
Major Requirements of an
Operating System

● Interleave the execution of the number of 
processes to maximize processor utilization while 
providing reasonable response time

● Allocate resources to processes
● Support interprocess communication and user 

creation of processes



The Process (abstraction)

● Also called a task
● Execution of an individual program

– an executable program
– associated data
– execution context

● Can be traced
– list the sequence of instructions that execute



The Process

● In UNIX
– Process is an instance of a running program.
– Lifetime: fork/vfork->exec->exit
– Well-defined hierarchy: parent,child,init,
–  System processes:

● init process: the top process
●  swapper & pagedeamon

– Orphans
● the parent process is terminated.





Dispatcher

● The program that moves the processor from one process 
to another

● Prevents a single process from monopolizing  processor 
time

● It cannot just select the process that has been in the 
queue the longest because it may be blocked
– Not-running

● ready to execute

– Blocked
● waiting for I/O



Process Creation

● Submission of a batch job
● User logs on
● Create to provide a service such as printing
● Spawned by an existing process



Process Termination

● When:
– batch job issues Halt instruction

– User logs off

– Process executes a service request to terminate

– On error and fault conditions



Reasons for Process Termination

● Normal completion
● Time limit exceeded
● Memory unavailable
● Bounds violation
● Protection error

– example write to readonly file
● Arithmetic error
● Time overrun

– process waited longer than a specified maximum for an 
event



Reasons for Process Termination
● I/O failure
● Invalid instruction

– happens when try to execute data
● Privileged instruction
● Data misuse
● Operating system intervention

– such as when deadlock occurs
● Parent terminates so child processes terminate
● Parent request



Process State Transition Diagram with Two 
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Process Creation

● Assign a unique process identifier
● Allocate space for the process
● Initialize process control block
● Set up appropriate linkages

– Ex: add new process to linked list used for scheduling 
queue

● Other
– maintain an accounting file



When to Switch a Process
● Interrupts

– Clock
● process has executed for the maximum allowable time slice

– I/O 
● Memory fault

– memory address is in virtual memory so it must be 
brought into main memory

● Trap
– error occurred
– may cause process to be moved to Exit state

● Supervisor call
– such as file open



UNIX Process State

●  Initial (idle)
●  Ready to run
●  Kernel/User running
●  Zombie
●  Asleep
●  + (4BSD): stopped/suspend 



Process states and state transitions



Process Context

● User address space:
– code, data, stack, shared memory regions

● Control information:
–  u area, proc, kernel stack, Addr.Trans. Map

● Credentials: UID & GID
● Environment variables: 

– inherited from the parent
● Hardware context(in PCB of u area):

– PC, SP, PSW, MMR, FPU



User Credentials

● Superuser: UID=0, GID=1
● Real IDs: login, send signals
● Effective IDs: file creation and access
● exec: 

–  suid/sgid mode: set to that of the owner of the file
● setuid / setgid:

SV & BSD are different with these
– saved UID, saved GID in SV
– setgroups() in BSD



Who's who

● int getuid();
– returns user id

● int getgid()
– returns group id

● int geteuid();
– return effective user id

● int getegid();
– returns effective group id



A typical process hierarchy in 
4.3BSD UNIX

Process ID Parent Process ID

Ptr to parent's proc

Ptr to the youngest child
Ptr to the younger sibling



The UNIX kernel

● A special program that runs directly on the hardware.
● Implements the process model and services.
● Resides on disk

– /vmunix, /unix, /vmlinuz, ...
● Bootstrapping: loads the kernel.
● Initializes the system and sets up the environment, 

remains in memory before shut down



UNIX Services

● System Calls
● Hardware exceptions

– Divide by 0, overflowing user stack
● Interrupts

– Devices
● Swapper, pagedaemon



The Kernel interacts with processes 
and devices



Mode,Space & Context

● Some critical resources must be protected
– Kernel Mode: More privileged, kernel functions
– User Mode: Less privileged, user functions

● Virtual Memory
– VM space
– Address Translation Maps
– Memory Management Unit



Kernel data

● Current process & context switch
● One instance of the kernel
● Global data structure 
● Per-process objects
● System call, mode switch
● User area: info. about a process
● Kernel stack 



Context

● Re-entrant: several processes may be involved in 
kernel activities concurrently.

● Execution context
– Process 
– System (Interrupt )



Execution mode and Context



Executing in Kernel Mode

● 3 types of events:
– Device interrupts
– Exceptions
– Traps or software interrupts

● Dispatch table
● System context: interrupts
● Process context: traps, exceptions & software 

interrupts



The System Call Interface

●  syscall(): the starting point
– In kernel mode, but in process context.

– Copy arguments , save hardware context on the 
kernel stack.

– Use system call number to index dispatch vector

– Return results in registers, restore hardware context, 
to user mode, control back to the library routine.



New Processes & Programs 

● int fork(): 
– creates a new process.
– returns 0 to the child, PID to the parent

● int exec*(..):
–  begins to execute a new program



Using fork & exec

if ((ChildPid = fork())==0){

   /* child code*/

   … …
if (execve(“new program”),…)<0) {

● perror(“execve failed.”);

● exit(-1)

}

} else if (ChildPid <0) {

● perror(“fork failed”);

● exit(-1)

}

/*parent continues here*/





Process Creation

● Almost an exact clone of the parent.
– Reserve swap space for the child

– Allocate a new PID and proc structure for the child 

– Initialize proc structure

– Allocate ATM (address translation map)

– Allocate u area and copy
– Update  the u area to refer to the new ATM & Swap space
– Add the child to the set of processes sharing the text region of the program
– Duplicate the parent’s data and stack regions update ATM to refer to these new 

pages.
– Acquire references to shared resources inherited by the child
– Initialize the hardware context
– Make the child runnable and put it on a scheduler queue
– Arrange to return with 0
– Return the PID to the parent



 Fork Optimization

● It is wasteful to make an actual copy of the 
address space of the parent
– Copy-on-write: 

● only the pages that are modified must be copied.(SYSV)

–  vfork() (BSD):
● The parent loans the address space and blocks until the 

child returns to it.
– dangerous

● (csh exploits it)



Invoking a New Program

● Process address space
– Text: code
– Initialized data
– Uninitialized data(bss)
– Shared memory(SYSV)
– Shared libraries
– Heap: dynamic space
– User stack: space allocated by the kernel



Awaiting Process Termination

wait(statusp);/* SV, BSD & POSIX*/

wait3(statusp,options,rusagep);/*BSD*/  

waitpid(pid,statusp,options);/*POSIX*/

waitid(idtype,id,infop,options);/*SVR4*/



Zombie Processes

● Only holds proc structure.
● wait() frees the proc

– parent or the init process.

● When child dies before the parent & parent 
doesn't wait for all childs, then the proc is never 
released. 


