Errata corrige del libro "Introduzione alla logica e al linguaggio matematico"

28 gennaio 2009

Capitolo 1

- Pag. 7, **Definizione 6.** Il complemento di un sottoinsieme A di I è il sottoinsieme $\overline{A} = \{x \in I : x \notin A\}$.
- Pag. 8, **Definizione 8** Sia $S \subseteq A \times B$. Si dice proiezione di S su A (rispettivamente, su B) l'insieme $\{x : x \in A \underline{e}(x, b) \in S, \text{ per almeno un } b \in B\}$ (rispettivamente, $\{y : y \in B \underline{e}(a, y) \in S, \text{ per almeno un } a \in A\}$).
- Pag. 8, **Esempio 10** Sia T il sottoinsieme di $\mathbb{N} \times \mathbb{R}$ costituito dalle coppie (n,r) tali che $r=\sqrt{n}$. La proiezione di T sulla prima componente è \mathbb{N} mentre la proiezione di T sulla seconda componente è $\{r \in \mathbb{R}_+ : r^2 \in \mathbb{N}\}$.

Capitolo 2

- Pag. 16, **Esempio 14.** Consideriamo, nell'insieme J dei segmenti del piano, la $S \subseteq J \times J$ tale che $S = \{(a, b) : \text{la lunghezza di } a \text{ è non minore di quella di } b\}$. Tale relazione gode delle proprietà:
 - 1. *riflessiva*, perché la lunghezza di ogni segmento è non minore di se stessa;
 - 2. antisimmetrica, perché se la lunghezza di un primo segmento è non minore della lunghezza di un secondo ed inoltre la lunghezza

- del secondo segmento è non minore di quella del primo, allora i due segmenti considerati hanno la stessa lunghezza;
- 3. transitiva, perché se la lunghezza di un segmento a è non minore di quella di un segmento b e la lunghezza del segmento b è non minore di quella di un segmento c, allora la lunghezza di a è non minore di quella di c.

La relazione S non gode delle altre proprietà sopra esaminate (antiriflessiva e simmetrica).

- Pag. 18, **Definizione 18.** Si dice insieme quoziente dell'insieme I rispetto alla relazione R l'insieme $I/_R$ delle classi di equivalenza degli elementi di I rispetto alla relazione di equivalenza R.
- Pag. 21, Definizione 22. Dato un insieme X e una relazione d'ordine ≤ su di esso, si dice:
 (...)
 minimo un elemento x₀ tale che per ogni x ∈ X accade x₀ ≤ x;
- Pag. 24, Esercizio 34. Si consideri l'insieme Z × Z₀, cioè l'insieme di coppie ordinate dei numeri interi, la cui seconda componente non sia nulla. Sia ≃ la relazione su Z × Z₀ definita nel modo seguente: (a, b) è in relazione a (c, d) (scritto (a, b) ≃ (c, d)) se e solo se ad = bc. Dimostrare che ≃ è una relazione di equivalenza.
 (Si sostituisca anche nella soluzione dell'esercizio ogni occorrenza del simbolo Z⁺ con il simbolo Z₀.)
- Pag. 25, **Esercizio 35.** (...)

$$- \sim \subset \simeq . (...)$$

$$-\simeq$$
 \sim \sim . (...)

 (\ldots)

 (\dots)

(Si sostituisca inoltre ogni occorrenza del simbolo \mathbb{Z}^+ con il simbolo \mathbb{Z}_0).

• Pag. 27, Esercizio 46. Similmente agli Esercizi 34 e 35, si definisca una relazione $\simeq \subseteq (\mathbb{N} \times \mathbb{N}) \times (\mathbb{N} \times \mathbb{N})$ tale che $(\mathbb{N} \times \mathbb{N})/_{\simeq}$ possa essere usata per definire i numeri interi \mathbb{Z} .

Capitolo 3

• Pag. 37, Esercizio 55. Siano $f(x) = k + 5 + x^2$ e $g(x) = \sqrt{x}$, dove \sqrt{x} è la funzione che restituisce la radice quadrata del numero x. Per quali valori di k sia $g \circ f$ e $f \circ g$ sono entrambe definite? Soluzione: Anzitutto, osserviamo che $dom(g) = \mathbb{R}_+$, cioè i reali non negativi. Pertanto, affinché $g \circ f$ sia definita, deve essere che $k+5+x^2 \geq 0$; da cui si ottiene $k \geq -5$. Invece, $dom(f) = \mathbb{R}$ e quindi, qualunque sia k, $f \circ g$ è definita.

