Metodi Matematici per l'Informatica (secondo canale)

Nome e Cognome:

Matricola:

Anno di corso:

Es 1. Sia $A = \{2, \{2, 7, 5\}, 4, (1, 2, 3), 3\}$. Allora:

- $A\square$. $\{5\}\subseteq A$;
- **B** \Box . $\{2,5,7\} \in A$;
- $\mathbf{C}\square$. $\{5,7\}\subseteq A$;
- **D** \Box . (2,3) \in *A*;
- $\mathbf{E}\Box$. $\{2,3\}\subseteq A$;
- **F** \square . $\exists x, y \in A$ tall che $x \in y$;
- **G** \square . $\exists x, y, z \in A$ tali che $\{x, y\} \subseteq z$.

Es 2. La chiusura transitiva della relazione $R = \{(c, a), (a, c), (c, b), (b, a)\} \subseteq \{a, b, c\} \times \{a, b, c\}$ è

- **A** \Box **.** { $(x,x) | x \in \{a,b,c\}\};$
- **B** \square . $\{a,b,c\} \times \{a,b,c\}$;
- $\mathbf{C} \square$. $\{(a, a), (b, b), (c, c), (a, b), (b, c)\};$
- $\mathbf{D}\square$. una relazione di equivalenza;
- E□. nessuna delle risposte precedenti è corretta.

Es 3. Sia $Q = \{(a, b), (a, c), (a, d), (b, c)\} \subseteq (\{a, b, c, d\} \times \{a, b, c, d\}) - \{(a, a), (b, b), (c, c), (d, d)\};$ allora

- $A\square$. Q è una funzione iniettiva;
- $\mathbf{B}\square$. Q è una relazione di equivalenza;
- $\mathbb{C}\square$. Q è una relazione transitiva;
- $\mathbf{D}\Box$. Q non è una funzione;
- E□. nessuna delle risposte precedenti è corretta.

Es 4. Diciamo che un insieme è numerabile se è in corrispondenza biunivoca con un sottoinsieme dei naturali.

- Per ogni coppia di insiemi $A \in B$ si ha che
- $A\square$. se A è numerabile allora $A\cap B$ è numerabile;
- **B** \square . se $A \in B$ sono numerabili allora $A \cap B$ è numerabile;
- $\mathbb{C}\square$. se $A \in B$ non sono numerabili allora $A \cap B$ non è numerabile;
- $\mathbf{D}\Box$ se A e B sono numerabili allora $A \cup B$ è numerabile;
- **E**□. nessuna delle risposte precedenti è corretta.

Es 5. Diciamo che un sottoinsieme A di N è cofinito se N-A è finito. Per ogni coppia di insiemi A e B si ha

- $\mathbf{A}\square$. se A è finito;
- **B** \square . se A e B sono cofiniti allora $A \cap B$ è cofinito;
- $\mathbb{C}\square$. se $A \in B$ sono cofiniti allora $A \cup B$ è cofinito;
- $\mathbf{D}\Box$. se A e B sono cofiniti allora A-B è cofinito;
- E□. nessuna delle risposte precedenti è corretta.

Es 6. Sia $f: \mathbb{N} \to \mathbb{N}$ così definita: f(0) = 1, f(n+1) = 3f(n) + 1. Dimostrare che, per ogni $n \in \mathbb{N}$,

$$f(n) = 1 + \sum_{i=1}^{n} 3^{i}.$$

Rispondere qui

Es 7. Vero o Falso?

 $A\square$. Se $A \models \neg A$ allora A è insoddisfacibile;

B \square . Se A è una tautologia allora $B \models A$ per ogni B;

 $\mathbb{C}\square$. Se $\neg A$ è una tautologia allora il tableau di $A \wedge B$ ha tutti i rami chiusi;

 $\mathbf{D}\Box$. Se $(A \wedge B)$ è soddisfacibile allora il tableau di A oppure il tableau di B hanno qualche ramo aperto;

 $\mathbf{E}\Box \cdot (A \leftrightarrow B) \equiv ((A \lor B) \to (A \land B)).$

Es 8. Trovare forme normali CNF e DNF per la proposizione A definita dalla seguente tavola di verità.

p_1	p_2	p_3	$\mid A \mid$
1	0	1	1
0	1	1	0
1	1	1	1
0	0	0	1
1	1	0	0
0	1	1	0
1	0	0	0
0	1	0	1

Es 9. I seguenti i enunciati sono verità logiche: Vero o Falso?

A \square . $\exists x (A(x) \to B(x)) \to (\forall x A(x) \to \exists x B(x));$

 $\mathbf{B}\Box . \exists x \forall y A(x,y) \rightarrow \forall x \exists y A(x,y)$

 $\mathbf{C}\Box \cdot \forall x \exists y A(x,y) \rightarrow \exists y \forall x A(x,y).$

Es 10. Formalizzare in un linguaggio predicativo adeguato. (N.B. Per il punto C è conveniente usare una relazione ternaria R(x, y, z) con il significato di: il programma x sull'input y restituisce l'output z).

A. Qualche studente di Informatica è più bravo di tutti gli studenti di Statistica;

B. Nessun numero primo maggiore di 2 è pari;

C. Non tutti i programmi restituiscono un output su tutti gli input;