
Giorgio Richelli
giorgio_richelli@it.ibm.com

ThreadsThreads

Giorgio Richelli
giorgio_richelli@it.ibm.com

ContentsContents

� Introduction
� Fundamental Abstractions
� Lightweight Process Design
� User-Level Threads Libraries

Giorgio Richelli
giorgio_richelli@it.ibm.com

IntroductionIntroduction

� Motivation
� Sharing common resources

� Possible with processes, but overheads do exist
� fork() is expensive

� Multiprocessor architecture
� The process is fundamentally a “single CPU”

abstraction

Giorgio Richelli
giorgio_richelli@it.ibm.com

Multiple Threads and ProcessorsMultiple Threads and Processors

� True parallelism for multiprocessor
architectures

� Multiplex if #T > #P
� Ideally:

� if an application need 1 unit time with one thread
version, it will only need 1/n unit time with a
multithread version on a computer with n
processors.

Giorgio Richelli
giorgio_richelli@it.ibm.com

Traditional UNIX systemTraditional UNIX system

Giorgio Richelli
giorgio_richelli@it.ibm.com

Multithreaded ProcessesMultithreaded Processes

Giorgio Richelli
giorgio_richelli@it.ibm.com

MultiprocessorMultiprocessor

Giorgio Richelli
giorgio_richelli@it.ibm.com

Concurrency & ParallelismConcurrency & Parallelism

� Concurrency:
� The maximum parallelism it can achieve with an

unlimited number of processors.
� Parallelism:

� The actual degree of parallel execution achieved
and is limited by the number of physical
processors.

� User/System concurrency
� hot threads (kernel) /cold threads (coroutines)

Giorgio Richelli
giorgio_richelli@it.ibm.com

Fundamental AbstractionFundamental Abstraction

� A process :
� is a compound entity that can be divided into two

components:
� a set of threads
� a collection of resources.

Giorgio Richelli
giorgio_richelli@it.ibm.com

Fundamental AbstractionFundamental Abstraction

� A thread :
� a dynamic object that represents a control point

in the process and that executes a sequence of
instructions.

� Shared resources
� Private objects:

� pc, stack, register context

Giorgio Richelli
giorgio_richelli@it.ibm.com

ProcessesProcesses
� Have a virtual address space which holds

the process image
� Protected access to processors, other

processes, files, and I/O resources

Giorgio Richelli
giorgio_richelli@it.ibm.com

ThreadsThreads
� Has an execution state (running, ready, etc.)
� Saves thread context when not running
� Has an execution stack
� Has some per-thread static storage for local

variables
� Has access to the memory and resources of

its process
� all threads of a process share this

Giorgio Richelli
giorgio_richelli@it.ibm.com

Threads and ProcessesThreads and Processes

one process
one thread

multiple processes
one thread per process

one process
multiple threads

multiple processes
multiple threads per process

Giorgio Richelli
giorgio_richelli@it.ibm.com

Single Threaded and Multithreaded Process Single Threaded and Multithreaded Process
ModelsModels

Thread
Control
Block

User
Stack

User
Stack

Kernel
Stack

Kernel
Stack

User
Address
Space

User
Address
Space

Process
Control
Block

Process
Control
Block

Thread

Single-Threaded
Process Model

Multithreaded
Process Model

Thread
Control
Block

User
Stack

Kernel
Stack

Thread

Thread
Control
Block

User
Stack

Kernel
Stack

Thread

Giorgio Richelli
giorgio_richelli@it.ibm.com

Benefits of ThreadsBenefits of Threads
� Takes less time to create a new thread than a

process
� Less time to terminate a thread than a process
� Less time to switch between two threads within the

same process
� Since threads within the same process share

memory and files, they can communicate with each
other without invoking the kernel

Giorgio Richelli
giorgio_richelli@it.ibm.com

ThreadsThreads
� Suspending a process involves suspending

all threads of the process since all threads
share the same address space

� Termination of a process, terminates all
threads within the process

Giorgio Richelli
giorgio_richelli@it.ibm.com

ThreadsThreads

� Three (at least) different types
� kernel threads
� Lightweight processes
� user threads

Giorgio Richelli
giorgio_richelli@it.ibm.com

Kernel ThreadsKernel Threads

� A kernel thread is responsible for executing a
specific function.

� It shares the kernel text and global data, and
has its own kernel stack.

� Independently scheduled.
� Useful to handle asynchronous I/O.
� Inexpensive
� Not entirely a new concept: pagedaemon

nfsd

Giorgio Richelli
giorgio_richelli@it.ibm.com

Lightweight ProcessesLightweight Processes

� LWP is a kernel-supported user thread.
� It belongs to a user process.
� Independently scheduled.
� Share the address space and other

resources of the process.
� LWP should be synchronized on shared

data.
� Blocking an LWP is expensive.

Giorgio Richelli
giorgio_richelli@it.ibm.com

Lightweight processesLightweight processes

Giorgio Richelli
giorgio_richelli@it.ibm.com

User ThreadsUser Threads
� All thread management is done by the

application
� The kernel is not aware of the existence of

threads
� Thread switching does not require kernel

mode privileges
� Scheduling is application specific

Giorgio Richelli
giorgio_richelli@it.ibm.com

User ThreadsUser Threads

� Created by thread library such as C-threads
(Mach) or pthreads (POSIX).

� A user-level library:
� multiplex user threads on top of LWPs
� provides facilities for inter-thread scheduling,

context switching, and synchronization without
involving the kernel.

