
The User Interface

● Files, directory, file descriptor, file systems
● File & Directories

– File: logically a container for data
– A hierarchical, tree-structured name space
– Pathname: components in the path from the root to

the node, by “/”
– Special entries: “.” & “..”
– Link: a directory entry for a file.

Directory syscalls

dirp = opendir(char *filename);

direntp = readdir (dirp);

rewinddir(dirp);

status = closedir(firp);

struct dirent {

 int_t d_ino;

 char d_name[NAME_MAX +1];

}

File Attributes

● Kept in the inode (index node)
● File attributes:

– File type
– Number of hard links
– File size
– Device ID
– Inode number
– User and Group Ids of the owner of the file.
– Timestamps
– Permissions and mode flags (suid, sgid, sticky)

File Descriptors

● fd is a per-process object.

fd = open (path, oflag, mode);

File I/O

● Random and sequential access
– lseek ()
– nread = read(fd, buf, count);

● Scatter-Gather
– nbytes = writev(fd, iov, iovcnt);

File Locking

● Read and write are atomic.
● Advisory locks: protect from cooperative

processes, flock() in 4BSD; chmod in svr3
● Svr4: r/w locks.
● Mandatory locks:kernel

File system

● Mount-on
– A directory is covered by the mounted file system.
– mount table & vfs list

● Logical disks
– A linear sequence of fixed sized, randomly

accessible, blocks.
– Partition

Logical Disks

● A logical disk is a storage abstraction that the kernel sees
as a linear sequence of fixed sized, randomly accessible
blocks.

● newfs, mkfs, partition
● Advanced Topics:

– Volume

– Disk mirror

– Stripe sets

– RAID

Device I/O

● Block & character devices
● Character:
 struct {

 int (*d_open)();
 int (*d_close)();
 int (*d_read)();
 int (*d_write)();

 } cdevsw[];

● Major & minor device number:
– indexes in the device table

Opening a file

● int fd = open(char *pathname, int flags, mode_t mode);

– pathname: filename (directory, ...)

– flags: read, write, ...

– mode: file access permissions (optional)

– returns
● fd: file descriptor
● -1: in case of errors

– Example:
● fd=open(name,O_RDWR|O_CREAT,S_IRWXU)

Opening a file

● fd = open(pathname, mode)
1 Allocate a descriptor

2 Allocate an open file object

3 Lookup path name

4 Check permissions

5 Check operation

6 Not exist, O_Creat, VOP_CREAT; ENOENT

7 VOP_OPEN

8 If O_TRUNC, VOP_SETATTR

9 Initialize

10 Return the index of the descriptor

Closing a File

● int close(fd)
– fd: file descriptor

– returns:
● 0 if successful
● -1 in case of errors

– Example
● sts=close(fd);

Reading from File

● ssize_t read(int fd, void *buf, size_t count);
– fd: file descriptor

– buf: pointer to buffer space

– count: I/O size (in bytes)

– returns:
● number of bytes read
● -1 in case of error

– Example:
● nb=read(fd,buffer,sizeof(buffer));

Writing to File

● ssize_t write(int fd, const void *buf, size_t count);

– fd: file descriptor

– buf: pointer to bufferspace

– count: I/O size

– returns:
● number of bytes written
● -1 in case of error

– Example:
● nb=write(fd,string,strlen(string)+1);

File Seek
● off_t lseek(int fildes, off_t offs, int whence);

– Positions File Pointer for subsequent I/O

– fd: file descriptor

– offs: offset (in bytes)

– whence: specifies whether offs is relative to start of
file, current position or end of file

– returns:
● offset: resulting offset location
● -1: in case of error

– Example:
● bytes=lseek(fd,offset,SEEK_SET);

File Information

● int fstat(int fd, struct stat *buf);
– Returns information about an (open) file

– fd: file descriptor

– buf: pointer to a struct stat

– returns
● 0: if successful
● -1: in case of errors

– Example:
● sts=fstat(fd,&statbuf);
●

●

File I/O (1)

● Read(to a user buffer address)
– Fd-> the open file object, verify mode-> vnode-> get the rw-lock->call s5read()
– Offset -> block number & the offset -> uiomove()-> call copyout()
– The page not in memory? page fault->the handler->s5getpage()->call bmap()
– logical to physical, search vnode’s page list, not in? allocates a free page and call the disk

driver to read the file
– Sleep until the I/O completes. Before copy to user data space, verify the user has access
– s5read() returns, unlock, advance the offset, return the number of bytes read

File I/O (2)

● Write:
– Not immediately to disk
– May increase the file size
– May require the allocation of data blocks
– Read the entire block, write relevant data, write back

all the block

Link, Unlink, Rename

● int link(const char *oldpath, const char *newpath);

– creates a new (hard) link to file
● int unlink(const char *pathname);

– unlinks a file (and possibly deletes it)
● int rename(const char *oldpath, const char *newpath);

– renames a file, moving it between directories (if required)
● All return

– 0: if successful

– -1: in case of errors

The System V File System(s5fs)

● The layout of s5fs partition:

● Directories:
– s5fs directory is a special file containing a list of files

and subdirectories.

B S inode list data blocks

Inodes

● The inode contains administrative
information,or meta data.
– The node list contains all the inodes.
– On-disk inode
– In-core inode

Inode Fields

 di_mode

Block array of inode, di_addr

The superblock

● Size in blocks of the file system
● Size in blocks of the inode list
● Number of free blocks and inodes
● Free block list
● Free inode list

Free block list

