
  

Programming Models

● Boss/Workers
● Work Crew
● Pipeline
● Client/Server



  

Boss/Worker

● One master thread and one or more workers. 
● The boss thread gathers or generates tasks that 

need to be done, then parcels those tasks out to 
the appropriate worker thread.

● This model is common in GUI and server 
programs



  

Boss/Worker

● A main thread waits for some event and then 
passes that event to the appropriate worker 
threads for processing. 

● Once the event has been passed on, the boss 
thread goes back to waiting for another event.

● The boss thread does relatively little work.
● While tasks aren't necessarily performed faster 

than with any other method, it tends to have the 
best user-response times.



  

Work Crew

● Several threads are created that do essentially 
the same thing to different pieces of data. 

● It closely mirrors classical parallel processing 
and vector processors, where a large array of 
processors do the exact same thing to many 
pieces of data.

● This model is particularly useful if the system 
running the program will distribute multiple 
threads across different processors. 



  

Pipeline

● The pipeline model divides up a task into a 
series of steps, and passes the results of one 
step on to the thread processing the next. 

● Each thread does one thing to each piece of 
data and passes the results to the next thread in 
line.



  

Pipeline

● This model tends to keep the individual tasks 
small and simple, as well as allowing some parts 
of the pipeline to block (on I/O or system calls, 
for example) while other parts keep going.

● It is also handy for a form of recursive 
programming where, rather than having a 
subroutine call itself, it instead creates another 
thread. 



  

Client/Server

● A computational architecture that involves 
processes requesting service from other  
processes.

● The client is a process (program) that sends a 
message to a server process (program), 
requesting that the server perform a task 
(service).



  

Client/Server

● Client programs usually manage the user-
interface portion of the application, validate data 
entered by the user, dispatch requests to server 
programs, and sometimes execute business 
logic. 

● The client-based process is the frontend of the 
application that the user sees and interacts with. 

● The client process contains solution-specific 
logic and provides the interface between the 
user and the rest of the application system.



  

Client/Server

● A server process (program) fulfills the client 
request by performing the task requested.

● Server programs generally receive requests from 
client programs, execute them and dispatch 
responses to client requests. 

● The server process acts as a software engine 
that manages shared resources

● The server process performs the back-end tasks 
that are common to similar applications.  


