
ORNL�TM������

Engineering Physics and Mathematics Division

Mathematical Sciences Section

PVM � USER�S GUIDE

AND REFERENCE MANUAL

Al Geist �

Adam Beguelin �

Jack Dongarra ���

Weicheng Jiang ��

Robert Manchek ��

Vaidy Sunderam ��

pvm�msr�epm�ornl�gov

� Oak Ridge National Laboratory

Oak Ridge� TN ����������
�� University of Tennessee

Knoxville� TN ��������	�
� Carnegie Mellon University and

Pittsburgh Supercomputing Center

Pittsburgh� PA �
�������	
�� Emory University

Atlanta� GA �	���

Date Published� September� ����

Research was supported by the Applied Mathematical Sci�
ences Research Program of the O	ce of Energy Research�
U�S� Department of Energy� the National Science Founda�
tion� and the State of Tennessee�

Prepared by the Oak Ridge National Laboratory
Oak Ridge� Tennessee
��
�

operated by Martin Marietta Energy Systems� Inc�
for the U�S� DEPARTMENT OF ENERGY
under Contract No� DE�AC����OR���

Contents

� Introduction �
� Features in PVM
 �
��� Updated User interface �
��� Integer Task Identi�er �
��
 Process Control �
��� Fault Tolerance �

��� Dynamic Process Groups �

��� Signaling �

��� Communication �

��� Multiprocessor Integration �

 Getting and Installing PVM �

�� Obtaining PVM �

�� Unpacking �

�
 Building �

�� Installing �

� PVM Console �
��� Host File Options �
��� Troubleshooting Startup ��
��
 Compiling PVM Applications ��
��� Running PVM Applications �

� User Interface ��
��� Process Control ��
��� Information ��
��
 Dynamic Con�guration ��
��� Signaling ��
��� Setting and Getting Options ��
��� Message Passing ��

����� Message Bu�ers ��
����� Packing Data ��
����
 Sending and Receiving Data ��
����� Unpacking Data ��

� Dynamic Process Groups ��
� Examples in C and Fortran ��
� Writing Applications �
�
��� General performance considerations �
�
��� Network particular considerations �
�
��
 Load Balancing �
�

� Debugging Methods �
�
� Implementation Details �
��� Task Identi�ers ��

� iii �

��� The PVM Daemon �

����� Pvmd Startup ��
����� Host Table ��
����
 Task Table ��
����� Wait Contexts ��
����� Fault Detection and Recovery ��

��
 The Programming Library ��
��� Communication ��

����� Pvmd�Pvmd Communication ��
����� Pvmd�Task Communication ��
����
 Pvmd�Task Protocol ��
����� Databufs ��
����� Message Fragment Descriptors ��
����� Packet Bu�ers ��
����� Message Bu�ers �

����� Messages in the Pvmd ��
����� Message Encoders ��
�����Packet Handling Functions ��
������Control Messages ��
������Message Direct Routing ��
�����
Multicasting ��

��� Environment Variables ��
��� Standard Input and Output ��
��� Tracing ��
��� Console Internals �
��� Resource Limitations �

����� In the PVM Daemon ��
����� In the Task ��

���Multiprocessor Ports ��
�����Message Passing Architectures ��
�����Shared�Memory Architectures �

����
Functions to Port ��

����Debugging the PVM Source ��
�� Support ��
�� References ��
�
 Appendix A� Reference pages for PVM
 routines � � � � � � � � � � � � � � � � ��

� iv �

PVM � USER�S GUIDE

AND REFERENCE MANUAL

Al Geist
Adam Beguelin
Jack Dongarra
Weicheng Jiang
Robert Manchek
Vaidy Sunderam

pvm�msr�epm�ornl�gov

Abstract

This report is the PVM version ��� users� guide and reference manual� It

contains an overview of PVM� and how version � can be obtained� installed and

used�

PVM stands for Parallel Virtual Machine� It is a software package that allows

a heterogeneous network of parallel and serial computers to appear as a single

concurrent computational resource� PVM consists of two parts� a daemon process

that any user can install on a machine� and a user library that contains routines

for initiating processes on other machines� for communicating between processes�

and changing the con�guration of machines�

New features in this release are pointed out and described in detail� In addition

this report describes the internal workings of version � and gives the user interface

speci�cations� It describes several popular programming paradigms� which PVM

supports� and gives several example programs in C and Fortran��� The report

discusses issues and options regarding load balancing� performance� and fault tol�

erance� Basic steps for debugging PVM programs are presented� and references to

additional PVM monitoring and visualization tools are given�

What is new from last release of this User Guide� Fixed many typos�

added more information about using PVM with the Intel Paragon� improved

the troubleshooting startup section

� v �

�� Introduction

This users� guide to PVM �Parallel Virtual Machine� version
 contains examples and
information needed for the straightforward use of PVM�s basic features� Appendices
contain full documentation of all PVM
�
 options and error conditions as well as a
quick reference�

PVM
 is a software system that permits a network of heterogeneous UNIX comput�
ers to be used as a single large parallel computer� Thus large computational problems
can be solved by using the aggregate power of many computers�

The development of PVM started in the summer of ���� at Oak Ridge National Lab�
oratory �ORNL� and is now an ongoing research project involving Vaidy Sunderam at
Emory University� Al Geist at ORNL� Robert Manchek at the University of Tennessee
�UT�� Adam Beguelin at Carnegie Mellon University and Pittsburgh Supercomputer
Center� Weicheng Jiang at UT� Jim Kohl� Phil Papadopoulos� June Donato� and Honbo
Zhou at ORNL� and Jack Dongarra at ORNL and UT� It is a basic research e�ort aimed
at advancing science� and is wholly funded by research appropriations from the U�S�
Department of Energy� the National Science Foundation� and the State of Tennessee�
Owing to its experimental nature� the PVM project produces� as incidental products�
software that is of utility to researchers in the scienti�c community and to others� This
software is� and has been distributed freely in the interest of advancement of science
and is being used in computational applications around the world�

Under PVM� a user de�ned collection of serial� parallel� and vector computers ap�
pears as one large distributed�memory computer� Throughout this report the term
virtual machine will be used to designate this logical distributed�memory computer�
and host will be used to designate one of the member computers� PVM supplies the
functions to automatically start up tasks on the virtual machine and allows the tasks
to communicate and synchronize with each other� A task is de�ned as a unit of com�
putation in PVM analogous to a UNIX process� It is often a UNIX process� but not
necessarily so� Applications� which can be written in Fortran�� or C� can be parallelized
by using message�passing constructs common to most distributed�memory computers�
By sending and receiving messages� multiple tasks of an application can cooperate to
solve a problem in parallel�

PVM supports heterogeneity at the application� machine� and network level� In
other words� PVM allows application tasks to exploit the architecture best suited to
their solution� PVM handles all data conversion that may be required if two computers
use di�erent integer or �oating point representations� And PVM allows the virtual
machine to be interconnected by a variety of di�erent networks�

The PVM system is composed of two parts� The �rst part is a daemon� called
pvmd� and sometimes abbreviated pvmd� that resides on all the computers making up
the virtual machine� �An example of a daemon program is sendmail which handles all
the incoming and outgoing electronic mail on a UNIX system�� Pvmd
 is designed so
any user with a valid login can install this daemon on a machine� When a user wants
to run a PVM application� he �rst creates a virtual machine by starting up PVM�
The PVM application can then be started from a UNIX prompt on any of the hosts�
Multiple users can con�gure overlapping virtual machines� and each user can execute

� � �

several PVM applications simultaneously�
The second part of the system is a library of PVM interface routines �libpvm��a��

This library contains user callable routines for message passing� spawning processes�
coordinating tasks� and modifying the virtual machine� Application programs must be
linked with this library to use PVM�

�� Features in PVM �

PVM version
 has many improvements over version � ���� The following sections
describe the features that are available in PVM
�

�	�	 Updated User interface

There are name con�icts between PVM ��x routines and some multiprocessor libraries
supplied by computer vendors� For example� the PVM ��� routine barrier�� is also
used �with slightly di�erent functionality� on several multiprocessors� To avoid name
con�icts all the PVM
 user routines begin with pvm in C and with pvmf in Fortran�
We also incorporated new arguments and features into the interface to make it more
�exible to application developers�

Although the user interface has been completely updated� conversion of PVM ���
applications to PVM
 is straightforward� Appendix B contains a table of the mapping
of routine names from PVM ��� to PVM
� For users not wanting to convert their
applications� PVM ����� will remain available from netlib�ornl�gov�

�	�	 Integer Task Identi
er

All processes that enroll in PVM
 are represented by an integer task identi�er� This
is a change from version � of PVM which used a component name and instance
number pair� Throughout this report the task identi�er is represented by tid� The
tid is the primary and most e	cient method of identifying processes in PVM� Since
tids must be unique across the entire virtual machine� they are supplied by the lo�
cal pvmd and are not user chosen� PVM
 contains several routines that return tid
values so that the user application can identify other processes in the system� These
routines are pvm mytid��� pvm spawn��� pvm parent��� pvm bu�nfo��� pvm tasks���
pvm tidtohost��� and pvm gettid���

Although less e	cient� processes can still be identi�ed by a name and instance
number by joining a group� A user de�nes a group name and PVM returns a unique
instance number for this process in this group�

�	�	 Process Control

PVM supplies routines that enable a user process to become a PVM task and to become
a normal process again� There are routines to add and delete hosts from the virtual
machine� routines to start up and terminate PVM tasks� routines to send signals to
other PVM tasks� and routines to �nd out information about the virtual machine
con�guration and active PVM tasks�

�
 �

New capabilities in PVM
�
 include the ability to register special PVM tasks to
handle the jobs of adding new hosts� mapping tasks to hosts� and starting new tasks�
This creates an interface for advanced batch schedulers �examples include Condor �
��
DQS ���� and LSF ���� to plug into PVM and run PVM jobs in batch mode� These
register routines also allow debugger writers to plug into PVM and create sophisticated
debuggers for PVM�

�	�	 Fault Tolerance

If a host fails� PVM will automatically detect this and delete the host from the virtual
machine� The status of hosts can be requested by the application� and if required a
replacement host can be added by the application� It is still the responsibility of the
application developer to make his application tolerant of host failure� PVM makes
no attempt to automatically recover tasks that are killed because of a host failure�
Another use of this feature would be to add more hosts as they become available� for
example on a weekend� or if the application dynamically determines it could use more
computational power�

�	�	 Dynamic Process Groups

Dynamic process groups are implemented on top of PVM
� In this implementation� a
process can belong to multiple groups� and groups can change dynamically at any time
during a computation�

Functions that logically deal with groups of tasks such as broadcast and barrier
use the user�s explicitly de�ned group names as arguments� Routines are provided for
tasks to join and leave a named group� Tasks can also query for information about
other group members�

�		 Signaling

PVM provides two methods of signaling other PVM tasks� One method sends a UNIX
signal to another task� The second method noti�es a task about an event by sending
it a message with a user�speci�ed tag that the application can check for� Several
noti�cation events are available in PVM
 including the exiting of a task� the deletion
�or failure� of a host� and the addition of a host�

�	�	 Communication

PVM provides routines for packing and sending messages between tasks� The model
assumes that any task can send a message to any other PVM task� and that there
is no limit to the size or number of such messages� While all hosts have physical
memory limitations which limits potential bu�er space� the communication model does
not restrict itself to a particular machine�s limitations and assumes su	cient memory
is available� The PVM communication model provides asynchronous blocking send�
asynchronous blocking receive� and non�blocking receive functions� In our terminology�
a blocking send returns as soon as the send bu�er is free for reuse� and an asynchronous

� � �

send does not depend on the receiver calling a matching receive before the send can
return� There are options in PVM
 that request that data be transferred directly
from task to task� In this case� if the message is large� the sender may block until the
receiver has called a matching receive�

A non�blocking receive immediately returns with either the data or a �ag that the
data has not arrived� while a blocking receive returns only when the data is in the
receive bu�er� In addition to these point�to�point communication functions the model
supports multicast to a set of tasks and broadcast to a user de�ned group of tasks�
Wildcards can be speci�ed in the receive for the source and label allowing either or
both of these contexts to be ignored� A routine can be called to return information
about received messages�

The PVMmodel guarantees that message order is preserved� If task � sends message
A to task �� then task � sends message B to task �� message A will arrive at task �
before message B� Moreover� if both messages arrive before task � does a receive� then
a wildcard receive will always return message A�

Message bu�ers are allocated dynamically� So the maximum message size that can
be sent or received is limited only by the amount of available memory on a given host�

�	�	 Multiprocessor Integration

PVM was originally developed to join machines connected by a network into a sin�
gle logical machine� Some of these hosts may themselves be parallel computers with
multiple processors connected by a proprietary network or shared�memory�

With PVM
 the dependence on UNIX sockets and TCP�IP software is relaxed�
For example� programs written in PVM
 can run on a network of SUN�s� on a group
of nodes on an Intel Paragon� on multiple Paragons connected by a network� or a
heterogeneous combination of multiprocessor computers distributed around the world
without having to write any vendor speci�c message�passing code� PVM
 is designed to
use native communication calls within a distributed memory multiprocessor or global
memory within a shared memory multiprocessor� Messages between two nodes of a
multiprocessor go directly between them while messages destined for a machine out
on the network go to the user�s single PVM daemon on the multiprocessor for further
routing�

The Intel iPSC��� and Paragon have been integrated into PVM
 so that Intel�s
NX message�passing routines are used for inter�node communication� Thinking Ma�
chine Corporation�s CM�� has also been integrated using their CMMDmessage�passing
routines� Cray and Convex supply their own optimized versions of PVM
 for their
T
D and Meta machines respectively� Other vendors including DEC� KSR� and IBM
have also decided to supply PVM
 with their respective multiprocessors�

