Esame dell'insegnamento di METODI MATEMATICI - Canale A - L 5-02 - 2018 (prof. Labella)

1.	Indichiamo con	$\mathcal{P}(A)$ l'insie	me dei	sotto in siemi	di A.	Quali	fra 1	e seguenti	afferma	zioni è
vera po	er qualunque A?									

• $\mathcal{P}(A) \cap \mathcal{P}(\mathcal{P}(A)) = \mathcal{P}(A)$

• $\mathcal{P}(A) \cap \mathcal{P}(\mathcal{P}(A)) = A$

• $\mathcal{P}(A) \cap \mathcal{P}(\mathcal{P}(A)) = \{\}$

• $\mathcal{P}(A) \cap (\mathcal{P}(\mathcal{P}(A)) \cup \mathcal{P}(A)) = \mathcal{P}(A)$

• L'insieme delle funzioni iniettive da $\mathcal{P}(\mathcal{P}(A))$ in $\mathcal{P}(A)$ è finito solo se lo è anche A \square

2. Data una relazione binaria R su un insieme A, indichiamo con R^{-1} la sua inversa, ovvero la relazione $\{(a,b) \mid (b,a) \in R\}$. Quali fra le seguenti affermazioni è vera?

• Se R è una relazione di equivalenza allora lo è anche R⁻¹
☑

• Se R è una relazione d'ordine allora lo è anche R-1

✓

• Se R è una funzione iniettiva allora lo è anche R-1

• Se R è una funzione suriettiva allora lo è anche R-1

• Se R^{-1} non è una funzione, allora non lo è neanche R

3. Verificare per induzione che per ogni naturale $n \ge 1$

$$\sum_{k=1,n} k(k+1) = n(n+1)(n+2)/3$$

Caso base n=1 1.2 = 1.2.3/3

Supponiamo l'equazione vera per n e dimostriamola per n+1.

4. Provare con il metodo di Hilbert che la seguente formula è un teorema

$$\neg \ (A \to \neg B) \to (A \lor B)$$

$$\begin{array}{ll} \{\neg A\}| - \neg B \to (A \to \neg B) & Ax \ 1 \\ \{\neg A\}| - \neg (A \to \neg B) \to B & contr. \\ | - \neg A \to (\neg (A \to \neg B) \to B) \ TD \\ | - \neg (A \to \neg B) \to (\neg A \to B) \ scambio \\ | - \neg (A \to \neg B) \to (A \lor B) \ def. \ di \ v \end{array}$$

5. Verificare con il metodo dei tableau semantici che la seguente formula è soddisfacibile

$$\forall x (P(x) \lor Q(x)) \rightarrow (\forall x P(x) \lor \forall x Q(x))$$

Il tableau resta aperto.

Quale delle seguenti interpretazioni ne è un modello?

•
$$D = N \mid P \mid = \{n \mid n \text{ pari}\}, \mid Q \mid = \{n \mid n \text{ dispari}\}$$

•
$$D = N |P| = \emptyset, |O| = \emptyset$$

6. Provare con il metodo di Hilbert che la seguente formula è un teorema

$$\forall z (P(z) \to Q) \to (\exists z P(z) \to Q)$$

$$\{ \forall z \ (P(z) \to Q), \ \neg Q \} | - \ \forall z \ (P(z) \to Q) \to (P(a) \to Q) \ Ax \ 4$$

$$\{ \forall z \ (P(z) \to Q), \ \neg Q \} | - \ \forall z \ (P(z) \to Q) \ Ass.$$

$$\{ \forall z \ (P(z) \to Q), \ \neg Q \} | - P(a) \to Q \ MP$$

$$\{ \forall z \ (P(z) \to Q), \ \neg Q \} | - \ \neg Q \to \neg P(a) \ Contr.$$

$$\{ \forall z \ (P(z) \to Q), \ \neg Q \} | - \ \neg Q \ Ass.$$

$$\{ \forall z \ (P(z) \to Q), \ \neg Q \} | - \ \neg P(a) \ MP$$

$$\{ \forall z \ (P(z) \to Q), \ \neg Q \} | - \ \neg P(z) \ G \ MP$$

$$\{ \forall z \ (P(z) \to Q)\} | - \ \neg Q \to \forall z \neg P(z) \ G \ MP$$

$$\{ \forall z \ (P(z) \to Q)\} | - \ \neg Q \to \forall z \neg P(z) \ D \ Contr.$$

$$\{ \forall z \ (P(z) \to Q)\} | - \ \exists z \ P(z) \to Q \ def. \ di \ \exists$$

$$| - \ \forall z \ (P(z) \to Q) \to (\exists z \ P(z) \to Q) \ TD$$

Esame dell'insegnamento di METODI MATEMATICI - Canale A - L

5-02-2018 (prof. Labella)

1. Indichiamo con $\mathcal{P}(A)$ l'insieme dei sottoinsiemi di A. Quali fra le seguenti affermazioni è vera per qualunque A?

