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IntroductionIntroduction

� Motivation
� Sharing common resources

� Possible with processes, but overheads do exist
� fork() is  expensive 

� Multiprocessor architecture
� The process is fundamentally a “single CPU” 

abstraction



Giorgio Richelli
giorgio_richelli@it.ibm.com

Multiple Threads and ProcessorsMultiple Threads and Processors

� True parallelism for multiprocessor 
architectures

� Multiplex if #T > #P
� Ideally: 

� if an application need 1 unit time with one thread 
version, it will only need 1/n unit time with a 
multithread version on a computer with n 
processors. 
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Traditional UNIX systemTraditional UNIX system
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Multithreaded ProcessesMultithreaded Processes
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MultiprocessorMultiprocessor
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Concurrency & ParallelismConcurrency & Parallelism

� Concurrency: 
� The maximum parallelism it can achieve with an 

unlimited number of processors.
� Parallelism: 

� The actual degree of parallel execution achieved 
and is limited by the number of physical 
processors.

� User/System concurrency
� hot threads (kernel) /cold threads (coroutines)
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Fundamental AbstractionFundamental Abstraction

� A process :
� is a compound entity that can be divided into two 

components:
� a set of threads 
� a collection of resources.
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Fundamental AbstractionFundamental Abstraction

� A thread :
� a dynamic object that represents a control point 

in the process and that executes a sequence of 
instructions.

� Shared resources
� Private objects:

� pc, stack, register context
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ProcessesProcesses
� Have a virtual address space which holds 

the process image
� Protected access to processors, other 

processes, files, and I/O resources
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ThreadsThreads
� Has an execution state (running, ready, etc.)
� Saves thread context when not running
� Has an execution stack
� Has some per-thread static storage for local 

variables
� Has access to the memory and resources of 

its process
� all threads of a process share this
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Threads and ProcessesThreads and Processes

one process
one thread

multiple processes
one thread per process

one process
multiple threads

multiple processes
multiple threads per process



Giorgio Richelli
giorgio_richelli@it.ibm.com

Single Threaded and Multithreaded Process Single Threaded and Multithreaded Process 
ModelsModels
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Benefits of ThreadsBenefits of Threads
� Takes less time to create a new thread than a 

process
� Less time to terminate a thread than a process
� Less time to switch between two threads within the 

same process
� Since threads within the same process share 

memory and files, they can communicate with each 
other without invoking the kernel
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ThreadsThreads
� Suspending a process involves suspending 

all threads of the process since all threads 
share the same address space

� Termination of a process, terminates all 
threads within the process
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ThreadsThreads

� Three (at least) different types
� kernel threads
� Lightweight processes
� user threads
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Kernel ThreadsKernel Threads

� A kernel thread is responsible for executing a 
specific function.

� It shares the kernel text and global data, and 
has its own kernel stack.

� Independently scheduled.
� Useful to handle asynchronous I/O.
� Inexpensive
� Not entirely a new concept: pagedaemon 

nfsd
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Lightweight ProcessesLightweight Processes

� LWP is a kernel-supported user thread.
� It belongs to a user process.
� Independently scheduled.
� Share the address space and other 

resources of the process.
� LWP should be synchronized on shared 

data.
� Blocking an LWP is expensive.
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Lightweight processesLightweight processes
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User ThreadsUser Threads
� All thread management is done by the 

application
� The kernel is not aware of the existence of 

threads
� Thread switching does not require kernel 

mode privileges
� Scheduling is application specific
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User ThreadsUser Threads

� Created by thread library such as C-threads
(Mach) or pthreads (POSIX).