PVM
�
 includes shared memory ports to multiprocessor SPARCs� such as the
SPARC��� and the SGI Challenge series� More multiprocessor machines will be added
to subsequent PVM
 releases�

� � �

�� Getting and Installing PVM

PVM does not require special privileges to be installed� Anyone with a valid login on
the hosts can do so� Only one person at an organization needs to get and install PVM
for everyone at that organization to use it� PVM ARCH is used throughout this report
to represent the architecture name PVM uses for a given computer� Table � lists all
the PVM ARCH names and their corresponding architecture types that are supported
in PVM
�
�

�	�	 Obtaining PVM

There are several ways to obtain the software and documentation� This user�s guide� the
PVM
 source code� man pages� XPVM� and pointers to other PVM related packages
are available on netlib� Netlib is a software distribution service set up on the Internet
There are several ways to get software from netlib� The �rst is with a tool called
xnetlib� Xnetlib is a X�Window interface that allows a user to browse or query netlib
for available software and to automatically transfer the selected software to the user�s
computer� To get xnetlib send email to netlib�ornl�gov with the message send

xnetlib�shar from xnetlib or anonymous ftp from cs�utk�edu pub�xnetlib�
Netlib �les can also be obtained by anonymous ftp to netlib��cs�utk�edu� Look

in directory pvm
� The �le index describes the �les in this directory�
The PVM software can be requested by email� To receive this software send email

to netlib�ornl�gov with the message� send index from pvm�� An automatic mail
handler will return a list of available �les and further instructions by email� The
advantage of this method is that anyone with email access to Internet can obtain the
software�

�	�	 Unpacking

The source �les� which consume about � Mbyte when unpacked� are available in uuen�
coded�compressed tar format� Place the �le in the directory where you want to install
the source� By default PVM assumes it is installed in your �HOME�pvm
 � but it can
be installed in a more centralized area like �usr�local�pvm�� To unpack the source�

� uudecode pvm����	�tar�z�uu

� uncompress pvm����	�tar�Z

� tar xvf pvm����	�tar

�	�	 Building

PVM uses two environment variables when starting and running� Each PVM user needs
to set these two variables to use PVM� The �rst variable is PVM ROOT� which is set
to the location of the installed pvm� directory� The second variable is PVM ARCH�
which tells PVM the architecture of this host and thus what executables to pick from
the PVM ROOT directory�

The easiest method is to set these two variables in your �cshrc �le� Here is an
example for PVM ROOT�

� � �

PVM ARCH Machine Notes

AFX� Alliant FX��
ALPHA DEC Alpha DEC OSF��
BAL Sequent Balance DYNIX
BFLY BBN Butter�y TC�
BSD
�� �
������ Unix box BSDI
CM� Thinking Machines CM� Sun front�end
CM� Thinking Machines CM�
CNVX Convex C�series
CNVXN Convex C�series native mode
CRAY C��� YMP UNICOS
CRAY� Cray��
CRAYSMP Cray S�MP
DGAV Data General Aviion
E��K Encore ��
HP
 HP�� model
 HPUX
HPPA HP�� PA�RISC
I�� Intel iPSC��� link �lrpc
IPSC� Intel iPSC��
�� host SysV
KSR� Kendall Square KSR�� OSF��
LINUX �
������ LINUX box LINUX
MASPAR MASPAR host
MIPS MIPS ���
NEXT NeXT
PGON Intel Paragon link �lrpc
PMAX DECstation
�� �� Ultrix
RS�K IBM�RS� AIX
RT IBM RT
SGI Silicon Graphics IRIX ��x
SGI� Silicon Graphics IRIX ���
SUN
 Sun
 SunOS ���
SUN� Sun �� SPARCstation SunOS ���
SUN�SOL� Sun �� SPARCstation Solaris ���
SYMM Sequent Symmetry
U
� IBM
� AIX
UVAX DEC MicroVAX

Table �� PVM ARCH names used in PVM
�

� � �

setenv PVM
ROOT �home�msr�u��kohl�pvm�

The recommended method to set PVM ARCH is to append the �le PVM ROOT�lib�cshrc�stub

onto your �cshrc �le The stub should be placed after PATH and PVM ROOT are
de�ned� This stub automatically determines the PVM ARCH for this host and is par�
ticularly useful when the user shares a common �le system �such as NFS� across several
di�erent architectures�

The PVM source comes with directories and make�les for most machines you are
likely to have� Building for each architecture type is done automatically by going
into the PVM ROOT directory and typing make� The make�le will automatically
determine which architecture it is being executed on and build pvmd�� libpvm��a�
libfpvm��a� pvmgs and libgpvm��a� It places all these �les in pvm��lib�PVM ARCH

with the exception of pvmgs which is placed in PVM ROOT�bin�PVM ARCH��
To build PVM for the Intel Paragon or iPSC��� the above instructions work if

you are on these machines� Note that a node speci�c version of libpvm��a will also
be built as libpvm�pe�a� The iPSC��� will also create a node speci�c version of
libfpvm��a called libfpvm
pe�a because the host and nodes use di�erent CPUs� If
you are on a SUN or SGI with Intel cross compilers� then you will need to type make
PVM ARCH�PGON or make PVM ARCH�CUBE respectively for the Paragon and iPSC����
See the �le pvm
�Readme�mpp for the latest MPP building instructions on all sup�
ported machines�

�	�	 Installing

PVM looks for user executables in the default location �HOME�pvm��bin�PVM ARCH� If
PVM is installed in a single location like �usr�local for all users� then each user should
still create �HOME�pvm��bin�PVM ARCH to place his own executables� For example� if
a user�s PVM application wants to spawn a task called foo on a SPARCstation called
sunny� then on sunny there should be an executable �le �HOME�pvm��bin�SUN�foo�
This default can be changed to a di�erent search path in the host�le�

�� PVM Console

The PVM console� called pvm� is a stand alone PVM task which allows the user to
interactively start� query and modify the virtual machine� The console may be started
and stopped multiple times on any of the hosts in the virtual machine without a�ecting
PVM or any applications that may be running�

When started� pvm determines if PVM is already running and if not automatically
executes pvmd on this host� passing pvmd the command line options and host�le� Thus
PVM need not be running to start the console�

pvm ��d�debugmask�� �hostfile�

pvm �n�hostname�

Debugmask is a hex number corresponding to the debug bits from pvmd�c See the
�Implementation� section for more details on the debugmask�

� � �

The �n option is useful for specifying an alternate name for the master pvmd ��in
case hostname doesn�t match the IP address you want�� This is useful if a host has a
multiple networks connected to it such as FDDI or ATM� and you want PVM to use a
particular network�

Once started the console prints the prompt�

pvm�

and accepts commands from standard input� If you get the message �Can�t Start
pvmd�� then check the Troubleshooting Startup section and try again�

The available console commands are�

add followed by one or more host names will add these hosts to the virtual machine�

alias de�ne or list command aliases�

conf lists the con�guration of the virtual machine including hostname� pvmd task ID�
architecture type� and a relative speed rating�

delete followed by one or more host names deletes these hosts� PVM processes still
running on these hosts are lost�

echo echo arguments�

halt kills all PVM processes including console and then shuts down PVM� All daemons
exit�

help which can be used to get information about any of the interactive commands�
Help may be followed by a command name which will list options and �ags
available for this command�

id print console task id�

jobs list running jobs�

kill can be used to terminate any PVM process�

mstat show status of speci�ed hosts�

ps �a lists all processes currently on the virtual machine� their locations� their task
IDs� and their parents� task IDs�

pstat show status of a single PVM process�

quit exit console leaving daemons and PVM jobs running�

reset kills all PVM processes except consoles and resets all the internal PVM tables
and message queues� The daemons are left in an idle state�

setenv display or set environment variables�

sig followed by a signal number and tid� sends the signal to the task�

� � �

spawn start a PVM application� Options include�

�count number of tasks� default is ��

��host� spawn on host� default is any�

��PVM ARCH� spawn of hosts of type PVM ARCH�

�� enable debugging�

�� redirect task output to console�

��
le redirect task output to �le�

���
le redirect task output append to �le�

unalias unde�ne command alias�

version print version of libpvm being used�

The console reads �HOME��pvmrc before reading commands from the tty� so you can
do things like�

alias � help

alias h help

alias j jobs

setenv PVM
EXPORT DISPLAY

� print my id

echo new pvm shell

id

The two most popular methods of running PVM
 are to start pvm then add hosts
manually �pvm also accepts an optional host�le argument� or to start pvmd� with a
host�le then start pvm if desired�

To shut down PVM type halt at a PVM console prompt�

�	�	 Host File Options

The host�le de�nes the initial con�guration of hosts that PVM combines into a virtual
machine� It also contains information about hosts that the user may wish to add to
the con�guration later�

Only one person at a site needs to install PVM� but each PVM user should have
their own host�le� which describes their own personal virtual machine�

The host�le in its simplest form is just a list of hostnames one to a line� Blank lines
are ignored� and lines that begin with a � are comment lines� This allows the user to
document his host�le and also provides a handy way to modify the initial con�guration
by commenting out various hostnames �see Figure ���

Several options can be speci�ed on each line after the hostname� The options are
separated by white space�

lo� userid allows the user to specify an alternate login name for this host� otherwise�
his login name on the start�up machine is used�

� � �

� configuration used for my run

sparky

azure�epm�ornl�gov

thud�cs�utk�edu

sun

Figure �� Simple host�le lists virtual machine con�guration�

so�pw will cause PVM to prompt the user for a password on this host� This is useful
in the cases where the user has a di�erent userid and password on a remote
system� PVM uses rsh by default to start up remote pvmd�s� but when pw is
speci�ed PVM will use rexec�� instead�

dx� location of pvmd This allows the user to specify a location other than the
default for this host� This is useful if someone wants to use his own personal copy
of pvmd�

ep� paths to user executables This allows the user to specify a series of paths to
search down to �nd the requested �les to spawn on this host� Multiple paths are
separated by a colon� If ep� is not speci�ed� then PVM looks for the application
tasks in �HOME�pvm��bin�PVM ARCH�

sp� value Speci�es the relative computational speed of the host compared to other
hosts in the con�guration� The range of possible values is � to � with �
as the default�

bx� location of debugger Speci�es which debugger script to invoke on this host
if debugging is requested in the spawn routine� Note� the environment variable
PVM DEBUGGER can also be set� The default debugger is pvm��lib�debugger�

wd� working directory Speci�es a working directory in which all spawned tasks on
this host will execute� The default is �HOME�

so�ms Speci�es that user will manually start a slave pvmd on this host� Useful if rsh
and rexec network services are disabled but IP connectivity exists� When using
this option you will see in the tty of the pvmd
�

�t�						� ready Fri Aug �� ������ ����

��� Manual startup ���

Login to �honk� and type�

pvm��lib�pvmd �S �d	 �nhonk � �	a�ca���	cb� 	�� � �	a��c��				

Type response�

on honk after typing the given line� you should see�

ddpro������ arch�ALPHA� ip��	a��c��	a�e� mtu�	���

which you should relay back to the master pvmd� At that point� you will see�

� �� �

Thanks

and the two pvmds should be able to communicate�

If the user wants to set any of the above options as defaults for a series of hosts�
then the user can place these options on a single line with a � for the hostname �eld�
The defaults will be in e�ect for all the following hosts until they are overridden by
another set�defaults line�

Hosts that the user doesn�t want in the initial con�guration but may add later can
be speci�ed in the host�le by beginning those lines with an � An example host�le
displaying most of these options is shown in Figure ��

� Comment lines start with � �blank lines ignored�

gstws

ipsc dx��usr�geist�pvm��lib�I��	�pvmd�

ibm��scri�fsu�edu lo�gst so�pw

� set default options for following hosts with �

� ep��sun�problem����nla�mathlib

sparky

�azure�epm�ornl�gov

midnight�epm�ornl�gov

� replace default options with new values

� lo�gageist so�pw ep�problem�

thud�cs�utk�edu

speedy�cs�utk�edu

� machines for adding later are specified with �

� these only need listing if options are required

�sun ep�problem�

�castor dx��usr�local�bin�pvmd�

�dasher�cs�utk�edu lo�gageist

�elvis dx���pvm��lib�SUN�pvmd�

Figure �� PVM host�le illustrating all options�

�	�	 Troubleshooting Startup

If PVM has a problem starting up� it will print an error message either to the screen
or in the log �le �tmp�pvml��uid�� This section should help in interpreting the error
message and explain how to solve the problem�

If the message says

�t�						� Can t start pvmd

� �� �

First check that your �rhosts �le on the remote host contains the name of the host
from which you are starting PVM� An external check that your �rhosts �le is set
correctly is to type�

� rsh remote
host ls

Other reasons to get this message include not having PVM installed on a host or not
having PVM ROOT set correctly on some host� You can check this by typing�

� rsh remote
host printenv

Some Unix shells� for example ksh� do not set environment variables on remote hosts
when using rsh� In PVM
�
 there are two work arounds for such shells� First� if you set
the environment variable� PVM DPATH� on the master host to pvm��lib�pvmd� then
this will override the default dx path� The second method is to tell PVM explicitly
were to �nd the remote pvmd executable by using the dx� option in the host�le�

If PVM is manually killed� or stopped abnormally� �an example is system crash� then
check for the existence of the �le �tmp�pvmd��uid�� This �le is used for authentication
and should exist only while PVM is running� If this �le is left behind� it prevents PVM
from starting� Simply delete this �le�

If the message says

�t�						� Login incorrect

then it probably means that there is not an account on the remote machine with your
login name� If your login name is di�erent on the remote machine� the �x is to use the
lo� option in the host�le�

If you get any other strange messages� then check your �cshrc �le� It is important
that the user not have any I�O in his �cshrc �le because this will interfere with the
start up of PVM� If you want to print out stu� when you log in� such as who or uptime�
you should either do it in your �login script or put the commands in an �if� statement
to ensure that stu� only gets printed when you are logging in interactively� not when
you�re running a csh command script� Here is an example of how this can be done�

if � ! tty �s " �� ��prompt � then

echo terminal type is �TERM

stty erase #� kill #u intr #c echo

endif

�	�	 Compiling PVM Applications

A C program that makes PVM calls needs to be linked with libpvm��a� If the pro�
gram also makes use of dynamic groups� then it should be linked to libgpvm
�a before
libpvm��a� A Fortran program using PVM needs to be linked with libfpvm
�a and
libpvm��a� And if it uses dynamic groups then it needs to be linked to libfpvm
�a�
libgpvm
�a� and libpvm��a in that order�

PVM programs that are being compiled to run on the nodes of an Intel i�� should
be linked to libpvm�pe�a and libfpvm�pe�a instead of libpvm��a and libfpvm
�a�

� �
 �

On the Intel Paragon� PVM programs can run on either the service or compute nodes�
Programs that are being compiled to run on the compute nodes should be linked to
libpvm
pe�a� while programs designed to run on service nodes should be linked to
libpvm
�a� Master�slave applications� where the master runs on a service node and
the slaves run on compute nodes� would thus require di�erent library speci�cations
in a Make�le� FORTRAN programs should link to libfpvm
�a �rst and then either
libpvm
pe�a or libpvm
�a� All PVM applications on the Paragon also require linking
with NXLIB and the Remote Procedure Call �rpc� libraries� as PVM requires them�
Applications compiled with either GNU C �gcc� or C!! also require the Mach libraries�

The following table summarizes which libraries must be linked on the Paragon�

Application Application written in�

Runs on� C FORTRAN

���

Service libpvm��a libfpvm��a

Partition �lrpc libpvm��a

�lnx �lrpc

�lmach ��� �lnx

���

Compute libpvm�pe�a libfpvm��a

Partition �lrpc libpvm�pe�a

�lnx �lrpc

�lmach ��� �lnx

���

��� must also be included for GNU C or C$$

The order of the libraries �from top to bottom for a given case� is important� The
example make�le for the Paragon in the PVM ROOT�examples�PGON directory pro�
vides a working example of the proper library links� A program compiled for the service
partition will not run in the compute partition� and vice versa� in both instances the
application will either hang or fail to perform message passing properly�

For all machines� example programs and make�le are supplied with the PVM source
code in the directory pvm��examples� A Readme �le in this directory describes how to
build and run the examples� The make�le demonstrates how C and Fortran applica�
tions should be linked with the PVM libraries� The make�le also contains information
in its header about additional libraries required on some architectures� An �archi�
tecture independent� make program is supplied with PVM� This script is located in
pvm
�lib�aimk and automatically detects what kind of architecture it is running on
and adds the correct additional libraries� To build any of the examples you can type�

� aimk example
name

�	�	 Running PVM Applications

Once PVM is running� an application using PVM routines can be started from a UNIX
command prompt on any of the hosts in the virtual machine� An application need not

� �� �

be started on the same machine the user happens to start PVM�
Stdout and stderr appear on the screen for all manually started PVM tasks� The

standard error from spawned tasks is written to the log �le �tmp�pvml��uid� on the
host where PVM was started� The easiest way to see standard output from spawned
PVM tasks is to use the redirection available in the pvm console� If standard output
is not redirected at the pvm console� then this output also goes to the log �le�

Users sometimes want to run their programs with a nice value that is at a lower
priority so the programs impinge less on workstation owners� There are a couple of
ways to accomplish this� The �rst method� which works with both Fortran and C
applications� is to replace your program with a shell script that starts your program�
Here is an example two line script�

�%�bin�sh

exec nice ��	 your
program ��

Then when you spawn the shell script it will exec your program at a nice level� The
second method is to call the UNIX function setpriority�� in your program�

A whole series of applications may be run on the existing PVM con�guration� It is
not necessary to start a new PVM for each application� although it may be necessary
to reset PVM if an application crashes�

It is also possible to compile PVM with �DOVERLOADHOST de�ned� This allows
a user to create overlapping virtual machines� The next sections will describe how to
write PVM application programs�

�� User Interface

An alphabetical listing of all the routines is given in Appendix A� Appendix A contains
a detailed description of each routine� including a description of each argument in each
routine and the possible error codes a routine may return and the possible reasons for
the error� Each listing includes examples of both C and Fortran use�

A concise summary of the PVM
�
 routines can be found on the PVM quick
reference guide�

In this section we give a brief description of the routines in the PVM
�
 user
library� This section is organized by the functions of the routines� For example� in
the subsection on Dynamic Con�guration is a discussion of the purpose of dynamic
con�guration� how a user might take advantage of this functionality� and the C and
Fortran PVM routines that pertain to this function�

In PVM
 all PVM tasks are identi�ed by an integer supplied by the local pvmd�
In the following descriptions this identi�er is called tid� It is similar to the process ID
�PID� used in the UNIX system except the tid has encoded in it the location of the
process in the virtual machine� This encoding allows for more e	cient communication
routing� and allows for more e	cient integration into multiprocessors�

All the PVM routines are written in C� C!! applications can link to the PVM
library� Fortran applications can call these routines through a Fortran �� interface
supplied with the PVM
 source� This interface translates arguments� which are passed
by reference in Fortran� to their values if needed by the underlying C routines� The in�

� �� �

terface also takes into account Fortran character string representations and the various
naming conventions that di�erent Fortran compilers use to call C functions�

�	�	 Process Control

int tid � pvm mytid� void �

call pvmfmytid� tid �

The routine pvm mytid�� enrolls this process into PVM on its �rst call and generates
a unique tid if the process was not started with pvm spawn��� It returns the tid of this
process and can be called multiple times� Any PVM system call �not just pvm mytid�
will enroll a task in PVM if the task is not enrolled before the call�
int info � pvm exit� void �

call pvmfexit� info �

The routine pvm exit�� tells the local pvmd that this process is leaving PVM� This
routine does not kill the process� which can continue to perform tasks just like any
other UNIX process�
int numt � pvm spawn� char �task& char ��argv& int flag& char �where&

int ntask& int �tids �

call pvmfspawn� task& flag& where& ntask& tids& numt �

The routine pvm spawn�� starts up ntask copies of an executable �le task on the
virtual machine� argv is a pointer to an array of arguments to task with the end of
the array speci�ed by NULL� If task takes no arguments then argv is NULL� The flag
argument is used to specify options� and is a sum of

PvmTaskDefault � PVM chooses where to spawn processes�

PvmTaskHost � the where argument speci�es a particular host to spawn on�

PvmTaskArch � the where argument speci�es a PVM ARCH to spawn on�

PvmTaskDebug � starts these processes up under debugger�

PvmTaskTrace � the PVM calls in these processes will generate trace data�

PvmMppFront � starts process up on MPP front�end�service node�

PvmHostCompl � starts process up on complement host set�

PvmTaskTrace is a new feature in PVM
�
� To display the events� a graph�
ical interface� called XPVM has been created� XPVM combines the features of the
PVM console� the Xab debugging package� and ParaGraph to display real�time or post
mortem executions� XPVM is available on netlib�

On return numt is set to the number of tasks successfully spawned or an error code
if no tasks could be started� If tasks were started� then pvm spawn�� returns a vector
of the spawned tasks� tids and if some tasks could not be started the corresponding
error codes are placed in the last �ntask � numt� positions of the vector�

pvm spawn�� can also start tasks on multiprocessors� In the case of the Intel
iPSC��� the following restrictions apply� Each spawn call gets a subcube of size

� �� �

ntask and loads the program task on all of these nodes� The iPSC��� OS has an
allocation limit of � subcubes across all users� so it is better to start a block of tasks
on an iPSC��� with a single pvm spawn�� call rather than several calls� Two di�erent
blocks of tasks spawned separately on the iPSC��� can still communicate with each
other as well as any other PVM tasks even though they are in separate subcubes� The
iPSC��� OS has a restriction that messages going from the nodes to the outside world
be less than ��� Kbytes�
int info � pvm kill� int tid �

call pvmfkill� tid& info �

The routine pvm kill�� kills some other PVM task identi�ed by tid� This routine is
not designed to kill the calling task� which should be accomplished by calling pvm exit��
followed by exit���

�	�	 Information

int tid � pvm parent� void �

call pvmfparent� tid �

The routine pvm parent�� returns the tid of the process that spawned this task or
the value of PvmNoParent if not created by pvm spawn���

int pstat � pvm pstat� int tid �

call pvmfpstat� tid& pstat �

The routine pvm pstat�� returns the status of a PVM task identi�ed by tid� It
returns PvmOk if the task is running� PvmNoTask if not� or PvmBadParam if tid is
invalid�
int mstat � pvm mstat� char �host �

call pvmfmstat� host& mstat �

The routine pvm mstat�� returns PvmOk if host is running� PvmHostFail if un�
reachable� or PvmNoHost if host is not in the virtual machine� This information can
be useful when implementing application level fault tolerance�
int info � pvm config� int �nhost& int �narch&

struct pvmhostinfo ��hostp �

call pvmfconfig� nhost& narch& dtid& name& arch& speed& info �

The routine pvm con�g�� returns information about the virtual machine including
the number of hosts� nhost� and the number of di�erent data formats� narch� hostp
is a pointer to an array of pvmhostinfo structures� The array is of size nhost� Each
pvmhostinfo structure contains the pvmd tid� host name� name of the architecture� and
relative cpu speed for that host in the con�guration� PVM does not use or determine the
speed value� The user can set this value in the host�le and retrieve it with pvm con�g��
to use in an application� The Fortran function returns information about one host per
call and cycles through all the hosts� Thus� if pvmfcon�g is called nhost times� the
entire virtual machine will be represented� The Fortran function does not reset itself
until the end of a cycle� If the virtual machine is changing rapidly� pvmfcon�g will
not report the change until it is reset� The user can manually reset pvmfcon�g in the

� �� �

middle of a cycle by calling pvmfcon�g with nhost � ���
int info � pvm tasks� int which& int �ntask&

struct pvmtaskinfo ��taskp �

call pvmftasks� which& ntask& tid& ptid& dtid& flag& aout& info �

The routine pvm tasks�� returns information about the PVM tasks running on the
virtual machine� The integer which speci�es which tasks to return information about�
The present options are ��� which means all tasks� a pvmd tid� which means tasks
running on that host� or a tid� which means just the given task�

The number of tasks is returned in ntask� taskp is a pointer to an array of
pvmtaskinfo structures� The array is of size ntask� Each taskinfo structure con�
tains the tid� pvmd tid� parent tid� a status �ag� and the spawned �le name� �PVM
doesn�t know the �le name of manually started tasks�� The Fortran function returns
information about one task per call and cycles through all the tasks� Thus� if where
" � and pvmftasks is called ntask times� all tasks will be represented� The Fortran
function does not reset itself until the end of a cycle� If the number of tasks is changing
rapidly� pvmftasks will not report the change until it is reset� The user can manually
reset pvmftasks in the middle of a cycle by calling pvmftasks with ntask � ���
int dtid � pvm tidtohost� int tid �

call pvmftidtohost� tid& dtid �

If all a user needs to know is what host a task is running on� then pvm tidtohost��
can return this information�

�	�	 Dynamic Con
guration

int info � pvm
addhosts� char ��hosts& int nhost& int �infos�

int info � pvm
delhosts� char ��hosts& int nhost& int �infos�

call pvmfaddhost� host& info �

call pvmfdelhost� host& info �

The C routines add or delete a set of hosts in the virtual machine� The Fortran
routines add or delete a single host in the virtual machine� In the Fortran routine
info is returned as � or a status code� In the C version info is returned as the number
of hosts successfully added� The argument infos is an array of length nhost that
contains the status code for each individual host being added or deleted� This allows
the user to check if only one of a set of hosts caused a problem rather than trying to
add or delete the entire set of hosts again�

�	�	 Signaling

int info � pvm sendsig� int tid& int signum �

call pvmfsendsig� tid& signum& info �

pvm sendsig�� sends a signal signum to another PVM task identi�ed by tid�

int info � pvm notify� int what& int msgtag& int cnt& int tids �

call pvmfnotify� what& msgtag& cnt& tids& info �

� �� �

The routine pvm notify requests PVM to notify the caller on detecting certain
events� The present options are�

PvmTaskExit � notify if a task exits�

PvmHostDelete � notify if a host is deleted �or fails��

PvmHostAdd � notify if a host is added�

In response to a notify request� some number of messages �see Appendix A� are sent
by PVM back to the calling task� The messages are tagged with the code �msgtag�
supplied to notify� The tids array speci�es who to monitor when using TaskExit or
HostDelete� The array contains nothing when using HostAdd� Outstanding noti�es
are consumed by each noti�cation� For example� a HostAdd noti�cation will need to
be followed by another call to pvm notify�� if this task is to be noti�ed of further hosts
being added� If required� the routines pvm con�g and pvm tasks can be used to obtain
task and pvmd tids�

If the host on which task A is running fails� and task B has asked to be noti�ed if
task A exits� then task B will be noti�ed even though the exit was caused indirectly�

�	�	 Setting and Getting Options

int oldval � pvm
setopt� int what& int val �

int val � pvm
getopt� int what �

call pvmfsetopt� what& val& oldval �

call pvmfgetopt� what& val �

The routines pvm setopt and pvm getopt are a general purpose function to allow
the user to set or get options in the PVM system� In PVM
 pvm setopt can be used to
set several options including� automatic error message printing� debugging level� and
communication routing method for all subsequent PVM calls� pvm setopt returns the
previous value of set in oldval� The PVM
�
 what can take have the following values�

Option value MEANING

PvmRoute � routing policy
PvmDebugMask � debugmask
PvmAutoErr
 auto error reporting
PvmOutputTid � stdout device for children
PvmOutputCode � output msgtag
PvmTraceTid � trace device for children
PvmTraceCode � trace msgtag
PvmFragSize � message fragment size
PvmResvTids � allow messages to be sent to reserved tags and tids

See Appendix A for allowable values for these options� Future expansions to this list
are planned�

pvm setopt�� can set several communication options inside of PVM such as routing
method or fragment sizes to use� It can be called multiple times during an application
to selectively set up direct task�to�task communication links� but typical use is to call
it once after the initial call to pvm mytid��� For example�

� �� �

CALL PVMFSETOPT� PvmRoute& PvmRouteDirect �

The advantage of direct links is the observed factor of two boost in communication
performance� The drawback is the small number of direct links allowed by some UNIX
systems� which makes their use unscalable�

When large messages are being sent over FDDI or HiPPI networks� communication
performance can sometimes be improved by setting a large fragment size such as ��K�

�		 Message Passing

Sending a message is composed of three steps in PVM� First� a send bu�er must be
initialized by a call to pvm initsend�� or pvm mkbuf��� Second� the message must be
�packed� into this bu�er using any number and combination of pvm pk��� routines�
�In Fortran all message packing is done with the pvmfpack�� subroutine�� Third� the
completed message is sent to another process by calling the pvm send�� routine or
multicast with the pvm mcast�� routine� In addition there are collective communica�
tion functions that operate over an entire group of tasks� for example� broadcast and
scatter�gather�

PVM also supplies the routine� pvm psend��� which combines the three steps into
a single call� This allows for the possibility of faster internal implementations� par�
ticularly by MPP vendors� pvm psend�� only packs and sends a contiguous array of
a single data type� pvm psend�� uses its own send bu�er and thus doesn�t a�ect a
partially packed bu�er to be used by pvm send���

A message is received by calling either a blocking or non�blocking receive routine
and then �unpacking� each of the packed items from the receive bu�er� The receive
routines can be set to accept ANY message� or any message from a speci�ed source� or
any message with a speci�ed message tag� or only messages with a given message tag
from a given source� There is also a probe function that returns whether a message
has arrived� but does not actually receive it�

PVM also supplies the routine� pvm precv��� which combines a blocking receive and
unpack call� Like pvm psend��� pvm precv�� is restricted to a contiguous array of a sin�
gle data type� Between tasks running on an MPP such as the Paragon or T
D the user
should receive a pvm psend�� with a pvm precv��� This restriction was done because
much faster MPP implementations are possible when pvm psend�� and pvm precv��
are matched� The restriction is only required within a MPP� When communication is
between hosts� pvm precv�� can receive messages sent with pvm psend��� pvm send���
pvm mcast��� or pvm bcast��� Conversely� pvm psend�� can be received by any of the
PVM receive routines�

If required� more general receive contexts can be handled by PVM
� The routine
pvm recvf�� allows users to de�ne their own receive contexts that will be used by the
subsequent PVM receive routines�

�		�	 Message Bu�ers

The following message bu�er routines are required only if the user wishes to manage
multiple message bu�ers inside an application� Multiple message bu�ers are not re�

� � �

quired for most message passing between processes� In PVM
 there is one active send
bu�er and one active receive bu�er per process at any given moment� The developer
may create any number of message bu�ers and switch between them for the packing
and sending of data� The packing� sending� receiving� and unpacking routines only
a�ect the active bu�ers�
int bufid � pvm mkbuf� int encoding �

call pvmfmkbuf� encoding& bufid �

The routine pvm mkbuf creates a new empty send bu�er and speci�es the encoding
method used for packing messages� It returns a bu�er identi�er bufid�

The encoding options are�

PvmDataDefault � XDR encoding is used by default because PVM can not know
if the user is going to add a heterogeneous machine before this message is sent�
If the user knows that the next message will only be sent to a machine that
understands the native format� then he can use PvmDataRaw encoding and save
on encoding costs�

PvmDataRaw � no encoding is done� Messages are sent in their original format� If
the receiving process can not read this format� then it will return an error during
unpacking�

PvmDataInPlace � data left in place� Bu�er only contains sizes and pointers to the
items to be sent� When pvm send�� is called the items are copied directly out
of the user�s memory� This option decreases the number of times the message
is copied at the expense of requiring the user to not modify the items between
the time they are packed and the time they are sent� Another use of this option
would be to call pack once and modify and send certain items �arrays� multiple
times during an application� An example would be passing of boundary regions
in a discretized PDE implementation�

int bufid � pvm initsend� int encoding �

call pvmfinitsend� encoding& bufid �

The routine pvm initsend clears the send bu�er and creates a new one for packing a
new message� The encoding scheme used for this packing is set by encoding� The new
bu�er identi�er is returned in bufid� If the user is only using a single send bu�er then
pvm initsend�� must be called before packing a new message into the bu�er� otherwise
the existing message will be appended�
int info � pvm freebuf� int bufid �

call pvmffreebuf� bufid& info �

The routine pvm freebuf�� disposes of the bu�er with identi�er bufid� This should
be done after a message has been sent and is no longer needed� Call pvm mkbuf�� to
create a bu�er for a new message if required� Neither of these calls is required when
using pvm initsend��� which performs these functions for the user�

int bufid � pvm getsbuf� void �

call pvmfgetsbuf� bufid �

� �� �

pvm getsbuf�� returns the active send bu�er identi�er�

int bufid � pvm getrbuf� void �

call pvmfgetrbuf� bufid �

pvm getrbuf�� returns the active receive bu�er identi�er�

int oldbuf � pvm setsbuf� int bufid �

call pvmfsetsbuf� bufid& oldbuf �

This routine sets the active send bu�er to bufid� saves the state of the previous
bu�er� and returns the previous active bu�er identi�er oldbuf�
int oldbuf � pvm setrbuf� int bufid �

call pvmfsetrbuf� bufid& oldbuf �

This routine sets the active receive bu�er to bufid� saves the state of the previous
bu�er� and returns the previous active bu�er identi�er oldbuf�

If bufid is set to in pvm setsbuf�� or pvm setrbuf�� then the present bu�er is
saved and there is no active bu�er� This feature can be used to save the present state
of an application�s messages so that a math library or graphical interface which also
use PVM messages will not interfere with the state of the application�s bu�ers� After
they complete� the application�s bu�ers can be reset to active�

It is possible to forward messages without repacking them by using the message
bu�er routines� This is illustrated by the following fragment�

bufid � pvm
recv� src& tag �'

oldid � pvm
setsbuf� bufid �'

info � pvm
send� dst& tag �'

info � pvm
freebuf� oldid �'

�		�	 Packing Data

Each of the following C routines packs an array of the given data type into the active
send bu�er� They can be called multiple times to pack a single message� Thus a
message can contain several arrays each with a di�erent data type� There is no limit to
the complexity of the packed messages� but an application should unpack the messages
exactly like they were packed� C structures must be passed by packing their individual
elements�

The arguments for each of the routines are a pointer to the �rst item to be packed�
nitem which is the total number of items to pack from this array� and stride which
is the stride to use when packing� An exception is pvm pkstr�� which by de�nition
packs a NULL terminated character string and thus does not need nitem or stride
arguments�

� �� �

int info � pvm
pkbyte� char �cp& int nitem& int stride �

int info � pvm
pkcplx� float �xp& int nitem& int stride �

int info � pvm
pkdcplx� double �zp& int nitem& int stride �

int info � pvm
pkdouble� double �dp& int nitem& int stride �

int info � pvm
pkfloat� float �fp& int nitem& int stride �

int info � pvm
pkint� int �np& int nitem& int stride �

int info � pvm
pklong� long �np& int nitem& int stride �

int info � pvm
pkshort� short �np& int nitem& int stride �

int info � pvm
pkuint� unsigned int �np& int nitem& int stride �

int info � pvm
pkushort�unsigned short �np& int nitem& int stride �

int info � pvm
pkulong� unsigned long �np& int nitem& int stride �

int info � pvm
pkstr� char �cp �

int info � pvm
packf� const char �fmt& ��� �

PVM also supplies a packing routine pvm packf�� that uses a printf�like format
expression to specify what and how to pack data into the send bu�er� All variables are
passed as addresses if count and stride are speci�ed� otherwise� variables are assumed
to be values� A description of the format syntax is given in Appendix A�

A single Fortran subroutine handles all the packing functions of the above C rou�
tines�
call pvmfpack� what& xp& nitem& stride& info �

The argument xp is the �rst item of the array to be packed� Note that in Fortran
the number of characters in a string to be packed must be speci�ed in nitem� The
integer what speci�es the type of data to be packed� The supported options are�

STRING REAL �
BYTE� � COMPLEX� �
INTEGER� � REAL� �
INTEGER
 COMPLEX�� �

These names have been prede�ned in parameter statements in the include �le
pvm��include�fpvm��h� Some vendors may extend this list to include �� bit architec�
tures in their PVM implementations� We will be adding INTEGER�� REAL��� etc� as
soon as XDR support for these data types is available�

�		�	 Sending and Receiving Data

int info � pvm send� int tid& int msgtag �

call pvmfsend� tid& msgtag& info �

The routine pvm send�� labels the message with an integer identi�er msgtag and
sends it immediately to the process tid�
int info � pvm mcast� int �tids& int ntask& int msgtag �

call pvmfmcast� ntask& tids& msgtag& info �

The routine pvm mcast�� labels the message with an integer identi�er msgtag and
broadcasts the message to all tasks speci�ed in the integer array tids �except itself��
The tids array is of length ntask�

� �
 �

int info � pvm psend� int tid& int msgtag& void �vp& int cnt& int type �

call pvmfpsend� tid& msgtag& xp& cnt& type& info �

The routine pvm psend�� packs and sends an array of the speci�ed datatype to
the task identi�ed by tid� The de�ned datatypes for Fortran are the same as for
pvmfpack��� In C the type argument can be any of the following�

PVM
STR PVM
FLOAT

PVM
BYTE PVM
CPLX

PVM
SHORT PVM
DOUBLE

PVM
INT PVM
DCPLX

PVM
LONG PVM
DCPLX

PVM
USHORT PVM
UINT

PVM
ULONG

These names are de�ned in pvm��include�pvm��h�
int bufid � pvm recv� int tid& int msgtag �

call pvmfrecv� tid& msgtag& bufid �

This blocking receive routine will wait until a message with label msgtag has arrived
from tid� A value of �� in msgtag or tid matches anything �wildcard�� It then places
the message in a new active receive bu�er that is created� The previous active receive
bu�er is cleared unless it has been saved with a pvm setrbuf�� call�

int bufid � pvm nrecv� int tid& int msgtag �

call pvmfnrecv� tid& msgtag& bufid �

If the requested message has not arrived� then the non�blocking receive pvm nrecv��
returns bufid " � This routine can be called multiple times for the same message
to check if it has arrived while performing useful work between calls� When no more
useful work can be performed the blocking receive pvm recv�� can be called for the
same message� If a message with label msgtag has arrived from tid� pvm nrecv��
places this message in a new active receive bu�er which it creates and returns the ID of
this bu�er� The previous active receive bu�er is cleared unless it has been saved with
a pvm setrbuf�� call� A value of �� in msgtag or tid matches anything �wildcard��

int bufid � pvm probe� int tid& int msgtag �

call pvmfprobe� tid& msgtag& bufid �

If the requested message has not arrived� then pvm probe�� returns bufid " �
Otherwise� it returns a bu�d for the message� but does not �receive� it� This routine
can be called multiple times for the same message to check if it has arrived while
performing useful work between calls� In addition pvm bu�nfo�� can be called with the
returned bu�d to determine information about the message before receiving it�
int info � pvm bufinfo� int bufid& int �bytes& int �msgtag& int �tid �

call pvmfbufinfo� bufid& bytes& msgtag& tid& info �

int bufid � pvm trecv� int tid& int msgtag& struct timeval �tmout �

call pvmftrecv� tid& msgtag& sec& usec& bufid �

PVM also supplies a timeout version of receive� Consider the case where a message
is never going to arrive �due to error or failure�� The routine pvm recv would block

� �� �

forever� There are times when the user wants to give up after waiting for a �xed amount
of time� The routine pvm trecv�� allows the user to specify a timeout period� If the
timeout period is set very large then pvm trecv acts like pvm recv� If the timeout
period is set to zero then pvm trecv acts like pvm nrecv� Thus� pvm trecv �lls the gap
between the blocking and nonblocking receive functions�

The routine pvm bu�nfo�� returns msgtag� source tid� and length in bytes of the
message identi�ed by bufid� It can be used to determine the label and source of a
message that was received with wildcards speci�ed�
int info � pvm precv� int tid& int msgtag& void �vp& int cnt&

int type& int �rtid& int �rtag& int �rcnt �

call pvmfprecv� tid& msgtag& xp& cnt& type& rtid& rtag& rcnt& info �

The routine pvm precv�� combines the functions of a blocking receive and unpacking
the received bu�er� It does not return a bufid� Instead� it returns the actual values of
tid� msgtag� and cnt in rtid& rtag& rcnt respectively�
int ��old��� � pvm recvf�int ��new��int buf& int tid& int tag��

The routine pvm recvf�� modi�es the receive context used by the receive functions
and can be used to extend PVM� The default receive context is to match on source
and message tag� This can be modi�ed to any user de�ned comparison function� �See
Appendix A for an example of creating a probe function with pvm recf���� There is no
Fortran interface routine for pvm recvf���

�		�	 Unpacking Data

The following C routines unpack �multiple� data types from the active receive bu�er�
In an application they should match their corresponding pack routines in type� number
of items� and stride� nitem is the number of items of the given type to unpack� and
stride is the stride�

int info � pvm
upkbyte� char �cp& int nitem& int stride �

int info � pvm
upkcplx� float �xp& int nitem& int stride �

int info � pvm
upkdcplx� double �zp& int nitem& int stride �

int info � pvm
upkdouble� double �dp& int nitem& int stride �

int info � pvm
upkfloat� float �fp& int nitem& int stride �

int info � pvm
upkint� int �np& int nitem& int stride �

int info � pvm
upklong� long �np& int nitem& int stride �

int info � pvm
upkshort� short �np& int nitem& int stride �

int info � pvm
upkuint� unsigned int �np& int nitem& int stride �

int info � pvm
upkushort�unsigned short �np& int nitem& int stride �

int info � pvm
upkulong� unsigned long �np& int nitem& int stride �

int info � pvm
upkstr� char �cp �

int info � pvm
unpackf� const char �fmt& ��� �

The routine pvm unpackf�� uses a printf�like format expression to specify what and
how to unpack data from the receive bu�er�

A single Fortran subroutine handles all the unpacking functions of the above C rou�

� �� �

tines�
call pvmfunpack� what& xp& nitem& stride& info �

The argument xp is the array to be unpacked into� The integer argument what speci�es
the type of data to be unpacked� �Same what options as for pvmfpack����

�� Dynamic Process Groups

The dynamic process group functions are built on top of the core PVM routines� There
is a separate library libgpvm��a that must be linked with user programs that make use
of any of the group functions� The pvmd does not perform the group functions� This is
handled by a group server that is automatically started when the �rst group function
is invoked� There is some debate about how groups should be handled in a message
passing interface� There are e	ciency and reliability issues� There are tradeo�s between
static verses dynamic groups� And some people argue that only tasks in a group can
call group functions�

In keeping with the PVM philosophy� the group functions are designed to be very
general and transparent to the user at some cost in e	ciency� Any PVM task can join
or leave any group at any time without having to inform any other task in the a�ected
groups� Tasks can broadcast messages to groups of which they are not a member� And
in general any PVM task may call any of the following group functions at any time�
The exceptions are pvm lvgroup��� pvm barrier��� and pvm reduce�� which by their
nature require the calling task to be a member of the speci�ed group�
int inum � pvm joingroup� char �group �

int info � pvm lvgroup� char �group �

call pvmfjoingroup� group& inum �

call pvmflvgroup� group& info �

These routines allow a task to join or leave a user named group� The �rst call to
pvm joingroup�� creates a group with name group and puts the calling task in this
group� pvm joingroup�� returns the instance number �inum� of the process in this
group� Instance numbers run from to the number of group members minus �� In
PVM
 a task can join multiple groups�

If a process leaves a group and then rejoins it that process may receive a di�erent
instance number� Instance numbers are recycled so a task joining a group will get the
lowest available instance number� But if multiple tasks are joining a group there is no
guarantee that a task will be assigned its previous instance number�

To assist the user in maintaining a contiguous set of instance numbers despite joining
and leaving� the pvm lvgroup�� function does not return until the task is con�rmed to
have left� A pvm joingroup�� called after this return will assign the vacant instance
number to the new task� It is the users responsibility to maintain a contiguous set
of instance numbers if his algorithm requires it� If several tasks leave a group and no
tasks join� then there will be gaps in the instance numbers�
int tid � pvm gettid� char �group& int inum �

call pvmfgettid� group& inum& tid �

The routine pvm gettid�� returns the tid of the process with a given group name

� �� �

and instance number� pvm gettid�� allows two tasks with no knowledge of each other
to get each other�s tid simply by joining a common group�
int inum � pvm getinst� char �group& int tid �

call pvmfgetinst� group& tid& inum �

The routine pvm getinst�� returns the instance number of tid in the speci�ed group�

int size � pvm gsize� char �group �

call pvmfgsize� group& size �

The routine pvm gsize�� returns the number of members in the speci�ed group�

int info � pvm barrier� char �group& int count �

call pvmfbarrier� group& count& info �

On calling pvm barrier�� the process blocks until count members of a group have
called pvm barrier� In general count should be the total number of members of the
group� A count is required because with dynamic process groups PVM can not know
how many members are in a group at a given instant� It is an error for processes to
call pvm barrier with a group it is not a member of� It is also an error if the count
arguments across a given barrier call do not match� For example it is an error if one
member of a group calls pvm barrier�� with a count of �� and another member calls
pvm barrier�� with a count of ��

int info � pvm bcast� char �group& int msgtag �

call pvmfbcast� group& msgtag& info �

pvm bcast�� labels the message with an integer identi�er msgtag and broadcasts
the message to all tasks in the speci�ed group except itself �if it is a member of the
group��

For pvm bcast�� �all tasks� is de�ned to be those tasks the group server thinks are
in the group when the routine is called� If tasks join the group during a broadcast they
may not receive the message� If tasks leave the group during a broadcast a copy of the
message will still be sent to them�
int info � pvm reduce� void ��func���& void �data&

int nitem& int datatype&

int msgtag& char �group& int root �

call pvmfreduce� func& data& count& datatype&

msgtag& group& root& info �

pvm reduce�� performs a global arithmetic operation across the group� for example�
global sum or global max� The result of the reduction operation is returned on root�
PVM supplies four prede�ned functions that the user can place in func� These are�

PvmMax

PvmMin

PvmSum

PvmProduct

The reduction operation is performed element�wise on the input data� For example� if
the data array contains two �oating point numbers and func is PvmMax� then the result
contains two numbers # the global maximum of each group member�s �rst number and

� �� �

the global maximum of each member�s second number�
In addition users can de�ne their own global operation function to place in func�

See Appendix A for details� An example is given in PVM ROOT�examples�gexample�
�Note� pvm reduce�� does not block� If a task calls pvm reduce and then leaves the

group before the root has called pvm reduce an error may occur��

�� Examples in C and Fortran

This section contains two example programs each illustrating a di�erent way to organize
applications in PVM
� The examples have been purposely kept simple to make them
easy to understand and explain� Each of the programs is presented in both C and
Fortran for a total of four listings� These examples and a few others are supplied with
the PVM source in PVM ROOT�examples�

The �rst example is a master�slave model with communication between slaves� The
second example is a single program multiple data �SPMD� model�

In a master�slave model the master program spawns and directs some number of
slave programs which perform computations� PVM is not restricted to this model� For
example� any PVM task can initiate processes on other machines� But a master�slave
model is a useful programming paradigm and simple to illustrate� The master calls
pvm mytid��� which as the �rst PVM call� enrolls this task in the PVM system� It then
calls pvm spawn�� to execute a given number of slave programs on other machines in
PVM� The master program contains an example of broadcasting messages in PVM� The
master broadcasts to the slaves the number of slaves started and a list of all the slave
tids� Each slave program calls pvm mytid�� to determine their task ID in the virtual
machine� then uses the data broadcast from the master to create a unique ordering
from to nproc minus ��

Subsequently� pvm send�� and pvm recv�� are used to pass messages between pro�
cesses�

When �nished� all PVM programs call pvm exit�� to allow PVM to disconnect any
sockets to the processes� �ush I�O bu�ers� and to allow PVM to keep track of which
processes are running�

In the SPMD model there is only a single program� and there is no master program
directing the computation� Such programs are sometimes called hostless programs�
There is still the issue of getting all the processes initially started� In example � the
user starts the �rst copy of the program� By checking pvm parent��� this copy can
determine that it was not spawned by PVM and thus must be the �rst copy� It then
spawns multiple copies of itself and passes them the array of tids� At this point each
copy is equal and can work on its partition of the data in collaboration with the other
processes� Using pvm parent precludes starting the SPMD program from the PVM
console because pvm parent will return the tid of the console� This type of SPMD
program must be started from a UNIX prompt�

� �� �

�include �pvm��h�

�define SLAVENAME �slave��

main��

	

int mytid
 �� my task id ��

int tids���
 �� slave task ids ��

int n� nproc� i� who� msgtype

float data����� result���

�� enroll in pvm ��

mytid � pvm�mytid��

�� start up slave tasks ��

puts��How many slave programs ���������

scanf���d�� �nproc�

pvm�spawn�SLAVENAME� �char����� �� ��� nproc� tids�

�� Begin User Program ��

n � ���

initialize�data� data� n �

�� Broadcast initial data to slave tasks ��

pvm�initsend�PvmDataRaw�

pvm�pkint��nproc� �� ��

pvm�pkint�tids� nproc� ��

pvm�pkint��n� �� ��

pvm�pkfloat�data� n� ��

pvm�mcast�tids� nproc� ��

�� Wait for results from slaves ��

msgtype � �

for� i��
 i�nproc
 i�� �	

pvm�recv� ��� msgtype �

pvm�upkint� �who� �� � �

pvm�upkfloat� �resultwho�� �� � �

printf��I got �f from �d�n��resultwho��who�

�

�� Program Finished exit PVM before stopping ��

pvm�exit��

�

Figure
� C version of master example�

� �� �

�include �pvm��h�

main��

	

int mytid
 �� my task id ��

int tids���
 �� task ids ��

int n� me� i� nproc� master� msgtype

float data����� result

float work��

�� enroll in pvm ��

mytid � pvm�mytid��

�� Receive data from master ��

msgtype � �

pvm�recv� ��� msgtype �

pvm�upkint��nproc� �� ��

pvm�upkint�tids� nproc� ��

pvm�upkint��n� �� ��

pvm�upkfloat�data� n� ��

�� Determine which slave I am �� �� nproc��� ��

for� i��
 i�nproc
 i�� �

if� mytid �� tidsi� �	 me � i
 break
 �

�� Do calculations with data ��

result � work� me� n� data� tids� nproc �

�� Send result to master ��

pvm�initsend� PvmDataDefault �

pvm�pkint� �me� �� � �

pvm�pkfloat� �result� �� � �

msgtype � �

master � pvm�parent��

pvm�send� master� msgtype �

�� Program finished� Exit PVM before stopping ��

pvm�exit��

�

Figure �� C version of slave example�

�
 �

program master�

c INCLUDE FORTRAN PVM HEADER FILE

include �fpvm��h�

integer i� info� nproc� numt� msgtype� who� mytid� tids������

double precision result����� data�����

character��� nodename� arch

c Enroll this program in PVM

call pvmfmytid� mytid �

c Initiate nproc instances of slave� program

print ���How many slave programs ��������

read �� nproc

nodename � �slave��

call pvmfspawn� nodename� PVMDEFAULT� ���� nproc� tids� numt �

c ������� Begin user program ��������

n � ���

call initiate�data� data� n �

c Broadcast data to all node programs

call pvmfinitsend� �� info �

call pvmfpack� INTEGER�� nproc� �� �� info �

call pvmfpack� INTEGER�� tids� nproc� �� info �

call pvmfpack� INTEGER�� n� �� �� info �

call pvmfpack� REAL�� data� n� �� info �

msgtype � �

call pvmfmcast� nproc� tids� msgtype� info �

c Wait for results from nodes

msgtype � �

do �� i���nproc

call pvmfrecv� ��� msgtype� info �

call pvmfunpack� INTEGER�� who� �� �� info �

call pvmfunpack� REAL�� result�who���� �� �� info �

�� continue

c ������������� End user program ��������

c Program finished leave PVM before exiting

call pvmfexit��

stop

end

Figure �� Fortran version of master example�

�
� �

program slave�

c INCLUDE FORTRAN PVM HEADER FILE

include �fpvm��h�

integer info� mytid� mtid� msgtype� me� tids������

double precision result� data�����

double precision work

c Enroll this program in PVM

call pvmfmytid� mytid �

c Get the master�s task id

call pvmfparent� mtid �

c ������� Begin user program ��������

c Receive data from master

msgtype � �

call pvmfrecv� mtid� msgtype� info �

call pvmfunpack� INTEGER�� nproc� �� �� info �

call pvmfunpack� INTEGER�� tids� nproc� �� info �

call pvmfunpack� INTEGER�� n� �� �� info �

call pvmfunpack� REAL�� data� n� �� info �

c Determine which slave I am �� �� nproc���

do � i��� nproc

if� tids�i� �eq� mytid � me � i

� continue

c Do calculations with data

result � work� me� n� data� tids� nproc �

c Send result to master

call pvmfinitsend� PVMDEFAULT� info �

call pvmfpack� INTEGER�� me� �� �� info �

call pvmfpack� REAL�� result� �� �� info �

msgtype � �

call pvmfsend� mtid� msgtype� info �

c ��������� End user program ��������

c Program finished� Leave PVM before exiting

call pvmfexit��

stop

end

Figure �� Fortran version of slave example�

�
� �

�define NPROC �

�include �pvm��h�

main��

	

int mytid� tidsNPROC�� me� i

mytid � pvm�mytid��
 �� ENROLL IN PVM ��

tids�� � pvm�parent��
 �� FIND OUT IF I AM PARENT OR CHILD ��

if� tids�� � � �	 �� THEN I AM THE PARENT ��

tids�� � mytid

me � �
 �� START UP COPIES OF MYSELF ��

pvm�spawn��spmd�� �char����� �� ��� NPROC��� �tids���

pvm�initsend� PvmDataDefault �
 �� SEND TIDS ARRAY ��

pvm�pkint�tids� NPROC� ��
 �� TO CHILDREN ��

pvm�mcast��tids��� NPROC��� ��

�

else	 �� I AM A CHILD ��

pvm�recv�tids��� ��
 �� RECEIVE TIDS ARRAY ��

pvm�upkint�tids� NPROC� ��

for� i��
 i�NPROC
 i�� �

if� mytid �� tidsi� �	 me � i
 break
 �

�

�� All NPROC tasks are equal now

� and can address each other by tids�� thru tidsNPROC���

� for each process �me� is process index ���NPROC����

��

dowork� me� tids� NPROC �

pvm�exit��
 �� PROGRAM FINISHED EXIT PVM ��

�

dowork� me� tids� nproc � �� DOWORK PASSES A TOKEN AROUND A RING ��

int me� �tids� nproc

	