•	$\mathcal{P}(A)$ è sottoinsieme di $\mathcal{P}(\mathcal{P}(A))$	
•	$\mathcal{P}(A) \cap \mathcal{P}(\mathcal{P}(A)) = \{\{\}\}$	
•	$\mathcal{P}(A) \cap \mathcal{P}(\mathcal{P}(A)) = \{\}$	

•
$$\mathcal{P}(A) \cup (\mathcal{P}(\mathcal{P}(A)) \cap \mathcal{P}(A)) = \mathcal{P}(A)$$

• L'insieme delle funzioni suriettive da $\mathcal{P}(A)$ in $\mathcal{P}(\mathcal{P}(A))$ è finito solo se lo è anche A \square

2. Indichiamo con $R \cdot S$ la composizione di due relazioni binarie R ed S su un insieme A, ovvero la relazione $\{(a, c) \mid \text{ esiste b tale che } (a, b) \in S \text{ e } (b, c) \in R\}$. Quali fra le seguenti affermazioni è vera?

3. Dimostrare per induzione che $\sum_{k=1,n} k / 2^k = 2 - (n+2)/2^n$ per ogni naturale $n \ge 1$.

Caso base n=1 1/2 = 2-3/2

Supponiamo l'equazione vera per n e dimostriamola per n+1.

$$\sum_{k=1,n+1}^{11} k/2^k = \sum_{k=1,n}^{1} k/2^{k^2} + (n+1)/2^{n+1} = 2 - (n+2)/2^n + (n+1)/2^{n+1} = 2 - (2n+4-n-1)/2^{n+1} = 2 - (n+3)/2^{n+1}$$
evd

4. Provare con il metodo di Hilbert che la seguente formula è un teorema

$$(A \land B) \rightarrow (A \lor B)$$

$$\begin{array}{ll} \{\neg A\}| - \neg B \to (A \to \neg B) & Ax \ 1 \\ \{\neg A\}| - \neg (A \to \neg B) \to B & contr. \\ | - \neg A \to (\neg (A \to \neg B) \to B) \ TD \\ | - \neg (A \to \neg B) \to (\neg A \to B) \ scambio \\ | - (A \land B) \to (A \lor B) \ def. \ di \ v \in \land \end{array}$$

5. Verificare con il metodo dei tableau semantici che la seguente formula è soddisfacibile

$$\exists z (P(z) \land Q(z)) \rightarrow \exists z P(z) \land \exists z Q(z)$$

Il tableau resta aperto.

Quale delle seguenti interpretazioni ne è un modello?

•
$$D = N \mid P \mid = \{n \mid n \text{ pari}\}, \mid Q \mid = \{n \mid n \text{ dispari}\}$$

• $D = N \mid P \mid = \emptyset, \mid Q \mid = \emptyset$

6. Provare con il metodo di Hilbert che la seguente formula è un teorema

$$(P \ v \ \forall z \ Q(z)) \rightarrow \forall z \ (P \ v \ Q(z))$$

$$\{\neg P \rightarrow \forall z \ Q(z)), \ \neg P \ \}| - \neg P \rightarrow \forall z \ Q(z)$$

$$\{\neg P \rightarrow \forall z \ Q(z)), \ \neg P \ \}| - \neg P$$

$$\{\neg P \rightarrow \forall z \ Q(z)), \ \neg P \ \}| - \forall z \ Q(z)$$

$$\{\neg P \rightarrow \forall z \ Q(z)), \ \neg P \ \}| - \forall z \ Q(z) \rightarrow Q(a)$$

$$\{\neg P \rightarrow \forall z \ Q(z)), \ \neg P \ \}| - Q(a)$$

$$\{\neg P \rightarrow \forall z \ Q(z)), \ \neg P \ \}| - Q(a)$$

$$\{\forall z \ (P(z) \rightarrow Q) \ \}| - \neg P \rightarrow Q(a)$$

$$\{\forall z \ (P(z) \rightarrow Q) \ \}| - \forall z \ (\neg P \rightarrow Q(z))$$

$$[-(\forall z \ (P(z) \rightarrow Q) \rightarrow \forall z \ (\neg P \rightarrow Q(z)))$$

$$[-(P \ v \ \forall z \ Q(z)) \rightarrow \forall z \ (P \ v \ Q(z))$$

$$def. \ di \ v$$

Esame dell'insegnamento di METODI MATEMATICI - Canale A - L 5-02-2018 (prof. Labella)

1.	Indichiamo	con	$\mathcal{P}(A)$	l'insieme	dei	sottoinsiemi	di A.	Quali	fra	le	seguenti	affern	nazioni	è
vera pe	er qualunque	A?												