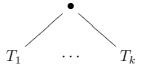
Capitolo 5

- Pag. 57, quarta riga: Cerchiamo ora di formalizzare il **principio** di induzione.
- Pag. 58, **Esempio 44.** (...)
 - 1. Caso base: se n = 0, allora $I = \emptyset$ e dunque $\#\wp(I) = \#\{\emptyset\} = 1 = 2^0$. La tesi è quindi valida per questo primo caso.

(...)

- Pag. 60, **Proposizione 11.** ' \leq ' è un buon ordinamento su \mathbb{N} . Dimostrazione: Dimostriamo dapprima che i naturali sono totalmente ordinati rispetto a \leq , cioè sono una catena. A tal scopo, facciamo vedere che, dati due numeri naturali n ed m, accade sempre che $n \leq m$ o $m \leq n$, cioè sono confrontabili. Sia C l'insieme dei naturali confrontabili con ogni altro. Sicuramente $0 \in C$, perché 0 + n = n, per ogni $n \in \mathbb{N}$. Se $m \in C$, allora anche $m+1 \in C$ e quindi C coincide con \mathbb{N} : infatti, preso comunque n, o $n \leq m$ (cioè n + h = m) o $m \leq n$ (cioè m + k = n); nel primo caso, $n \leq m + 1$ perché n + h + 1 = m + 1; nel secondo o k = 0, m = n e $n \leq m + 1$, oppure k = r + 1 e $m + 1 \leq n$. (...)
- Pag. 61, **Esempio 47.** Diamo una definizione ricorsiva (ossia, induttiva) di *albero finito non vuoto*: un singolo nodo, indicato con '•', è un

albero; se T_1, \ldots, T_k sono alberi, allora



è un albero (diremo che T_1, \ldots, T_k sono figli del nodo ' \bullet ', chiamato radice dell'albero).

- Pag. 63, undicesima riga dal basso: Ciò è lecito (la **definizione è** ben posta) (...)
- Pag. 65, 5.3.3 I numeri primi
 In questo paragrafo presenteremo le principali nozioni collegate ai numeri primi e forniremo alcune dimostrazioni. (...)
- Pag. 69, Esercizio 85. Sia f_m: N → N una famiglia di funzioni definite come f_m(0) = m, f_m(n + 1) = f_m(n) + 1 per ogni m ∈ N.
 (a) Qual è il risultato di f₅₂(39)?
 (b) Quale proprietà di f_x(y) si può dimostrare in generale?
 Soluzione: Prima di rispondere alla domanda (a), cerchiamo di rispondere alla (b); in questo modo, la risposta alla (a) sarà banale.
 Con un po' di attenzione, si può notare che la funzione f_m(n) non fa altro che sommare n a m, incrementando di 1 il numero m per n volte.
 Andiamo quindi a dimostrare che, per ogni n ∈ N, si ha f_m(n) = m+n.
 Il caso base è per n = 0 e, banalmente, f_m(0) = m = m + 0. Assumiamo vera la tesi fino a n e dimostriamola per n + 1: si ha che f_m(n + 1) = f_m(n) + 1 = m + n + 1 = m + (n + 1).
 Quindi, f₅₂(39) = 91.
- Pag. 72, Esercizio 93. (...)

 Soluzione: (...) Poichè la scomposizione (...)
- Pag. 73, **Esercizio 100.** Si dimostri per induzione che $\sum_{k=1}^{n} \frac{1}{\sqrt{k}} > \sqrt{n}$; qual è il minimo caso base ammissibile?
- Pag. 73, Esercizio 104. Provare per induzione che $\prod_{k=2}^{n} (1 \frac{1}{k}) = \frac{1}{n}$ (N.B.: la notazione Π ... denota il prodotto, così come la notazione Σ ... denota una somma); qual è il minimo caso base ammissibile?

- Pag. 73, **Esercizio 105.** Dimostrare che, per ogni $n \in \mathbb{N} \setminus \{0\}$, $5^n + 2 \cdot 3^{n-1} + 1$ è divisibile per 8.
- Pag. 73, Esercizio 106. Qual è il più grande sottoinsieme A di \mathbb{N} tale che $n^3 \geq n+6$, per ogni $n \in A$? Si giustifichi la risposta con un procedimento induttivo.
- Pag. 74, Esercizio 113. Il 25 non è un numero primo, quindi non andrebbe evidenziato.
- Pag. 74, Esercizio 114. (...) può passare per più di un punto primo.
- Pag. 74, Esercizio 117. L'esercizio è identico al numero 115.

Capitolo 6

- Pag. 78, Esempio 52. (...) pertanto, operano cifra a cifra (...)
- Pag. 78, penultima riga: Lo stesso discorso si **può** estendere (...)
- Pag. 80, Esercizio 121. (...) di un'algebra (...)
- Pag. 80, Esercizio 122. (...) non vale la proprietà (...)
- Pag. 80, **Nota 1.** (...) ci **permette** di (...)

