
Major Requirements of an
Operating System

● Interleave the execution of the number of
processes to maximize processor utilization while
providing reasonable response time

● Allocate resources to processes
● Support interprocess communication and user

creation of processes

The Process (abstraction)

● Also called a task
● Execution of an individual program

– an executable program
– associated data
– execution context

● Can be traced
– list the sequence of instructions that execute

The Process

● In UNIX
– Process is an instance of a running program.
– Lifetime: fork/vfork->exec->exit
– Well-defined hierarchy: parent,child,init,
– System processes:

● init process: the top process
● swapper & pagedeamon

– Orphans
● the parent process is terminated.

Dispatcher

● The program that moves the processor from one process
to another

● Prevents a single process from monopolizing processor
time

● It cannot just select the process that has been in the
queue the longest because it may be blocked
– Not-running

● ready to execute

– Blocked
● waiting for I/O

Process Creation

● Submission of a batch job
● User logs on
● Create to provide a service such as printing
● Spawned by an existing process

Process Termination

● When:
– batch job issues Halt instruction

– User logs off

– Process executes a service request to terminate

– On error and fault conditions

Reasons for Process Termination

● Normal completion
● Time limit exceeded
● Memory unavailable
● Bounds violation
● Protection error

– example write to readonly file
● Arithmetic error
● Time overrun

– process waited longer than a specified maximum for an
event

Reasons for Process Termination
● I/O failure
● Invalid instruction

– happens when try to execute data
● Privileged instruction
● Data misuse
● Operating system intervention

– such as when deadlock occurs
● Parent terminates so child processes terminate
● Parent request

Process State Transition Diagram with Two
Suspend States

New

Admit
Admit Suspend

Dispatch

Time out

Ready,
suspend

Ready

BlockedBlocked,
suspend

Event
Occurs

Activate

Event
Occurs

Activate

Suspend

Running Exit

Event
Wait

Process Creation

● Assign a unique process identifier
● Allocate space for the process
● Initialize process control block
● Set up appropriate linkages

– Ex: add new process to linked list used for scheduling
queue

● Other
– maintain an accounting file

When to Switch a Process
● Interrupts

– Clock
● process has executed for the maximum allowable time slice

– I/O
● Memory fault

– memory address is in virtual memory so it must be
brought into main memory

● Trap
– error occurred
– may cause process to be moved to Exit state

● Supervisor call
– such as file open

UNIX Process State

● Initial (idle)
● Ready to run
● Kernel/User running
● Zombie
● Asleep
● + (4BSD): stopped/suspend

Process states and state transitions

Process Context

● User address space:
– code, data, stack, shared memory regions

● Control information:
– u area, proc, kernel stack, Addr.Trans. Map

● Credentials: UID & GID
● Environment variables:

– inherited from the parent
● Hardware context(in PCB of u area):

– PC, SP, PSW, MMR, FPU

User Credentials

● Superuser: UID=0, GID=1
● Real IDs: login, send signals
● Effective IDs: file creation and access
● exec:

– suid/sgid mode: set to that of the owner of the file
● setuid / setgid:

SV & BSD are different with these
– saved UID, saved GID in SV
– setgroups() in BSD

Who's who

● int getuid();
– returns user id

● int getgid()
– returns group id

● int geteuid();
– return effective user id

● int getegid();
– returns effective group id

A typical process hierarchy in
4.3BSD UNIX

Process ID Parent Process ID

Ptr to parent's proc

Ptr to the youngest child
Ptr to the younger sibling

The UNIX kernel

● A special program that runs directly on the hardware.
● Implements the process model and services.
● Resides on disk

– /vmunix, /unix, /vmlinuz, ...
● Bootstrapping: loads the kernel.
● Initializes the system and sets up the environment,

remains in memory before shut down

UNIX Services

● System Calls
● Hardware exceptions

– Divide by 0, overflowing user stack
● Interrupts

– Devices
● Swapper, pagedaemon

The Kernel interacts with processes
and devices

Mode,Space & Context

● Some critical resources must be protected
– Kernel Mode: More privileged, kernel functions
– User Mode: Less privileged, user functions

● Virtual Memory
– VM space
– Address Translation Maps
– Memory Management Unit

Kernel data

● Current process & context switch
● One instance of the kernel
● Global data structure
● Per-process objects
● System call, mode switch
● User area: info. about a process
● Kernel stack

Context

● Re-entrant: several processes may be involved in
kernel activities concurrently.

● Execution context
– Process
– System (Interrupt)

Execution mode and Context

Executing in Kernel Mode

● 3 types of events:
– Device interrupts
– Exceptions
– Traps or software interrupts

● Dispatch table
● System context: interrupts
● Process context: traps, exceptions & software

interrupts

The System Call Interface

● syscall(): the starting point
– In kernel mode, but in process context.

– Copy arguments , save hardware context on the
kernel stack.

– Use system call number to index dispatch vector

– Return results in registers, restore hardware context,
to user mode, control back to the library routine.

New Processes & Programs

● int fork():
– creates a new process.
– returns 0 to the child, PID to the parent

● int exec*(..):
– begins to execute a new program

Using fork & exec

if ((ChildPid = fork())==0){

 /* child code*/

 … …
if (execve(“new program”),…)<0) {

● perror(“execve failed.”);

● exit(-1)

}

} else if (ChildPid <0) {

● perror(“fork failed”);

● exit(-1)

}

/*parent continues here*/

Process Creation

● Almost an exact clone of the parent.
– Reserve swap space for the child

– Allocate a new PID and proc structure for the child

– Initialize proc structure

– Allocate ATM (address translation map)

– Allocate u area and copy
– Update the u area to refer to the new ATM & Swap space
– Add the child to the set of processes sharing the text region of the program
– Duplicate the parent’s data and stack regions update ATM to refer to these new

pages.
– Acquire references to shared resources inherited by the child
– Initialize the hardware context
– Make the child runnable and put it on a scheduler queue
– Arrange to return with 0
– Return the PID to the parent

 Fork Optimization

● It is wasteful to make an actual copy of the
address space of the parent
– Copy-on-write:

● only the pages that are modified must be copied.(SYSV)

– vfork() (BSD):
● The parent loans the address space and blocks until the

child returns to it.
– dangerous

● (csh exploits it)

Invoking a New Program

● Process address space
– Text: code
– Initialized data
– Uninitialized data(bss)
– Shared memory(SYSV)
– Shared libraries
– Heap: dynamic space
– User stack: space allocated by the kernel

Awaiting Process Termination

wait(statusp);/* SV, BSD & POSIX*/

wait3(statusp,options,rusagep);/*BSD*/

waitpid(pid,statusp,options);/*POSIX*/

waitid(idtype,id,infop,options);/*SVR4*/

Zombie Processes

● Only holds proc structure.
● wait() frees the proc

– parent or the init process.

● When child dies before the parent & parent
doesn't wait for all childs, then the proc is never
released.

