
Manual of the Thompson Shell on Version 3
released under the license of Caldera

original sh.1 massaged, nroffed and htmlized.

SH (I) 1/15/73 SH (I)

NAME sh -- shell (command interpreter)

SYNOPSIS sh [name [arg ... [arg]]]
 1 9
DESCRIPTION
 sh is the standard command interpreter. It is the pro-
 gram which reads and arranges the execution of the com-
 mand lines typed by most users. It may itself be called
 as a command to interpret files of commands. Before dis-
 cussing the arguments to the shell used as a command, the
 structure of command lines themselves will be given.

 Command lines

 Command lines are sequences of commands separated by com-
 mand delimiters. Each command is a sequence of non-blank
 command arguments separated by blanks. The first argu-
 ment specifies the name of a command to be executed.
 Except for certain types of special arguments discussed
 below, the arguments other than the command name are
 passed without interpretation to the invoked command.

 If the first argument is the name of an executable file,
 it is invoked; otherwise the string "/bin/" is prepended
 to the argument. (In this way most standard commands,
 which reside in "/bin", are found.) If no such command
 is found, the string "/usr" is further prepended (to give
 "/usr/bin/command") and another attempt is made to exe-
 cute the resulting file. (Certain "overflow" commands
 live in "/usr/bin".) If the "/usr/bin" file exists, but
 is not executable, it is used by the shell as a command
 file. That is to say it is executed as though it were
 typed from the console. If all attempts fail, a diagnos-
 tic is printed.

 The remaining non-special arguments are simply passed to
 the command without further interpretation by the shell.

 Command delimiters

 There are three command delimiters: the new-line, ";",
 and "&". The semicolon ";" specifies sequential execu-
 tion of the commands so separated; that is,

 coma; comb

http://www.in-ulm.de/~mascheck/various/Caldera-license.txt
http://www.in-ulm.de/~mascheck/bourne/v3/sh.1

 causes the execution first of command coma, then of comb.
 The ampersand "&" causes simultaneous execution:

 coma & comb

 causes coma to be called, followed immediately by comb
 without waiting for coma to finish. Thus coma and comb
 execute simultaneously. As a special case,

 coma &

 causes coma to be executed and the shell immediately to
 request another command without waiting for coma.

 Termination Reporting

 If a command (not followed by "&") terminates abnormally,
 a message is printed. (All terminations other than exit
 and interrupt are considered abnormal.) The following is
 a list of the abnormal termination messages:

 Bus error
 Trace/BPT trap
 Illegal instruction
 IOT trap
 Power fail trap
 EMT trap
 Bad system call
 Quit
 PIR trap
 Floating exception
 Memory violation
 Killed
 User I/O
 Error

 If a core image is produced, " -- Core dumped" is
 appended to the appropriate message.

 Redirection of I/O

 Three character sequences cause the immediately following
 string to be interpreted as a special argument to the
 shell itself, not passed to the command.

 An argument of the form "<arg" causes the file arg to be
 used as the standard input file of the given command.

 An argument of the form ">arg" causes file "arg" to be
 used as the standard output file for the given command.
 "Arg" is created if it did not exist, and in any case is
 truncated at the outset.

 An argument of the form ">>arg" causes file "arg" to be
 used as the standard output for the given command. If
 "arg" did not exist, it is created; if it did exist, the
 command output is appended to the file.

 Pipes and Filters

 A pipe is a channel such that information can be written
 into one end of the pipe by one program, and read at the
 other end by another program. (See pipe (II)). A filter
 is a program which reads the standard input file, per-
 forms some transformation, and writes the result on the
 standard output file. By extending the syntax used for
 redirection of I/O, a command line can specify that the
 output produced by a command be passed via a pipe through
 another command which acts as a filter. For example:

 command >filter>

 More generally, special arguments of the form

 >f >f >...>
 1 2
 specify that output is to be passed successively through
 the filters f1, f2, ..., and end up on the standard out-
 put stream. By saying instead

 >f >f >...>file
 1 2
 the output finally ends up in file. (The last ">" could
 also have been a ">>" to specify concatenation onto the
 end of file.)

 In exactly analogous manner input filtering can be speci-
 fied via one of

 <f <f <...< <f <f <...<file
 1 2 1 2
 Both input and output filtering can be specified in the
 same command, though not in the same special argument.

 For example:

 ls >pr>

 produces a listing of the current directory with page
 headings, while

 ls >pr>xx

 puts the paginated listing into the file xx.

 If any of the filters needs arguments, quotes can be used
 to prevent the required blank characters from violating
 the blankless syntax of filters. For example:

 ls >"pr -h 'My directory'">

 uses quotes twice, once to protect the entire pr command,
 once to protect the heading argument of pr. (Quotes are
 discussed fully below.)