int token� dest� count��� stride��� msgtag��

if� me �� � � 	

token � tids��

pvm�initsend� PvmDataDefault �

pvm�pkint� �token� count� stride �

pvm�send� tidsme���� msgtag �

pvm�recv� tidsnproc���� msgtag �

�

else 	

pvm�recv� tidsme���� msgtag �

pvm�upkint� �token� count� stride �

pvm�initsend� PvmDataDefault �

pvm�pkint� �token� count� stride �

dest � �me �� nproc���� tids�� � tidsme���

pvm�send� dest� msgtag �

�

�

Figure �� C version of SPMD example�

�

 �

program spmd

c INCLUDE FORTRAN PVM HEADER FILE

include �fpvm��h�

PARAMETER� NPROC�� �

integer mytid� me� numt� i

integer tids���NPROC�

c ENROLL IN PVM

call pvmfmytid� mytid �

c FIND OUT IF I AM PARENT OR CHILD

call pvmfparent�tids����

if� tids��� �lt� � � then

tids��� � mytid

me � �

c START UP COPIES OF MYSELF

call pvmfspawn� �spmd�� PVMDEFAULT� ���� NPROC��� tids���� numt�

c SEND TIDS ARRAY TO CHILDREN

call pvmfinitsend� �� info �

call pvmfpack� INTEGER�� tids� NPROC� �� info �

call pvmfmcast� NPROC��� tids���� �� info �

else

c RECEIVE THE TIDS ARRAY AND SET ME

call pvmfrecv� tids���� �� info �

call pvmfunpack� INTEGER�� tids� NPROC� �� info �

do �� i��� NPROC��

if� mytid �eq� tids�i� � me � i

�� continue

endif

c��

c all NPROC tasks are equal now

c and can address each other by tids��� thru tids�NPROC���

c for each process me � process number ���NPROC����

c��

call dowork� me� tids� NPROC �

c PROGRAM FINISHED EXIT PVM

call pvmfexit��

stop

end

Figure �� Fortran version of SPMD example �part ���

�
� �

subroutine dowork� me& tids& nproc �

include fpvm��h

c���

c Simple subroutine to pass a token around a ring

c���

integer me& nproc& tids� 	�nproc�

integer token& dest& count& stride& msgtag

count � �

stride � �

msgtag �

if� me �eq� 	 � then

token � tids�	�

call pvmfinitsend� 	& info �

call pvmfpack� INTEGER& token& count& stride& info �

call pvmfsend� tids�me$��& msgtag& info �

call pvmfrecv� tids�nproc���& msgtag& info �

else

call pvmfrecv� tids�me���& msgtag& info �

call pvmfunpack� INTEGER& token& count& stride& info �

call pvmfinitsend� 	& info �

call pvmfpack� INTEGER& token& count& stride& info �

dest � tids�me$��

if� me �eq� nproc�� � dest � tids�	�

call pvmfsend� dest& msgtag& info �

endif

return

end

Figure �� Fortran version of SPMD example �part ���

�
� �

	� Writing Applications

Application programs view PVM as a general and �exible parallel computing resource
that supports a message�passing model of computation� This resource may be ac�
cessed at three di�erent levels� the transparent mode in which tasks are automatically
executed on the most appropriate hosts �generally the least loaded computer�� the
architecture�dependent mode in which the user may indicate speci�c architectures on
which particular tasks are to execute� and the low�level mode in which a particular host
may be speci�ed� Such layering permits �exibility while retaining the ability to exploit
particular strengths of individual machines on the network�

Application programs under PVM may possess arbitrary control and dependency
structures� In other words� at any point in the execution of a concurrent application�
the processes in existence may have arbitrary relationships between each other and
in addition� any process may communicate and�or synchronize with any other� This
allows for the most general form of MIMD parallel computation� but in practice most
concurrent applications are more structured� Two typical structures are the SPMD
model in which all processes are identical and the master�slave model in which a set
of computational slave processes performs work for one or more master processes�

�	�	 General performance considerations

There are no limitations to the programming paradigm a PVM user may choose� Any
speci�c control and dependency structure may be implemented under the PVM system
by appropriate use of PVM constructs� On the other hand there are certain considera�
tions that the application developer should be aware when programming any message
passing system�

The �rst consideration is task granularity� This is typically measured as a ratio of
the number of bytes received by a process to the number of �oating point operations
a process performs� By doing some simple calculations of the computational speed of
the machines in a PVM con�guration and the available network bandwidth between
the machines� a user can get a rough lower bound on the task granularity to be used in
an application� The tradeo� is the larger the granularity the higher the speedup but
often a reduction in the available parallelism as well�

The second consideration is the number of messages sent� The number of bytes
received may be sent in many small messages or in a few large messages� While us�
ing a few large messages reduces the total message start�up time� it may not cause
the overall execution time to decrease� There are cases where small messages can be
overlapped with other computation so that their overhead is masked� The ability to
overlap communication with computation and the optimal number of messages to send
are application dependent�

A third consideration is whether the application is better suited to functional paral�
lelism or data parallelism� We de�ne functional parallelism to be di�erent machines in
a PVM con�guration performing di�erent tasks� For example� a vector supercomputer
may solve a part of a problem suited for vectorization� a multiprocessor may solve
another part of the problem that is suited to parallelization� and a graphics worksta�
tion may be used to visualize the generated data in real time� Each machine performs

�
� �

di�erent functions �possibly on the same data��
In the data parallelism model� the data is partitioned and distributed to all the

machines in the PVM con�guration� Operations �often similar� are performed on each
set of data and information is passed between processes until the problem is solved�
Data parallelism has been popular on distributed�memory multiprocessors because it
requires writing only one parallel program that is executed on all the machines� and
because it can often be scaled up to hundreds of processors� Many linear algebra� PDE�
and matrix algorithms have been developed using the data parallelism model�

Of course in PVM both models can be mixed in a hybrid that exploits the strengths
of each machine� For example the parallel code that runs on the multiprocessor in the
above functional example may itself be written in PVM using a data parallelism model�

�	�	 Network particular considerations

There are additional considerations for the application developer if he wishes to run his
parallel application over a network of machines� His parallel program will be sharing
the network with other users� This multiuser� multitasking environment a�ects both
the communication and computational performance of his program in complex ways�

First consider the e�ects of having di�erent computational power on each machine
in the con�guration� This can be due to having a heterogeneous collection of machines
in the virtual machine which di�er in their computational rates� Just between di�erent
brands of workstations there can be two orders of magnitude di�erence in power� For
supercomputers there can be even more� But even if the user speci�es a homogeneous
collection of machines� he can see large di�erences in the available performance on each
machine� This is caused by the multitasking of his own or other user�s tasks on a subset
of the con�gured machines� If the user divides his problem into identical pieces one for
each machine� �a common approach to parallelization�� then the above consideration
may adversely e�ect his performance� His application will run as slow as the task on the
slowest machine� If the tasks coordinate with each other� then even the fast machines
will be slowed down waiting for the data from the slowest tasks�

Second consider the e�ects of long message latency across the network� This could
be caused by the distance between machines if a wide�area network is being employed�
It can also be caused by contention on your local network from your own program or
other users� Consider that Ethernet networks are a bus� As such only one message
can be on the bus at any time� If the application is designed so that each of its tasks
only sends to a neighboring task then one might assume there would be no contention�
On a distributed memory multiprocessor� such as an Intel Paragon� there would be
no contention and all the sends could proceed in parallel� But over Ethernet the
sends will be serialized leading to varying delays �latencies� in the messages arriving
at neighboring tasks� Other networks such as token ring� FIDDI� and HiPPI� all have
properties that can cause varying latencies� The user should determine if latency
tolerance should be designed into his algorithm�

Third consider that the computational performance and e�ective network band�
width are dynamicly changing as other users share these resources� An application
may get a very good speedup during one run and a poor speedup on a run just a few

�
� �

minutes later� During a run an application can have its normal synchronization pattern
thrown o� causing some tasks to wait for data� In the worst case� a synchronization
error could exist in an application that only shows up when the dynamic machine loads
�uctuate in a particular way� Because such conditions are di	cult to reproduce� these
types of errors can be very hard to �nd�

Many of these network considerations are taken care of by incorporating some form
of load balancing into a parallel application� The next section describes some of the
popular load balancing methods�

�	�	 Load Balancing

In a multiuser network environment we have found that load balancing can be the single
most important performance enhancer� ���� There are many load balancing schemes
for parallel programs� In this section we will describe the three most common schemes
used in network computing�

The simplest method is static load balancing� In this method the problem is divided
up� and tasks are assigned to processors only once� The data partitioning may occur
o��line before the job is started� or the partitioning may occur as an early step in an
application� The size of the tasks or the number of tasks assigned to a given machine
can be varied to account for the di�erent computational powers of the machines� Since
all the tasks can be active from the beginning� they can communicate and coordinate
with one another� On a lightly loaded network� static load balancing can be quite
e�ective�

When the computational loads are varying a dynamic load balance scheme is re�
quired� The most popular method is called the Pool of Tasks paradigm� It is typically
implemented in a master�slave program where the master program creates and holds
the �pool� and farms out tasks to slave programs as they fall idle� The pool is usually
implemented as a queue and if the tasks vary in size then the larger tasks are placed
near the head of the queue� With this method all the slave processes are kept busy as
long as there are tasks left in the pool� An example of the Pool of Tasks paradigm can
be seen in the xep program supplied with the PVM source under pvm��xep� Since tasks
start and stop at arbitrary times with this method� it is better suited to applications
which require no communication between slave programs and only communication to
the master and �les�

A third load balance scheme which doesn�t use a master process requires that at
some predetermined time all the processes will reexamine and redistribute their work
loads� An example is in the solution of nonlinear PDEs� each linearized step could be
statically load balanced and between each linear step the processes examine how the
problem has changed and redistribute the mesh points� There are several variations of
this basic scheme� Some implementations never synchronize with all the processes but
instead distribute excess load only with their neighbors� Some implementations wait
until a process signals that its load balance has gotten above some tolerance before
going through a load redistribution rather than waiting on a �xed time�

�
� �

� Debugging Methods

In general� debugging parallel programs is much more di	cult than debugging serial
programs� Not only are there more processes running simultaneously� but their inter�
action can also cause errors� For example a process may receive the wrong data that
later causes it to divide by zero� Another example is deadlock where a programming
error has caused all the processes to be waiting on messages� All PVM routines return
an error condition if some error has been detected during their execution� A list of
these codes and their meaning is given in Table ��

ERROR CODE MEANING

PvmOk okay
PvmBadParam �� bad parameter
PvmMismatch �
 barrier count mismatch
PvmNoData �� read past end of bu�er
PvmNoHost �� no such host
PvmNoFile �� no such executable
PvmNoMem �� can�t get memory
PvmBadMsg ��� can�t decode received msg
PvmSysErr ��� pvmd not responding
PvmNoBuf ��� no current bu�er
PvmNoSuchBuf ��� bad message id
PvmNullGroup ��� null group name is illegal
PvmDupGroup ��� already in group
PvmNoGroup ��� no group with that name
PvmNotInGroup �� not in group
PvmNoInst ��� no such instance in group
PvmHostFail ��� host failed
PvmNoParent ��
 no parent task
PvmNotImpl ��� function not implemented
PvmDSysErr ��� pvmd system error
PvmBadVersion ��� pvmd�pvmd protocol mismatch
PvmOutOfRes ��� out of resources
PvmDupHost ��� host already con�gured
PvmCantStart ��� failed to exec new slave pvmd
PvmAlready �
 slave pvmd already running
PvmNoTask �
� task does not exist
PvmNoEntry �
� no such �group�instance�
PvmDupEntry �

 �group�instance� already exists

Table �� Error codes returned by PVM
 routines�

By default PVM prints error conditions detected in PVM routines� The routine
pvm setopt�� allows the user to turn this automatic reporting o�� Diagnostic prints
from spawned tasks can be viewed using the PVM console redirection or by calling

�
� �

pvm catchout�� in the spawning task �often the master task�� pvm catchout�� causes
the standard output of all subsequently spawned tasks to appear on the standard output
of the spawner�

PVM tasks can be started manually under any standard serial debugger� for example
dbx� stdout from tasks started manually always appears in the window in which it was
started�

PVM tasks that are spawned can also be started under a debugger� By setting the
flag option to include PvmTaskDebug in the pvm spawn�� call� by default PVM
will execute the shell script PVM ROOT�lib�debugger� As supplied this script starts an
xterm window on the host PVM was started on and spawns the task under a debugger
in this window� The task being debugged can be executed on any of the hosts in the
virtual machine as speci�ed by the flag and where arguments in pvm spawn��� The
user can create his own personalized debugger script to include a preferred debugger
or even a parallel debugger if one is available� The user can then tell PVM where to
�nd this script by using the bx� option in the host�le�

Diagnostic print statements sent to stderr from a spawned task will not appear
on the user�s screen� All these prints are routed to a single log �le of the form
�tmp�pvml��uid� on the host where PVM was started� stdout statements may ap�
pear in this �le as well although I�O bu�ering may make this a less useful debugging
method� Tasks that are spawned from the PVM console can have their stdout �and all
their children�s stdout� redirected back to the console window or to a separate �le�

The routine pvm setopt�� also allows the user to set a debug mask which determines
the level of debug messages to be printed to �tmp�pvml��uid�� By default the debug
level is set to $no debug messages�� The debug level can be changed multiple times
inside an application to debug a single routine or section of code� The debug statements
describe only what PVM is doing and not what the application is doing� The user must
infer what the application was doing from the PVM debug statements� This may or
may not be reasonable depending on the nature of the bug�

Experience has led to the following three steps in trying to debug PVM programs�
First� if possible� run the program as a single process and debug as any other serial
program� The purpose of this step is to catch indexing and logic errors unrelated to
parallelism� Once these errors are corrected� go to the second step�

Second� run the program using �#� processes on a single machine� PVM will mul�
titask these processes on the single machine� The purpose of this step is to check the
communication syntax and logic� For example was a message tag of � used in the send
but the receiver is waiting for a message with tag equal to �� A more common error
to discover at this step is the use of non�unique message tags� To illustrate assume
that the same message tag is always used� A process receives some initial data in three
separate messages� but it has no way of determining which of the messages contains
what data� PVM returns any message that matches the requested source and tag� so
it is up to the user to make sure that this pair uniquely identi�es the contents of a
message� The non�unique tags error is often very hard to debug because it is sensitive
to subtle synchronization e�ects and may not be reproducible from run to run� If the
error can not be determined by the PVM error codes or from a quick print statement�
then the user can get complete debugger control of his program by starting one or all of

� � �

his tasks under debuggers� This allows break points� variable tracing� single stepping�
and trace backs for each process even while it passes messages back and forth to other
PVM tasks that may or may not be running under dbx�

The third step is to run the same �#� processes across several machines� The
purpose of this step is to check for synchronization errors that are produced by network
delays� The kind of errors often discovered at this step are sensitivity of the algorithm
to message arrival order� and program deadlock caused by logic errors sensitive to
network delays� Again complete debugger control can be obtained in this step� but it
may not be as useful because the debugger may shift or mask the timing errors observed
earlier�

��� Implementation Details

This section gives a glimpse at the design goals and implementation details of the
single�cpu UNIX �generic� version of PVM� A complete technical description of PVM
can be found in ����

There were three main goals under consideration while building version
� We
wanted the virtual machine to be able to scale to hundreds of hosts and thousands
of tasks� This requires e	cient message�passing operations and� more importantly�
operations �such as task management� to be as localized as possible in order to avoid
bottlenecks�

We wanted the system to be portable to any version of UNIX and also to machines
not running UNIX� especially MPPs �message passing machines with many processor
nodes��

Finally� we wanted the system to be able to withstand host and network failures�
allowing fault�tolerant applications to be built�

In order to keep PVM as portable as possible� we avoided the use of operating
system or programming language features that would be be hard to retro�t if unavail�
able� We decided not to use multi�threaded code� or more speci�cally� not to overlap
I�O and processing in tasks� Many UNIX machines have light� or heavy�weight thread
packages or asynchronous I�O system calls� but these are variable enough that many
code changes would be required� On machines where threads are not available� it�s pos�
sible to use signal�driven I�O and interrupt handlers to move data semi�transparently
while computing� This solution would be even more di	cult to maintain� partly due to
di�erences between various systems� but mainly because the signal mechanism is not
appropriate for the task�

While the generic port is kept as simple as possible� PVM can still be optimized
for any particular machine� As facilities like threads become more standardized� we
expect to make use of them�

We assume that sockets are available for interprocess communication and that each
host in a virtual machine group can connect directly to every other host using IP
protocols �TCP and UDP�� That is� the pvmd expects to be able to send a packet to
another pvmd in a single hop� The requirement of full IP connectivity could presumably
be removed by specifying routes and allowing the pvmds to forward messages� Note
that some MPP machines don�t make sockets available on the processing nodes� but

� �� �

do have them on the front�end �where the pvmd runs��

��	�	 Task Identi
ers

PVM uses a
��bit integer called a task identi�er �TID� to address pvmds� tasks� and
groups of tasks within a virtual machine� A TID identi�es a unique object within its
entire virtual machine� however� TIDs are recycled when no longer in use�

The TID contains four �elds as shown in Figure �� It is currently partitioned as
indicated� however the sizes of the �elds could someday change �possibly dynamically
as a virtual machine is con�gured�� Since the TID is used so heavily� it is designed to
�t into the largest integer data type available on a wide range of machines�

� � �

� � ! � " # � � � � � � ! � " # � � � � � � ! � " # � � � � � �

���

$ $ $ $ $

���

S G ���������� H ���������� ���������������� L ����������������

Figure �� Generic Task ID

The �elds S� G and H have meaning globally� that is� each pvmd of a virtual
machine interprets them the same way� The H �eld contains a host number relative to
the virtual machine� As it starts up� each pvmd is con�gured with a unique nonzero
host number and therefore �owns� part of the address space of the machine� Host
number zero is used� depending on context� to refer either to the local pvmd or to a
�shadow� pvmd �called pvmd��� of the master pvmd� The maximum number of hosts
in a virtual machine is limited to �H � � ������ The mapping between host numbers
and hosts is known to each pvmd�

The S �eld is a historical leftover� and causes slightly schizoid naming� Messages
are addressed to a pvmd by setting the S bit and the host �eld� and zeroing the L �eld�
In the future� this bit should be reclaimed to make the H or L space larger�

Each pvmd is allowed to assign local meaning to the L �eld �when the H �eld is set
to its own host number�� with the exception that all bits cleared is reserved to mean
the pvmd itself� In the generic UNIX port� L �eld values are assigned by a counter�
and the pvmd maintains a map between L values and UNIX process IDs� As with the
number of hosts� the number of tasks per host is limited by the size of its TID �eld�
Since the L �eld is allotted �� bits� at most �����
 tasks can exist concurrently on a
host�

In multiprocessor ports the L �eld is often subdivided� for example into a partition
�eld �P�� a node number �N� �eld and a location bit �W� �Figure ����

The P �eld speci�es a machine partition �sometimes called a �process type� or
�job��� in the case where the pvmd can manage multiple MPP partitions� The N �eld
determines a speci�c cpu node in the partition� The W bit indicates whether a task is

� �� �

� � �

� � ! � " # � � � � � � ! � " # � � � � � � ! � " # � � � � � �

���

$ $ $ $ $

���

S G ���������� H ���������� W ���� P ���� ��������� N ���������

Figure ��� MPP Task ID

running on an MPP �compute� node or the host �service node� processor� The setting
of the W bit can be determined by the �ps �a� output from the PVM console� Since
the TID output by ps is a hexidecimal number� the �fth digit from the right contains
the W bit� The following is a simple state table to determine if the W bit is set to
or ��

W bit task running on contents of �th tid digit

������� ��������������� �������������������������

	 MPP compute node 	&�&&�&�&�&c&d

� host�service node �&�&�&�&a&b&e&f

For example� if your TID is ��� then you know that your task is running on an MPP
compute node��

The design of the TID enables the implementation to meet some of the goals stated
earlier� Tasks can be assigned TIDs by their local pvmds without o��host communica�
tion� eliminating a bottleneck at an ID server� Messages can be routed to a destination
from anywhere in the system� thanks to the hierarchical naming� Portability is en�
hanced because the L �eld can be rede�ned easily� Finally� space is reserved for error
codes� When a function can return a vector of TIDs mixed with error codes� it is useful
if the error codes don�t correspond to legal TIDs�

The TID space is divided up as follows�

�S� �G� �H� �L�

Task identifier � � ���maxhost ���maxlocal

Pvmd identifier � � ���maxhost �

Local pvmd �from task� � � � �

Pvmd� from master pvmd � � � �

Multicast address � � ���maxhost x

Error code � � � small negative number

Naturally� TIDs are intended to be opaque to the application and the programmer
should not attempt to predict their values or modify them without using functions
supplied with the programming library� More structured naming �from the application
programming standpoint� can be obtained by using a name server library layered on
top of the raw PVM calls� if the convenience is deemed worth the cost of name lookup�

� �
 �

��	�	 The PVM Daemon

One pvmd runs on each host of a virtual machine� and the pvmds are con�gured to
work together� Pvmds owned by �running as� one user do not interact with ones owned
by others� The pvmd was designed to run under a nonprivileged user ID and serve a
single user in order to reduce security risk� and to minimize the impact of one PVM
user on another�

The pvmd doesn�t do any computation� rather it serves as a message router and
controller� It provides a point of contact on each host� both from inside and outside�
as well as authentication� process control and fault detection� Idle pvmds occasionally
ping each other to verify reachability� and ones that don�t answer are marked dead�
Pvmds are hopefully more survivable than application components� and will continue
to run in the event of a program crash� to aid in debugging�

The �rst pvmd �started by hand� is designated the �master� pvmd� while the others
�started by the master� are called �slaves�� During most normal operations� all pvmds
are considered equal� Only the master can start new slave pvmds and add them to the
virtual machine con�guration� Requests to recon�gure the machine originating on a
slave host are forwarded to the master� Likewise� only the master can forcibly delete
hosts from the machine� If the master pvmd loses contact with a slave� it marks the
slave dead and deletes it from the con�guration� If a slave pvmd loses contact with the
master� the slave shuts itself down� This algorithm ensures that the virtual machine
can�t become partitioned and continue to run as two partial machines� like a worm
cut in half� Unfortunately� this impacts fault tolerance because the master must never
crash� There is currently no way for the master to hand o� its duty to another pvmd�
so it always remains part of the con�guration�

The data structures of primary importance in the pvmd are the host and task
tables� which describe the virtual machine con�guration and track tasks running under
the pvmd� Attached to these are queues of packets and messages� and �wait contexts�
to hold state information for multitasking in the pvmd�

At startup time� a pvmd con�gures itself as either a master or slave� depending on
its command line arguments� This is when it creates and binds sockets to talk to tasks
and other pvmds� opens an error log �le� and initializes tables� For a master pvmd�
con�guration may include reading the host�le and determining default parameters�
such as the host name� A slave pvmd gets its parameters from the command line and
sends a line of data back to the starter process� for inclusion in the host table� If the
master pvmd is given a �le of hosts to be started automatically� it sends a DM ADDHOST

message to itself� Thus the slave hosts are brought into the con�guration just as though
they had been added dynamically� Slave pvmd startup is described in the next section�

After con�guring itself� the pvmd enters a loop in function work��� At the core of
the work loop is a call to select�� that probes all sources of input for the pvmd �local
tasks and the network�� Incoming packets are received and routed to their destinations�
Messages addressed to the pvmd are reassembled and passed to one of the entry points
loclentry��� netentry�� or schedentry���

� �� �

��	�	�	 Pvmd Startup

Getting a slave pvmd started is a messy task with no good solution� The goal is to get
a pvmd process running on the new host� with enough information �i�e� the identity of
the master pvmd� to let it be fully con�gured and added as a peer�

Several di�erent mechanisms are available� depending on the operating system and
local installation� Naturally� we want to use a method that is widely available� secure�
fast and easy to install� We�d like to avoid having to type passwords all the time� but
don�t want to put them in a �le from where they can be stolen� No system meets
all of these criteria� Inetd would give fast� reliable startup� but would require that
a sysadmin install PVM on each host to be used� Connecting to an already�running
pvmd or pvmd server at a reserved port number presents similar problems� Starting
the pvmd with an rlogin or telnet �chat� script would allow access even to hosts
with rsh services disabled or IP�connected hosts behind �rewall machines� and would
require no special privilege to install� The main drawback is the e�ort required to
get the chat program and script working reliably� Two widely available systems are
rsh and rexec��� We use both to cover most of the features required� In addition� a
manual startup option allows the user to take the place of a chat program� starting the
pvmd manually and typing in the con�guration�

rsh is a privileged program which can be used by the pvmd to run commands on
a foreign host without a password� provided the destination host can be made to trust
the source host� This can be done either by making it equivalent �requires a sysadmin�
or by creating a �rhosts �le on the destination host� As rsh can be a security risk� it�s
use is often discouraged by disabling it or automatically removing �rhosts �les� The
alternative� rexec��� is a function compiled into the pvmd� Unlike rsh� which can�t
take a password� rexec�� requires the user to supply one at run time� either by typing
it in or placing it in a �netrc �le �this is a really bad idea��

When the master pvmd gets a DM ADD message� it creates a new host table entry
for each requested host� It looks up the IP addresses and sets the options to default
settings or copies them from advisory host table entries� The host descriptors are kept
in a waitc add structure attached to a wait context� and not yet added to the host
table� Then� it forks a shadow pvmd �pvmd�� to do the dirty work� passing it a list of
hosts and commands to execute�

Any of several steps in the startup process �for example getting the host IP address�
starting a shell� can block for seconds or minutes� and the master pvmd must be able
to respond to other messages during this time� The shadow has host number and
communicates with the master through the normal pvmd�pvmd interface� though it
never talks to the slave pvmds� Likewise� the normal host failure mechanism is used
to provide fault recovery� The startup operation has a wait context in the master
pvmd� In the event the shadow breaks� the master catches a SIGCHLD from it and
calls hostfailentry��� which cleans up�

Pvmd� uses rsh or rexec�� �or manual startup� to start a pvmd on each new host�
pass it parameters and get a line of con�guration information back from it� When
�nished� pvmd� sends a DM STARTACK message back to the master pvmd� containing the
con�guration lines or error messages� The master parses the results and completes the
host descriptors held in the wait context� Results are sent back to the originator in

