Cognome	
C	
Nome	Anno di corso

Esame del corso di

LOGICA MATEMATICA - Canale A - D

7 – II – 2006 (prof.ssa Anna Labella) (Ciascuno dei quiz non ha necessariamente una ed una sola risposta giusta)

iascuno dei quiz non na necessariamente una ed una soia risposta giusta)		
	Siano A e B due insiemi e si consideri l'insieme K delle relazioni tra A e B. Quali lle seguenti affermazioni sono vere? □ A. K è un insieme finito se e soltanto se A e B sono finiti □ B. K = A × B □ C. K non può contenere relazioni riflessive □ D. l'insieme delle funzioni da A a B è un sottinsieme proprio di K □ E. Nessuna delle precedenti è vera	
2.	Provare per induzione che, se a è un reale, $a > 0$, $(1+a)^n \ge 1 + na$, per ogni $n \in \mathbb{N}$.	
3.	Sia data la formula $\forall x(\exists y\ P(x.y)\Rightarrow P(x,x))$. Quale delle seguenti strutture non è un modello per essa?	
	□ A. D = N, $ P = \{(n,m) n < m\}$. □ B. D = un qualunque insieme, $ P =$ una relazione simmetrica e transitiva. □ C. D = insieme delle rette del piano, $ P = \{(r,r') r \ e \ distinta \ da \ r'\}$. □ D. D = N, $ P = \{(n,m) n = 2m\}$	
4.	Mostrare, usando il metodo di Hilbert, che la seguente espressione è un teorema:	
	$(P \to (Q \to \neg Q)) \to ((P \to Q) \to (Q \to \neg P))$	

5. Si verifichi (con il metodo dei tableaux) che la seguente formula è valida:

$$(\forall x \; \exists y \; \; P(x, \, y) \lor \; \forall x \; \exists y \; Q(x, \, y \;)) \to \; \forall x \; \exists y \; (P(x, \, y) \lor \; Q(x, \, y \;))$$

SOLUZIONI:

- 1. le crocette andavano messe sulle lettere A e D
- 2. La dimostrazione è per induzione su n.

Il passo base (n = 0) è ovvio: $1 \ge 1$.

Per il passo induttivo, si osservi che

$$(1+a)^{n+1} = (1+a)^{n} (1+a) \ge (1+na) (1+a)$$

= 1+(n+1) a + n a² \geq 1+(n+1) a

dove le due uguaglianze si hanno per definizione di esponente e prodotto, la prima disuguaglianza si ha per induzione e l'ultima disuguaglianza eliminando l'addendo n a^2 .

- 3. le crocette andavano messe sulle lettere A, C e D
- 4.

$$\begin{split} P \rightarrow & (Q \rightarrow \neg Q) \text{ , } P \rightarrow Q \text{ } \vdash \text{ } (P \rightarrow (Q \rightarrow \neg Q)) \rightarrow ((P \rightarrow Q) \rightarrow (P \rightarrow \neg Q)) \\ P \rightarrow & (Q \rightarrow \neg Q) \text{ , } P \rightarrow Q \text{ } \vdash \text{ } P \rightarrow (Q \rightarrow \neg Q) \\ P \rightarrow & (Q \rightarrow \neg Q) \text{ , } P \rightarrow Q \text{ } \vdash \text{ } (P \rightarrow Q) \rightarrow (P \rightarrow \neg Q) \\ P \rightarrow & (Q \rightarrow \neg Q) \text{ , } P \rightarrow Q \text{ } \vdash \text{ } P \rightarrow Q \\ P \rightarrow & (Q \rightarrow \neg Q) \text{ , } P \rightarrow Q \text{ } \vdash \text{ } P \rightarrow \neg Q \\ P \rightarrow & (Q \rightarrow \neg Q) \text{ , } P \rightarrow Q \text{ } \vdash \text{ } P \rightarrow \neg Q \\ P \rightarrow & (Q \rightarrow \neg Q) \text{ , } P \rightarrow Q \text{ } \vdash \text{ } Q \rightarrow \neg P \\ P \rightarrow & (Q \rightarrow \neg Q) \text{ } \vdash \text{ } (P \rightarrow Q) \rightarrow (Q \rightarrow \neg P) \\ \vdash & (P \rightarrow & (Q \rightarrow \neg Q)) \rightarrow ((P \rightarrow Q) \rightarrow (Q \rightarrow \neg P)) \end{split}$$

5. Bisognava svolgere il tableaux della negata. Inoltre, era strettamente necessario applicare una precisa strategia di costruzione del tableaux: bisognava prima istanziare tutti gli esistenziali e poi, con le costanti così introdotte, istanziare gli universali.