is the least upper bound of the lengths of shortest paths
between pairs of vertices, where by length we mean the number of edges. If a graph
is k connected, then there are at least k vertex disjoint paths between any pair of
vertices. The k-diameter of a graph is the least upper bound of the lengths of the &k
shortest vertex disjoint paths between pairs of vertices.

664 D. DOLEV AND H. R. STRONG

THEOREM 5. If d is the (¢t +1)-diameter of a (t+1)-connected network of n
processors with at most t faults, then Byzantine agreement can be achieved within t +d
phases using at most O(e) messages.

Proof. We use the correctness rule and the decision function of Theorem 3,
restricted of course so that only available edges of the graph are used for messages.
If a processor extracts a new value at phase ¢+, then some correct processor has
extracted the value by phase ¢, so each correct processor will have extracted it (or
two others) by phase ¢-+d. Again, each edge carries at most two messages, so the
total number of messages is O{e). [

Now we return to our assumption of a complete network and present our best
algorithm for Byzantine agreement with authentication.

THEOREM 6. Byzantine agreement can be achieved on a complete network in t +1
phases with O(nt) messages.

Proof. If n <2t+1 then O{n %) = O(nt) so we are done by Theorem 3. Assume
n >2t. We choose 2¢+1 processors including the sender to play active roles and let
all the others be passive. The correctness rule for the active processors is that of
Theorem 3, except that they must ignore all messages signed by passive processors.
The passive processors are not to send messages. The decision function for active
processors is that of Theorem 3. Thus they reach Byzantine agreement among them-
selves by phase ¢+ 1.

Passive processors modify the decision function so that it also counts the number
of active processors that have sent more than one message, producing 0 if this number
is at least £+ 1. Passive processors discard the same messages as active processors,
but they extract only values that have been signed (in the total collection of messages
received) by at least £+ 1 distinct active processors. Note that if a passive processor
receives a message at phase ¢+ 1 and does not discard it, then it will extract the value
carried by that message because the 7+ 1 signatures must occur in that message.
However, if a message is received at an earlier phase and not discarded, its value may
not be extracted until later confirming messages supply ¢+ 1 distinct signatures.

If the correct active processors never extract a value, then the correct passive
processors will never extract one because there are at most ¢ faulty active processors.
If any correct active processor extracts a new value then some correct active processor
extracts that value by phase ¢ and relays it to all. If a processor extracts a value at
phase ¢, then the message it relays will contain the signature of ¢ +1 active processors;
otherwise, if it extracts the value by phase ¢ —1, then at least ¢ other correct active
processors will have extracted the value by phase . Thus if any correct active processor
extracts only one value, then each correct active processor extracts only that value
and each correct passive processor will be able to extract that and only that value by
phase ¢+ 1.

If every correct active processor has extracted more than one value by phase ¢,
then the passive processors will have received more than one message from ¢ + 1 active
processors by phase ¢+ 1.

The only difficult case is that in which each active processor extracts more than
one value by phase ¢+ 1, but some correct active processor has not extracted more
than one value by the end of phase ¢ It remains to show that in this case, the passive
processors will be able to extract more than one value.

In this case, no correct active processor can extract more than one value by phase
t—1. At least two values are extracted by phase ¢ (possibly by different processors).
If the two values are extracted at phase ¢, then the passive processors will extract
them at phase ¢+ 1. But at least one of them is extracted at phase ¢. Moreover, if

A

AUTHENTICATED ALGORITHMS FOR BYZANTINE AGREEMENT 665

some correct active processor has extracted ¢ by phase ¢ —1, then each correct active
processor has extracted v or nothing by phase z — 1. Thus, if the first value is extracted
at phase ¢ or if all correct active processors extract that first value by ¢ —1, then the
passive processors will be able to extract two values.

This leaves the case that v is extracted by some but not all correct active processors
by phase ¢ — 1. Each of the correct active processors that extracted v relays it to the
passive processors by phase ¢. If one of the processors that did not extract v by phase
t —1 extracts two other values at phase ¢, the passive processors can extract those two
values. Otherwise, each of the processors that did not extract v by phase r—1 will
extract v at phase ¢ and relay it to the passive processors. In any case the passive
processors will extract at least two values. 0O

5. Conclusion. The lower bound of ¢+ 1 phases with authentication means that
we must look elsewhere to achieve Byzantine agreement quickly. In fact we must
relax some requirement because the lower bound of Theorem 2 applies no matter
what kind of message we send. Although the proof is given in the context of syn-
chronous phases, any purported asynchronous algorithm for Byzantine agreement
would certainly be imbeddable within the synchronous phase context by simply
imposing the phases on its behavior.

One possibility would be to look at algorithms that probably achieve Byzantine
agreement. In a probabilistic context, if we had a realistic upper bound ¢ on the
number of possible faults, then we would likely also have information on the probability
of exactly ¢ faults, exactly ¢ — 1 faults, etc.

While they do not reduce the minimum number of phases required, our algorithms
do reduce the total number of messages required for Byzantine agreement from
exponential to polynomial in the number of processors or in the number of bits
exchanged by correct processors. It would be useful to find algorithms that stop after
a smaller number of phases whenever possible.

We have not established a tight lower bound on the number of messages required
in the worst case. In (DR) lower bounds on the number of messages and the number
of signatures that must be exchanged in order to obtain Byzantine agreement are
obtained. The algorithm in (DR) requires fewer messages than ours but uses more
phases.

Acknowledgments. The authors thank Nancy Lynch for helpful suggestions about
this manuscript. The proof of Theorem 6 uses a suggestion of Lynch made in private
correspondence with respect to a different problem. Subsequent to the completion of
the proof of Theorem 2 in its present form, the authors received a private communica-
tion from Michael Merritt containing a somewhat similar proof of this result.

REFERENCES

(DH) W. DIFFIE AND M. HELLMAN, New direction in cryptography, IEEE Trans. Inform. Theory,
IT-22 (1976), pp. 644-654.

(Da) D. DoLEV, The Byzantine generals strike again, J. Algorithms, 3 (1982), pp. 14-30.

(Db) , Unanimity in an unknown and unreliable environment, Proc. IEEE 22nd Symposium on
Foundations of Computer Science, 1981, pp. 159-168.

(DR) D. DoLEV AND R. REISCHUK, Bounds on information exchange for Byzantine agreement, Proc.,
ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, Ottawa, Aug.
1982. See also IBM Research Report RJ3587 (1982).

(FL) M. F1scHER AND N. LYNCH, A lower bound for the time to assure interactive consistency, Inform.
Proc. Letters, 14 (1982), pp. 183-186.

666

L
(LSP)
(PSL)

(RSA)

D. DOLEV AND H. R. STRONG

L. LAMPORT, Using time instead of timeout for fault-tolerant distributed systems, Tech. Rep.,
Computer Science Laboratory, SRI International, June 1981,

L. LAMPORT, R. SHOSTAK AND M. PEASE, The Byzantine generals problem, ACM Trans.
Programming Languages and Systems, to appear.

M. PEASE, R. SHOSTAK AND L. LAMPORT, Reaching agreement in the presence of faults, J.
Assoc. Comput. Mach., 27 (1980), pp. 228-234.

R. L. RIVEST, A. SHAMIR AND L. ADLEMAN, A method for obtaining digital signatures and
public-key cryptosystems, Comm. ACM, 21 (1978), pp. 120-126.

https://www.researchgate.net/publication/220616485

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11

