
1

POSIX Thread Programming

2

Topics to be Covered
• Objective

• POSIX threads

• What are Threads?

• Creating threads

• Using threads

• Summary

3

Creating threads
• Always include pthread library:

#include <pthread.h>
int pthread_create (pthread_t *threadp, const
pthread_attr_t * attr, void *(* start routine)(void *), void
*arg);

• This creates a new thread of control that calls the function
start_routine.

• It return a zero if the creation is successful, and thread id
in threadp (first parameter).

• attr is to modify the attributes of the new thread. If it is
NULL, default attributes are used.

• arg is to pass arguments to the thread function.

4

Using threads
1. Declare a variable of type pthread_t
2. Define a function to be executed by the thread.
3. Create the thread using pthread_create

Make sure creation is successful by checking
the return value.

4. Pass any arguments need through’ arg (packing
and unpacking arg list if needed)

6. Compile: cc –o xyz xyz.c
{+ options such as -lpthread}

5

Thread’s local data
• Variables declared within a thread (function) are

called local data.

• Local (static) data associated with a thread are
allocated on the stack. So these may be
deallocated when a thread returns.

• So don’t plan on using locally declared variables
for returning arguments. Plan to pass the
arguments thru argument list passed from the
caller or initiator of the thread.

6

Thread termination (destruction)
Implicit : Simply returning from the function

executed by the thread terminates the thread. In
this case thread’s completion status is set to the
return value.

• Explicit : Use thread_exit.

 void thread_exit(void *status);

The single pointer value in status is available to the
threads waiting for this thread.

7

Waiting for thread exit
int pthread_join (pthread_t tid, void **statusp);

• A call to this function makes a thread wait for
another thread whose thread_id is specified by
tid in the above prototype.

• When the thread specified by tid exits its
completion status is stored(returned) in statusp.

8

Other pthread functions

pthread_t pthread_self(void)
• get the “handle” for itself.
• Synchronization:

pthread_mutex_t
lock=PTHREAD_MUTEX_INITIALIZER;

pthread_mutex_lock (&lock);
pthread_mutex_unlock(&lock);

9

Synchronization (ctd)

pthread_cond_t c;

int pthread_cond_init();

int pthread_cond_wait();

int pthread_cond_signal();

10

Other pthread functions

• Posix Semaphores
#include <semaphore.h>

sem_t s;

sem_init(sem_t *s, int shared, uint_t value);

sem_wait(sem_t *s);

sem_post(sem_t *s);

sem_getvalue(sem_t *s);

sema_destroy(sem_t *s);