 Generation of argument lists

 If any argument contains any of the characters "?", "*"
 or '[', it is treated specially as follows. The current
 directory is searched for files which match the given
 argument.

 The character "*" in an argument matches any string of
 characters in a file name (including the null string).

 The character "?" matches any single character in a file
 name.

 Square brackets "[...]" specify a class of characters
 which matches any single file-name character in the
 class. Within the brackets, each ordinary character is
 taken to be a member of the class. A pair of characters
 separated by "-" places in the class each character lexi-
 cally greater than or equal to the first and less than or
 equal to the second member of the pair.

 Other characters match only the same character in the
 file name.

 For example, "*" matches all file names; "?" matches all
 one-character file names; "[ab]*.s" matches all file
 names beginning with "a" or "b" and ending with ".s";
 "?[zi-m]" matches all two-character file names ending
 with "z" or the letters "i" through "m".

 If the argument with "*" or "?" also contains a "/", a
 slightly different procedure is used: instead of the
 current directory, the directory used is the one obtained
 by taking the argument up to the last "/" before a "*" or
 "?". The matching process matches the remainder of the
 argument after this "/" against the files in the derived
 directory. For example: "/usr/dmr/a*.s" matches all
 files in directory "/usr/dmr" which begin with "a" and
 end with ".s".

 In any event, a list of names is obtained which match the
 argument. This list is sorted into alphabetical order,
 and the resulting sequence of arguments replaces the sin-
 gle argument containing the "*", "[", or "?". The same
 process is carried out for each argument (the resulting
 lists are not merged) and finally the command is called
 with the resulting list of arguments.

 For example: directory /usr/dmr contains the files a1.s,
 a2.s, ..., a9.s. From any directory, the command

 as /usr/dmr/a?.s

 calls as with arguments /usr/dmr/a1.s, /usr/dmr/a2.s, ...
 /usr/dmr/a9.s in that order.

 Quoting

 The character "\" causes the immediately following
 character to lose any special meaning it may have to the

 shell; in this way "<", ">", and other characters mean-
 ingful to the shell may be passed as part of arguments.
 A special case of this feature allows the continuation of
 commands onto more than one line: a new-line preceded by
 "\" is translated into a blank.

 Sequences of characters enclosed in double (") or single
 (') quotes are also taken literally.

 Argument passing

 When the shell is invoked as a command, it has additional
 string processing capabilities. Recall that the form in
 which the shell is invoked is

 sh [name [arg ... [arg]]]
 1 9
 The name is the name of a file which will be read and
 interpreted. If not given, this subinstance of the shell
 will continue to read the standard input file.

 In command lines in the file (not in command input),
 character sequences of the form "$n", where n is a digit
 0, ..., 9, are replaced by the nth argument to the invo-
 cation of the shell (arg). "$0" is replaced by name.
 n
 End of file

 An end-of-file in the shell's input causes it to exit. A
 side effect of this fact means that the way to log out
 from UNIX is to type an end of file.

 Special commands

 Two commands are treated specially by the shell.

 "Chdir" is done without spawning a new process by execut-
 ing the sys chdir primitive.

 "Login" is done by executing /bin/login without creating
 a new process.

 These peculiarities are inexorably imposed upon the shell
 by the basic structure of the UNIX process control sys-
 tem. It is a rewarding exercise to work out why.

 Command file errors; interrupts

 Any shell-detected error, or an interrupt signal, during
 the execution of a command file causes the shell to cease
 execution of that file.

FILES /etc/glob, which interprets "*", "?", and "[".

SEE ALSO "The UNIX Time-sharing System", which gives the
 theory of operation of the shell.

DIAGNOSTICS
 "Input not found", when a command file is specified which

 cannot be read;
 "Arg count", if the number of arguments to the chdir
 pseudo-command is not exactly 1, or if "*", "?", or "["
 is used inappropriately;
 "Bad directory", if the directory given in "chdir" cannot
 be switched to;
 "Try again", if no new process can be created to execute
 the specified command;
 ""' imbalance", if single or double quotes are not
 matched;
 "Input file", if an argument after "<" cannot be read;
 "Output file", if an argument after ">" or ">>" cannot be
 written (or created);
 "Command not found", if the specified command cannot be
 executed.
 "No match", if no arguments are generated for a command
 which contains "*", "?", or "[".
 Termination messages described above.

BUGS If any argument contains a quoted "*", "?", or
 "[", then all instances of these characters must
 be quoted. This is because sh calls the glob
 routine whenever an unquoted "*", "?", or "[" is
 noticed; the fact that other instances of these
 characters occurred quoted is not noticed by
 glob.

 When output is redirected, particularly through a
 filter, diagnostics tend to be sent down the pipe
 and are sometimes lost altogether.

	Manual of the Thompson Shell on Version 3