Giorgio Richelli
giorgio_richelli@it.ibm.com

User ThreadsUser Threads

Giorgio Richelli
giorgio_richelli@it.ibm.com

User Threads multiplexedUser Threads multiplexed

Giorgio Richelli
giorgio_richelli@it.ibm.com

Thread LatenciesThread Latencies

 Creation time (�s) Synchronization Time (�s)
User thread 52 66
LWP 350 390
Process 1700 200

Giorgio Richelli
giorgio_richelli@it.ibm.com

Split schedulingSplit scheduling
� The threads library schedules user threads
� The kernel schedules LWPs and processes.

Giorgio Richelli
giorgio_richelli@it.ibm.com

Lightweight Process Design Lightweight Process Design

� Semantics of fork
� Create a child process.
� Copy only the LWP into the new process

� (Posix)
� Duplicate all the LWPs of the parent

� (Solaris).
� All LWPs share a set of file descriptor
� All LWPs share a common address space

and may manipulate it concurrently through
system calls such as mmap & brk.

Giorgio Richelli
giorgio_richelli@it.ibm.com

 lseek Problems lseek Problems

Giorgio Richelli
giorgio_richelli@it.ibm.com

Signal Delivery and HandlingSignal Delivery and Handling

� Different methods:
� Send the signal to each thread
� Appoint a master thread in each process to

receive all signals
� Send the signal to any arbitrarily chosen thread
� Use heuristics to determine the thread to which

the signal applies
� Create a new thread to handle each signal

Giorgio Richelli
giorgio_richelli@it.ibm.com

Stack GrowthStack Growth

� Overflows of stack: a segmentation violation
fault.

� The kernel has no ideas about the user
thread stack.

� It is the thread’s responsibility to extend the
stack or handle the overflows, the kernel
responds by sending a SIGSEGV signal to
the appropriate thread.

Giorgio Richelli
giorgio_richelli@it.ibm.com

User-Level Thread LibrariesUser-Level Thread Libraries

� The API allows
� Creating and terminating threads
� Suspending and resuming threads
� Assigning priorities to individual threads
� Thread scheduling and context switching
� Synchronizing activities through facilities such as semaphores and mutual

exclusion locks
� Sending messages from one thread to another

� The priority of a thread is simply a process-relative
priority used by the threads scheduler to select a
thread to run within the process.

Giorgio Richelli
giorgio_richelli@it.ibm.com

Implementing Threads LibrariesImplementing Threads Libraries

� By LWPs:
� Bind each thread to a different LWP.
� Multiplex user threads on a (smaller) set of

LWPs.
� Allow a mixture of bound and unbound threads

in the same process.

Giorgio Richelli
giorgio_richelli@it.ibm.com

User thread statesUser thread states

Giorgio Richelli
giorgio_richelli@it.ibm.com

Linux: Processes or Threads?Linux: Processes or Threads?

� Linux uses a neutral term: tasks
� Traditional view

� Threads exist "inside" processes
� Linux view

� Threads: processes that share address space
� Linux "threads" (tasks) are more like "LWPs"

Giorgio Richelli
giorgio_richelli@it.ibm.com

Thread ModelsThread Models

� Many-to-one
� User-level threads; kernel doesn't know about them

� One-to-one
� Linux standard model; each user-level thread corresponds to

a kernel thread
� Many-to-many (m-to-n; m >= n)

� Solaris, Next Generation POSIX Threads
� Large number of user threads corresponds to a smaller

number of kernel threads
� More flexible; better CPU utilization

Giorgio Richelli
giorgio_richelli@it.ibm.com

clone()clone()

� fork() is implemented as a wrapper around
clone() with specific parameters

� __clone(fp, data, flags, stack)
� "__" means "don’t call this directly"
� fp is thread start function, data is params
� flags is one or more of CLONE_ flags
� stack is address of user stack
� clone() calls do_fork() to do the work

Giorgio Richelli
giorgio_richelli@it.ibm.com

do_fork()do_fork()

� Highlights
� alloc_task_struct()
� Copy current into new
� find_empty_process()
� get_pid()
� Update ancestry
� Copy components based on flags
� copy_thread()
� Link into task list, update nr_tasks
� Set TASK_RUNNING
� wake_up_process()

Giorgio Richelli
giorgio_richelli@it.ibm.com

Linux Kernel threadsLinux Kernel threads

� Linux has a small number of kernel threads that run
continuously in the kernel (daemons)
� No user address space (only kernel mapped)

� Creating: kernel_thread()
� Process 0: idle process
� Process 1

� Spawns several kernel threads, before transitioning to user mode
as /sbin/init

� kflushd (bdflush) – Flush dirty buffers to disk under "memory
pressure"

� kupdate – Periodically flushes old buffers to disk
� kswapd – Swapping daemon
� kpiod – No longer used in 2.4

Giorgio Richelli
giorgio_richelli@it.ibm.com

Destroying ProcessesDestroying Processes

� Termination
� kill(), exit()

� Removal
� wait()

� Terminating a process causes all threads to exit

Giorgio Richelli
giorgio_richelli@it.ibm.com

Cancelling a ThreadCancelling a Thread

� A cancel is a mechanism by which a calling thread
informs the specified thread to terminate as quickly
as possible.

� Issuing a cancel does not guarantee that the
canceled thread will receive or handle the cancel.
� The canceled thread can delay processing the cancel after receiving

it.
� The calling thread can only rely on the fact that a cancel will

eventually become pending in the designated thread (provided that
the thread does not terminate beforehand).

� Furthermore, the calling thread has no guarantee that a pending
cancel will be delivered because delivery is controlled by the
designated thread