Capitolo 8

- Pag. 93, **Esempio 56.** (...)
 - "è inevitabile che A" è falso (possiamo infatti rappresentare otto in base 2, ottenendo **1000**); (...)
- Pag. 95, **Esempio 58.** La tavola di verità dell'enunciato composto $\neg((A \land B) \lor (A \land \neg B))$ è:

A	$\mid B \mid$	$A \wedge B$	$\neg B$	$A \land \neg B$	$(A \land B) \lor (A \land \neg B)$	$\neg((A \land B) \lor (A \land \neg B))$
V	V	V	F	F	V	F
V	F	F	V	V	V	F
F	V	F	F	F	F	V
F	F	F	V	F	F	V

Osserviamo che i valori di verità di $\neg((A \land B) \lor (A \land \neg B))$ corrispondono a quelli di $\neg A$.

- Pag. 103, **Teorema 1** (Correttezza e completezza del metodo dei tableau). La formula P è valida (è una tautologia) se e soltanto se il tableau per $\neg P$ è chiuso.
- Pag. 104, nona riga: (...) 1. per qualche $P_0 \in U_0$ è $v(P_0) = F$; (...)
- Pag. 105, ventunesima riga: (...) considerarli intuitivamente (...)
- Pag. 106, dodicesima riga dal basso: Eliminare la ripetizione di "scritto
 ⊢ P."
- Pag. 109, **Esempio 71.** La proposizione $A \vee \neg A$ è una tautologia e resta tale se sostituiamo ovunque A con un qualsiasi enunciato, ad esempio $B \to C$: è infatti facile verificare che $(B \to C) \vee \neg (B \to C)$ è una tautologia. D'altra parte, l'enunciato $A \vee \neg B$ non è una tautologia ma lo diventa se sostituiamo sia A che B con l'enunciato $B \to C$.
- Pag. 109, Nota 2. (...) insegnò all'Università di (...)
- Pag. 110, **Esempio 72.** (...) qualunque istanza dello stesso **schema** di assioma: (...)
- Pag. 112, (...)

 Regole di contrapposizione:

$$\frac{U \vdash \neg B \to \neg A}{U \vdash A \to B} \qquad \frac{U \vdash A \to B}{U \vdash \neg B \to \neg A}$$

(...

Regole della doppia negazione:

$$\frac{U \vdash \neg \neg A}{U \vdash A} \qquad \frac{U \vdash A}{U \vdash \neg \neg A}$$

• Pag. 114, **Esercizio 132.** (...)

Soluzione: Nel caso della congiunzione, l'unico enunciato vero è l'ultimo, poiché una congiunzione è vera se e soltanto se entrambe i congiunti sono veri. Nel caso della disgiunzione, l'unico enunciato falso è il terzo,

poiché una congiunzione è vera se e soltanto se almeno uno dei congiunti è vero. Nel caso dell'**implicazione**, l'unico enunciato falso è il primo, poiché un'implicazione è falsa se e soltanto se la premessa è vera e la conseguenza è falsa. Infine, nel caso della doppia implicazione, gli enunciati veri sono gli ultimi due, poiché una doppia implicazione è vera se e soltanto i due enunciati hanno lo stesso valore di verità.

• Pag. 115, **Esercizio 134.** (...)

Soluzione: (...)

La tavola per il terzo enunciato è:

p	q	$p \wedge q$	$p \lor q$	$(p \land q) \to (p \lor q)$
F	F	F	F	Т
F	Т	F	Т	${ m T}$
\mathbf{T}	F	F	Т	m T
Τ	Т	\mathbf{T}	Т	Т

• Pag. 116, **Esercizio 136.** Usare i risultati dell'Esercizio 135 per semplificare i seguenti enunciati:

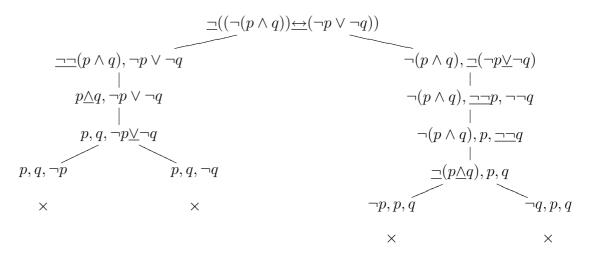
- 1. $\neg(\neg p \rightarrow q)$;
- 2. $\neg (p \land \neg q)$;
- 3. $\neg(\neg p \land \neg q)$.