� A user-level library:
� multiplex user threads on top of LWPs
� provides facilities for inter-thread scheduling, 

context switching, and synchronization without 
involving the kernel.
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User ThreadsUser Threads
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User Threads multiplexedUser Threads multiplexed
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Thread LatenciesThread Latencies

      Creation time  (�s) Synchronization Time (�s)
User thread    52  66
LWP   350 390
Process 1700 200
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Split schedulingSplit scheduling
� The threads library schedules user threads
� The kernel schedules LWPs and processes.
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Lightweight Process Design Lightweight Process Design 

� Semantics of fork
� Create a child process.
� Copy only the LWP into the new process 

� (Posix)
� Duplicate all the LWPs of the parent 

� (Solaris).
� All LWPs share a set of file descriptor
� All LWPs share a common address space 

and may manipulate it concurrently through 
system calls such as mmap & brk.
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  lseek Problems lseek Problems 
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Signal Delivery and HandlingSignal Delivery and Handling

� Different methods:
� Send the signal to each thread
� Appoint a master thread in each process to 

receive all signals
� Send the signal to any arbitrarily chosen thread
� Use heuristics to determine the thread to which 

the signal applies
� Create a new thread to handle each signal
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Stack GrowthStack Growth

� Overflows of stack: a segmentation violation 
fault.

� The kernel has no ideas about the user 
thread stack.

� It is the thread’s responsibility to extend the 
stack or handle the overflows, the kernel 
responds by sending a SIGSEGV signal to 
the appropriate thread.
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User-Level Thread LibrariesUser-Level Thread Libraries

� The API allows
� Creating and terminating threads
� Suspending and resuming threads
� Assigning priorities to individual threads
� Thread scheduling and context switching
� Synchronizing activities through facilities such as semaphores and mutual 

exclusion locks
� Sending messages from one thread to another

� The priority of a thread is simply a process-relative 
priority used by the threads scheduler to select a 
thread to run within the process.
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Implementing Threads LibrariesImplementing Threads Libraries

� By LWPs:
� Bind each thread to a different LWP.
� Multiplex user threads on a (smaller) set of 

LWPs.
� Allow a mixture of bound and unbound threads 

in the same process.
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User thread statesUser thread states
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Linux: Processes or Threads?Linux: Processes or Threads?

� Linux uses a neutral term: tasks
� Traditional view

� Threads exist "inside" processes
� Linux view

� Threads: processes that share address space
� Linux "threads" (tasks) are more like "LWPs"
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Thread ModelsThread Models

� Many-to-one
� User-level threads; kernel doesn't know about them

� One-to-one
� Linux standard model; each user-level thread corresponds to 

a kernel thread
� Many-to-many (m-to-n; m >= n)

� Solaris, Next Generation POSIX Threads
� Large number of user threads corresponds to a smaller 

number of kernel threads
� More flexible; better CPU utilization
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clone()clone()

� fork() is implemented as a wrapper around 
clone() with specific parameters

� __clone(fp, data, flags, stack)
� "__" means "don’t call this directly"
� fp is thread start function, data is params
� flags is one or more of CLONE_ flags
� stack is address of user stack
� clone() calls do_fork() to do the work
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do_fork()do_fork()

� Highlights
� alloc_task_struct()
� Copy current into new
� find_empty_process()
� get_pid()
� Update ancestry
� Copy components based on flags
� copy_thread()
� Link into task list, update nr_tasks
� Set TASK_RUNNING
� wake_up_process()
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Linux Kernel threadsLinux Kernel threads

� Linux has a small number of kernel threads that run 
continuously in the kernel (daemons)
� No user address space (only kernel mapped)

� Creating: kernel_thread()
� Process 0: idle process
� Process 1

� Spawns several kernel threads, before transitioning to user mode 
as /sbin/init

� kflushd (bdflush) – Flush dirty buffers to disk under "memory 
pressure"

� kupdate – Periodically flushes old buffers to disk
� kswapd – Swapping daemon
� kpiod – No longer used in 2.4



Giorgio Richelli
giorgio_richelli@it.ibm.com

Destroying ProcessesDestroying Processes

� Termination
� kill(), exit()

� Removal
� wait()

� Terminating a process causes all threads to exit
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Cancelling a ThreadCancelling a Thread

� A cancel is a mechanism by which a calling thread 
informs the specified thread to terminate as quickly 
as possible. 

� Issuing a cancel does not guarantee that the 
canceled thread will receive or handle the cancel.
� The canceled thread can delay processing the cancel after receiving 

it. 
� The calling thread can only rely on the fact that a cancel will 

eventually become pending in the designated thread (provided that 
the thread does not terminate beforehand).

� Furthermore, the calling thread has no guarantee that a pending 
cancel will be delivered because delivery is controlled by the 
designated thread


