POSIX Thread Programming

Topics to be Covered

Obijective

POSIX threads
What are Threads?
Creating threads
Using threads
Summary

Creating threads

Always include pthread library:
#include <pthread.h>

int pthread_create (pthread_t *threadp, const
pthread_attr_t * attr, void *(* start routine)(void *), void
*arg);

This creates a new thread of control that calls the function
start_routine.

It return a zero if the creation is successful, and thread id
in threadp (first parameter).

attr is to modify the attributes of the new thread. If it is
NULL, default attributes are used.

arg is to pass arguments to the thread function.

Using threads

1. Declare a variable of type pthread t
2. Define a function to be executed by the thread.
3. Create the thread using pthread create

Make sure creation is successful by checking
the return value.

4. Pass any arguments need through’ arg (packing
and unpacking arg list if needed)

6. Compile: cc —o xyz xyz.c
{+ options such as -Ipthread}

Thread’s local data

« Variables declared within a thread (function) are
called local data.

* Local (static) data associated with a thread are
allocated on the stack. So these may be
deallocated when a thread returns.

* S0 don't plan on using locally declared variables
for returning arguments. Plan to pass the
arguments thru argument list passed from the
caller or initiator of the thread.

Thread termination (destruction)

Implicit : Simply returning from the function
executed by the thread terminates the thread. In

this case thread’s completion status is set to the
return value.

« Explicit : Use thread exit.
void thread_exit(void *status);

The single pointer value in status is available to the
threads waiting for this thread.

Waiting for thread exit

int pthread_join (pthread_t tid, void **statusp);

A call to this function makes a thread wait for
another thread whose thread id is specified by
tid in the above prototype.

* When the thread specified by tid exits its
completion status is stored(returned) in statusp.

Other pthread functions

pthread_t pthread_self(void)
» get the "handle” for itself.

* Synchronization:

pthread mutex_t
lock=PTHREAD MUTEX INITIALIZER;

pthread_mutex_lock (&lock);
pthread_mutex_unlock(&lock);

Synchronization (ctd)

pthread_cond_t c;

int pthread_cond_init();
int pthread_cond_wait();
int pthread_cond_signal();

Other pthread functions

* Posix Semaphores
#include <semaphore.h>
sem ts;
sem_init(sem_t *s, int shared, uint_t value);
sem_wait(sem_t *s);
sem_post(sem_t *s);
sem_getvalue(sem_t *s);
sema_destroy(sem t *s);

10