• $\mathcal{P}(A) \cap \mathcal{P}(\mathcal{P}(A)) = \mathcal{P}(A)$

•
$$\mathcal{P}(A) \cap \mathcal{P}(\mathcal{P}(A)) = A$$

•
$$\mathcal{P}(A) \cap \mathcal{P}(\mathcal{P}(A)) = \{\}$$

•
$$\mathcal{P}(A) \cap (\mathcal{P}(\mathcal{P}(A)) \cup \mathcal{P}(A)) = \mathcal{P}(A)$$

- L'insieme delle funzioni iniettive da $\mathcal{P}(\mathcal{P}(A))$ in $\mathcal{P}(A)$ è finito solo se lo è anche A \square
- 2. Data una relazione binaria R su un insieme A, indichiamo con R^{-1} la sua inversa, ovvero la relazione $\{(a,b) \mid (b,a) \in R\}$. Quali fra le seguenti affermazioni è vera?
 - Se R è una relazione di equivalenza allora lo è anche R⁻¹

 ☑
 - Se R è una relazione d'ordine allora lo è anche R-1

 ✓
 - Se R è una funzione iniettiva allora lo è anche R^{-1}
 - Se R è una funzione suriettiva allora lo è anche R-1
 - Se R^{-1} non è una funzione, allora non lo è neanche R
- 3. Dimostrare per induzione che $\sum_{k=1,n} k (k+1) = n(n+1)(n+2)/3$ -per ogni naturale $n \ge 2$. Caso base n=2 1.2 + 2.3 = 8 = 24/3

Supponiamo l'equazione vera per n e dimostriamola per n+1.

$$\sum_{k=1,n+1} k(k+1) = \sum_{k=1,n} k(k+1) + (n+1)(n+2) = n(n+1)(n+2)/3 + (n+1)(n+2) = (n(n+1)(n+2) + 3(n+1)(n+2)/3 = (n+1)(n+2)/3 = (n+1)(n+2)/3 + (n+1)(n+2)/3 = (n+1)(n+2)/$$

4. Provare con il metodo di Hilbert che la seguente formula è un teorema

$$\neg (A \rightarrow \neg B) \rightarrow (\neg A \rightarrow B)$$

$$\{\neg A\}| \neg B \rightarrow (A \rightarrow \neg B) \qquad Ax \ 1$$

$$\{\neg A\}| \neg (A \rightarrow \neg B) \rightarrow B \qquad contr.$$

$$|\neg A \rightarrow (\neg (A \rightarrow \neg B) \rightarrow B) \ TD$$

$$|\neg (A \rightarrow \neg B) \rightarrow (\neg A \rightarrow B) \ scambio$$

5. Verificare con il metodo dei tableau semantici che la seguente formula è falsificabile

$$\forall x (P(x) \lor Q(x)) \rightarrow (\forall x P(x) \lor \forall x Q(x))$$

Il tableau della negata resta aperto

Quale delle seguenti interpretazioni ne è un contromodello?

•
$$D = N |P| = \{n \mid n \text{ pari}\}, |Q| = \{n \mid n \text{ dispari}\}$$

•
$$D = N |P| = \emptyset, |Q| = \emptyset$$

6. Provare con il metodo di Hilbert che la seguente formula è un teorema

$$(\exists z P(z) \to Q) \to \forall z (P(z) \to Q)$$

$$\{\neg \forall z \neg P(z) \to Q, \neg Q\} | \neg \forall z \neg P(z) \to Q \qquad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q, \neg Q\} | \neg Q \to \forall z \neg P(z) \qquad contr.$$