• Pag. 116, **Esercizio 137.** Verificare usando i tableau la seguente legge di De Morgan:

$$\neg(p \land q) \equiv \neg p \lor \neg q$$

Soluzione: Costriuremo il tableau per la negata della formula $(\neg(p \land q)) \leftrightarrow (\neg p \lor \neg q)$; siccome risulterà chiuso, avremo che $(\neg(p \land q)) \leftrightarrow$

 $(\neg p \lor \neg q)$ è una tautologia e pertanto l'equivalenza data vale.



(Nella figura precedente l'ultimo nodo in fondo a destra contiene $\neg q, p, q$ e non, come si trova nel libro, $\neg p, p, q$.)

• Pag. 117, Esercizio 138. Usando il metodo dei tableau, dire se il seguente enunciato è una tautologia:

$$A \to (A \to \neg A).$$

• Pag. 120, **Esercizio 146.** Si dimostri, usando il metodo di Hilbert, che $\vdash (A \to (B \to C)) \to ((A \land B) \to C)$. Soluzione: Anzitutto, riscriviamo l'enunciato dato in termini di impli-

Soluzione: Anzitutto, riscriviamo l'enunciato dato in termini di implicazioni e negazioni; in particolare, $A \wedge B \equiv \neg (A \rightarrow \neg B)$.

$$\begin{array}{lll} A \to (B \to C) & \vdash A \to (B \to C) & \text{Ip.} \\ A \to (B \to C) & \vdash A \to (\neg C \to \neg B) & \text{Es. 159} \\ A \to (B \to C) & \vdash \neg C \to (A \to \neg B) & \text{Scambio Prem.} \\ A \to (B \to C) & \vdash \neg C \to \neg \neg (A \to \neg B) & \text{Es. 159} \\ A \to (B \to C) & \vdash \neg (A \to \neg B) \to C & \textbf{Contrapp.} \\ & \vdash (A \to (B \to C)) \to (\neg (A \to \neg B) \to C) & \text{T.D.} \end{array}$$

• Pag. 123, **Esercizio 159.** Si dimostrino, usando il metodo di Hilbert, le seguenti generalizzazioni delle **regole** di contrapposizione, doppia negazione e transitività:

$$\frac{U \vdash A \to (B \to C)}{U \vdash A \to (\neg C \to \neg B)} \qquad \frac{U \vdash A \to \neg \neg B}{U \vdash A \to B}$$

$$\frac{U \vdash A \to (\neg C \to \neg B)}{U \vdash A \to (B \to C)} \qquad \frac{U \vdash A \to B}{U \vdash A \to \neg \neg B}$$

$$\frac{U \vdash A \to (B \to C)}{U \vdash A \to (C \to D)} \qquad U \vdash A \to (C \to D)$$

$$U \vdash A \to (B \to D)$$

Capitolo 9

• Pag. 132, **Esempio 78.** Esprimiamo attraverso la simbologia introdotta il *principio della dimostrazione per assurdo* nella sua forma generale:

$$\Phi \models F \text{ se e solo se } \Phi \cup \{\neg F\} \models \bot$$

• Pag. 136, **Esempio 80.** Consideriamo il seguente tableau, riferito ad una formula con due quantificatori esistenziali:

$$(\exists x P(x)) \land \exists x \neg (P(x))$$

$$\mid \exists x P(x), \exists x \neg (P(x))$$

$$\mid P(a), \neg P(a)$$

Potremmo essere tentati di affermare la chiusura di tale tableau, ma sarebbe una conclusione errata: l'esistenza di un x per cui è P(x) e di un x per cui è $\neg P(x)$ non implica che tali x siano lo stesso elemento (a meno che ad x non sia imposto di variare in un dominio costituito da un solo elemento). Pertanto l'ultimo nodo avrebbe dovuto essere:

$$P(a), \neg P(b)$$

e in questo caso il tableau non può essere considerato chiuso.

- Pag. 138, **Esempio 83.** (...) Il ramo di **destra** ci suggerisce, ad esempio, il modello $U = \{a, b\}$ con $|P| = \{(a, b), (a, a)\}$, quello di **sinistra** il modello $U = \{a, b\}$ con $|P| = \emptyset$.
- Pag. 142, terza riga: (...) proposizionale con l'uso **delle** interpretazioni (...)

- Pag. 142, quattordicesima riga: (...) perciò vero qualunque sia (...)
- Pag. 143, Esercizio 167. (...)
 3. Si discuta la validità/soddisfacibilità/contraddittorietà (...)
- Pag. 146, Esercizio 175. (...)

 Soluzione: (...)

 Un modello può essere ottenuto costruendo almeno un ramo del tableau della formula data (si veda l'esercizio 173) (...)