$$\{\neg \forall z \neg P(z) \to Q, \neg Q\} | \neg Q \qquad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q, \neg Q\} | \neg Q \qquad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q, \neg Q\} | \neg Q \qquad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q, \neg Q\} | \neg Q \qquad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q, \neg Q\} | \neg Q \qquad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q, \neg Q\} | \neg Q \qquad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q, \neg Q\} | \neg Q \qquad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q, \neg Q\} | \neg Q \qquad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q, \neg Q\} | \neg Q \qquad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q, \neg Q\} | \neg Q \qquad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q, \neg Q\} | \neg Q \qquad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q, \neg Q\} | \neg Q \qquad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q\} | \neg Q \qquad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q\} | \neg Q \qquad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q\} | \neg Q \qquad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q\} | \neg Q \qquad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q\} | \neg Q \qquad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q\} | \neg Q \qquad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q\} | \neg Q \qquad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q\} | \neg Q \qquad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q\} | \neg Q \qquad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q\} | \neg Q \qquad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q\} | \neg Q \qquad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q\} | \neg Q \qquad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q\} | \neg Q \qquad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q\} | \neg Q \qquad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q\} | \neg Q \qquad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q\} | \neg Q \qquad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q\} | \neg Q \qquad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q\} | \neg Q \qquad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q\} | \neg Q \qquad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q\} | \neg Q \qquad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q\} | \neg Q \qquad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q\} | \neg Q \qquad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q\} | \neg Q \qquad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q\} | \neg Q \qquad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q\} | \neg Q \qquad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q\} | \neg Q \qquad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q\} | \neg Q \qquad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q\} | \neg Q \qquad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q\} | \neg Q \qquad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q\} | \neg Q \qquad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q\} | \neg Q \qquad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q\} | \neg Q \quad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q\} | \neg Q \quad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q\} | \neg Q \quad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q\} | \neg Q \quad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q\} | \neg Q \quad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q\} | \neg Q \quad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q\} | \neg Q \quad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q\} | \neg Q \quad Ass.$$

$$\{\neg \forall z \neg P(z) \to Q\} | \neg Q \to Q\} | \neg$$

Esame dell'insegnamento di METODI MATEMATICI - Canale A - L 5-02-2018 (prof. Labella)

5-02-2018 (prof. Labella)	
1. Indichiamo con $\mathcal{P}(A)$ l'insieme dei sottoinsiemi di A. Quali fra le seguenti af	fermazioni è
vera per qualunque A?	_
• $\mathcal{P}(A)$ è sottoinsieme di $\mathcal{P}(\mathcal{P}(A))$	
• $\mathcal{P}(A) \cap \mathcal{P}(\mathcal{P}(A)) = \{\{\}\}$	
• $\mathcal{P}(A) \cap \mathcal{P}(\mathcal{P}(A)) = \{\}$	
• $\mathcal{P}(A) \cup (\mathcal{P}(\mathcal{P}(A)) \cap \mathcal{P}(A)) = \mathcal{P}(A)$	$\overline{\checkmark}$
• L'insieme delle funzioni suriettive da $\mathcal{P}(A)$ in $\mathcal{P}(\mathcal{P}(A))$ è finito solo se lo è a	nche A \square
2. Indichiamo con $R \cdot S$ la composizione di due relazioni binarie R ed S su ur ovvero la relazione $\{(a, c) \mid \text{esiste b tale che } (a, b) \in S \text{ e } (b, c) \in R \}$. Quali fra affermazioni è vera?	
 Se R e S sono relazioni di equivalenza allora lo è anche R · S 	
 Se R e S sono relazioni d'ordine allora lo è anche R · S 	
 Se R · S è una relazione di equivalenza allora lo sono anche R ed S 	
 Se R · S è una relazione d'ordine allora lo sono anche R ed S 	
• Se R · S è una funzione, allora lo sono anche R ed S	
3. Dimostrare per induzione che $\sum_{k=1,n} k / 2^k = 2 - (n+2)/2^n$ per ogni natural Caso base n=2 $\frac{1}{2} + \frac{1}{2} = 2 - 1$ Supponiamo l'equazione vera per n e dimostriamola per n+1. $\sum_{k=2,n+1} k / 2^k = \sum_{k=2,n} k / 2^k + (n+1)/2^{n+1} = 2 - (n+2)/2^n + (n+1)/2^{n+1} = 2 - (2n+4-n-1) = 2 - (n+3)/2^{n+1}$ cvd	
4. Provare con il metodo di Hilbert che la seguente formula è un teorema $(A \land B) \rightarrow (\neg A \rightarrow B)$	
5. Verificare con il metodo dei tableau semantici se la seguente formula è falsificabile $\exists z (P(z) \land Q(z)) \rightarrow \exists z P(z) \land \exists z Q(z)$	
Il tableau della negata è chiuso, quindi non è falsificabile e non esistono contromodelli.	

6. Provare con il metodo di Hilbert che la seguente formula è un teorema

$$\begin{array}{c} \forall z \ (P \ v \ Q(z)) \rightarrow (P \ v \ \forall z \ Q(z)) \\ |- \ \forall z \ (\neg P \rightarrow Q(z)) \rightarrow (\neg P \rightarrow \forall z \ Q(z)) & Ax \ 5 \\ |- \ \forall z \ (P \ v \ Q(z)) \rightarrow (P \ v \ \forall z \ Q(z)) & def. \ di \ v \end{array}$$

 $\bullet \quad D=N \ |P|=\{n \mid \ n \ pari\}, \ |Q|=\{n \mid \ n \ dispari\}$

• $D = N |P| = \emptyset, |Q| = \emptyset$