� �� �

a DM ADDACK message� New hosts successfully started are con�gured into the machine
using the host table update �DM HTUPD� protocol� The con�guration dialog between
pvmd� and a new slave is similar to the following�

pvmd� � slave�

�exec� %PVM�ROOT�lib�pvmd �s �d� �nhonk � ��a!ca!���f�a ��!# � ��a!�c�������

slave � pvmd��

ddpro����� arch�ALPHA ip���a!�c����b�f mtu���!#

pvmd� � slave�

EOF

The parameters of the master pvmd �debug mask� host table index� IP address
and MTU� and slave �host name� host table index and IP address� are passed on the
command line� The slave replies with its con�guration �pvmd�pvmd protocol revision
number� host architecture� IP address and MTU�� It waits for an EOF from pvmd� and
disconnects from the pipe� putting itself in probationary running status �runstate �

PVMDSTARTUP�� If it receives the rest of its con�guration information from the master
pvmd within a timeout period �DDBAILTIME� by default �ve minutes� it comes up to
normal running status� Otherwise� it assumes there is some problem with the master
and exits�

If a special task� called a �hoster�� has registered with the master pvmd prior to
receipt of the DM ADD request� the normal startup system is not used� Instead of forking
the pvmd�� a SM STHOST message is sent to the �hoster� task� It must start the remote
processes as described above �using any mechanism it wants�� pass parameters and
collect replies� then send a SM STHOSTACK message back to the pvmd� So� the method
of starting slave pvmds is dynamically replaceable� with a hoster that does not have to
understand the con�guration protocol� If the hoster task fails during an add operation�
the pvmd uses the wait context to recover� It assumes that none of the processes were
started and sends a DM ADDACK message indicating a system error�

Note� Recent experience suggests that it would be cleaner to manage the shadow
pvmd through the task interface instead of the host interface� This would more natu�
rally allow multiple starters to run at once �the parallel startup is currently implemented
explicitly in a single pvmd� process��

��	�	�	 Host Table

A host table describes the con�guration of a virtual machine� Host tables are usually
synchronized across all pvmds in a virtual machine� although they may not be in
agreement at all times� In particular� hosts are deleted by a pvmd from its own host
table whenever it determines them to be unreachable �by timing out while trying to
communicate�� In other words� the machine con�guration may decay over time as
hosts crash or their networks become disconnected� If a pvmd knows it is being killed
or panics� it may be able to notify its peers� so they know it is down without having
to wait for a timeout�

� �� �

pvm_addhosts()

tm_addhost()

dm_addhost()

start_slaves()

slave_config()

dm_startack()

dm_addhostack()

dm_htupd()
dm_htupd()

dm_htupdack()

dm_htcommit()
dm_htcommit()

dm_htupdack()

3

6

7,8

8

Blocked

Pvmd 2Task 2/1 Pvmd 1 (master) Pvmd 3 (new)P1’ (shadow)

Finished

T
IM

E

Figure ��� Addhost Timeline

The host tables of slave pvmds are modi�ed on command from the master pvmd
using DM HTUPD� DM HTCOMMIT and DM HTDEL messages� The delete operation is very
simple # on receiving a DM HTDEL message� a pvmd calls the hostfailentry�� function
for each host listed in the message� as though the deleted pvmds have crashed� The
add operation is done more carefully� with a three�phase commit� in order to guarantee
global availability of the new hosts synchronously with completion of the add�host
request� A task calls pvm addhost��� which sends a request to the task�s pvmd� which
in turn sends a DM ADD message to the master pvmd �possibly itself�� The master
pvmd uses its shadow process to start and con�gure the new slaves� then broadcasts
a DM HTUPD message� Upon receiving this message� each slave knows the identity of
the new pvmd� and the new pvmd knows the identities of the previously existing ones�
The master waits for an acknowledging DM HTUPDACK message from every slave� then
sends a DM ADDACK reply to the original request� giving the new host ID� Finally� an
HT COMMITmessage is broadcast� which commands the slaves to �ush the old host table�
When several hosts are added at once� the work is done in parallel� and the host table
updated all at once� allowing the whole operation to take only slightly more time than
for a single host�

Host descriptors �hostd� can be shared by multiple host tables� that is� each hostd
has a refcount of how many host tables include it� As the con�guration of the machine
changes� the descriptor for each host �except ones added and deleted of course� remains
the same�

Host tables serve multiple uses� They describe the con�guration of the machine and
hold packet queues and message bu�ers� They allow the pvmd to manipulate sets of

� �� �

hosts� for example when picking candidate hosts on which to spawn a task� or updating
the virtual machine con�guration� Also� the advisory host �le supplied to the master
pvmd is parsed and stored in a host table�

��	�	�	 Task Table

Each pvmd maintains a list of all tasks under its management� Every task� regardless
of state� is a member of a threaded list� sorted by t tid �task ID�� Most tasks are also
kept in a second list� sorted by t pid� In the generic port� t pid holds the process ID
of the task� The head of both lists is a dummy task descriptor� pointed to by global
locltasks� Since the pvmd often needs to search for a task by TID or PID� it could
be more e	cient to maintain these two lists as self�balancing trees�

��	�	�	 Wait Contexts

Wait contexts �waitcs� are used by the pvmd to hold state information when a thread
of operation must be interrupted� The pvmd is not truly multi�threaded� but can
perform operations concurrently� For example� when a pvmd gets a syscall from a task�
it sometimes has to interact with another pvmd� Since it serves as a message router�
it can�t block while waiting for the foreign pvmd to respond� Instead� it saves any
information speci�c to the syscall in a waitc and returns immediately to the work��
loop� When the reply arrives� the pvmd uses the information stashed in the waitc
to complete the syscall and reply to the task� Waitcs are numbered serialy� and the
number is sent in the message header along with the request and returned with the
reply�

For certain operations� the TIDs involved and the parameter kind are the only
information saved� The waitc includes a few extra �elds to handle most of the remaining
cases� and a pointer� wa spec� which can point to a block of extra data for special cases�
These are the spawn and host startup operations� in which wa spec points to a struct
waitc spawn or struct waitc add�

Some operations require more than one phase of waiting # this can be in series
or parallel� or even nested �if the foreign pvmd has to make another request�� In the
parallel case� a separate waitc is created for each foreign host� The individual waitcs
are �peered� together to indicate they pertain to the same operation� Their wa peer

and wa rpeer �elds are linked together to form a list �with no sentinel node�� If a
waitc has no peers� its peer links point to itself� putting it in a group of one� Usually�
all waitcs in a peer group share pointers to any common data� for example a wa spec

block� All existing multi�host parallel operations are conjunctions� a peer group of
waitcs is �nished waiting when every waitc in the group is �nished� As replies come
back� �nished waitcs are collapsed out of the list and deleted� Finally� when the �nished
waitc is the only one in its group� the operation is complete�

When a foreign host fails or a task exits� the pvmd searches waitlist for any waitcs
blocked on its TID� These are terminated� with di�ering results depending on the kind
of wait� Waitcs blocking for the dead host or task are not deleted immediately� Instead�
their wa tid �elds are zeroed to keep the wait ID active�

� �� �

��	�	�	 Fault Detection and Recovery

From the pvmd�s point of view� fault tolerance means that it can detect when a foreign
pvmd is down and recover without crashing� If the foreign pvmd was the master�
however� it has to shut down� Otherwise� the pvmd itself doesn�t care about host
failures� except that it must complete any operations waiting on the dead hosts� From
the task�s point of view� fault detection means that any operation involving a down
host will return an error condition� instead of simply hanging forever� It is left to the
application programmer to use this capability wisely�

Fault detection originates in the pvmd�pvmd protocol� when a packet goes un�
acknowledged for three minutes� Function hostfailentry�� is called� which scans
waitlist and terminates any waits involving the failed host� �See Pvmd�Pvmd Com�
munication section for details�

��	�	 The Programming Library

The libpvm library is a collection of functions that allow a task to interface with the
pvmd and other tasks� It contains functions for packing �composing� and unpacking
messages� as well as ones that perform PVM �syscalls�� using the message functions
to send service requests to the pvmd and receive replies� It is intentionally kept as
simple and small as possible� Since it shares address space with unknown� possibly
buggy� code� it can be easily broken or subverted� Minimal sanity�checking of syscall
parameters is performed� leaving further authentication to the pvmd�

The programming library is written in C and so naturally supports C and C!!
applications� The Fortran library� libfpvm��a� is also written in C and is a set of
�wrapper� functions that conform to the Fortran calling conventions and call the C
library functions� The Fortran�C linking requirements are portably met by preprocess�
ing the C source code for the Fortran library with m before compilation�

The top level of the libpvm library� including most of the programming interface
functions� is written in a machine�operating system�independent style� The bottom
level is kept separate and can be modi�ed or replaced with a new machine�speci�c �le
when porting PVM to a new OS or MPP�

On the �rst call to �most� any libpvm function� that function calls pvmbeatask�� to
initialize the library state and connect the task to its pvmd� The details of connecting
are slightly di�erent between anonymous tasks �not spawned by the pvmd� and spawned
tasks�

So that anonymous tasks can �nd it� the pvmd publishes the address of the socket
where it listens for connections in �tmp�pvmd��uid�� where uid is the numeric user ID
under which the pvmd runs� This �le contains a line such as ��f					��	�f��� As
a shortcut� spawned tasks inherit environment variable PVMSOCK� containing the same
information�

A spawned task needs a second bit of data to reconnect successfully� namely its
expected process ID� When a task is spawned by the pvmd� a task descriptor �described
earlier� is created for during the exec phase� The descriptor is necessary� for example�
to stash any messages that arrive for the task before it�s fully reconnected and ready to
receive them� During reconnection� the task identi�es itself to the pvmd by its PID� If

� �� �

the task is always the child of the pvmd� �i�e� the process exec�d by it� then it could use
its PID as returned by getpid�� to identify itself� To allow for intervening processes�
such as debuggers� the pvmd passes an environment variable� PVMEPID� to the task�
which uses that value in preference to its real PID� The task also passes its real PID
so it can be controlled by the pvmd via signals�

So� pvmbeatask�� creates a TCP socket and does a proper connection dance with
the pvmd� They must each prove their identity to the other� to prevent a di�erent user
from spoo�ng the system� The pvmd and task each create a �le in �tmp owned and
writable only by their UID� They attempt to write in each others� �les then check their
own �les for change� If successful� have proved their identities� Note this authentication
is only as strong as the �lesystem and the authority of root on each machine�

A protocol serial number �TDPROTOCOL� in tdpro�h� is compared whenever a task
connects to its pvmd or another task� This number should be incremented whenever a
change in the protocol makes it incompatible with the previous version�

Disconnecting is much simpler� It can be done forcibly by a close from either end�
for example by exiting the task process� The function pvm exit�� performs a clean
shutdown� such that the process can be connected again later �it would get a di�erent
TID��

��	�	 Communication

We chose to base PVM communication on TCP and UDP Internet protocols� While
other� more appropriate� protocols exist� they aren�t as generally available� which would
limit portability of the system� Another concession is that the PVM protocol drivers run
as normal processes �pvmd and tasks�� without modi�cations to the operating system�
Naturally� the message�passing performance is degraded somewhat by this strategy�
It�s expensive to read timers and manage memory from user space� while extra context
switches and copy operations are incurred� Performance would be better if the code was
integrated into the kernel� or alternatively� if the network interface was made directly
available to processes� bypassing the kernel� However� when running on Ethernet� the
e�ects of this overhead seem to be minimal� Performance is determined more by the
quality of the network code in the kernel� When running on faster networks� direct
task�task routing improves performance by minimizing the number of hops�

This section explains where and how TCP and UDP are employed and describes
the PVM protocols built on them� There are three connections to consider� Between
pvmds� between a pvmd and its tasks� and between tasks�

��	�	�	 Pvmd�Pvmd Communication

PVM daemons communicate with one another through UDP sockets� As UDP is an
unreliable delivery service which can lose� duplicate or reorder packets� we need an
acknowledgement and retry mechanism� UDP also imposes a limit on the length of a
packet� which requires PVM to fragment long messages� Using UDP we built a reliable
sequenced packet delivery service� and on top of that a message layer� providing a
connection similar to a TCP stream� but with record bounds�

We considered using TCP� but three factors make it inappropriate� First� the

� � �

virtual machine must be able to scale to hundreds of hosts� Each open TCP connection
consumes a �le descriptor in the pvmd� and some operating systems limit the number
of open �les to as few as
�� A single UDP socket can send to and receive from any
number of remote UDP sockets� Next� a virtual machine composed of N hosts would
need up to N�N � ���� connections� which would be expensive to establish� Since the
identity of every host in the virtual machine is known� our protocol can be initialized
to the correct state without a connect phase� Finally� the pvmd�pvmd packet service
must be able to detect when foreign pvmds or hosts have crashed or the network has
gone down� To accomplish this� we need to set timeouts in the protocol layer� While
we might have used the TCP keepalive option� we don�t have adequate control over the
idle time between keepalives and timeout parameters�

All the parameters and default values for pvmd�pvmd communication are de�ned
in �le ddpro�h� Also de�ned there are the message codes for the various pvmd entry
points �DM XXX�� A serial number �DDPROTOCOL� is checked whenever a pvmd is added
to the virtual machine� It must be incremented whenever a change is made to the
protocol that makes it incompatible with previous versions�

The headers for packets and messages are shown in Figures �
 and ��� Multi�byte
values are sent in �network byte order�� that is� most signi�cant byte �rst�

Byte � � � �

���

$ Destination TID $

���

$ Source TID $

���

$ Sequence Number $ Ack Number $

���

$ $ $ AFDES $

$ $ $ CIAOO Unused $

$ $ $ KNTMM $

���

� �

Figure �
� Pvmd�pvmd Packet Header

The source and destination �elds hold the TIDs of the true source and �nal desti�
nation of packet� regardless of the route it takes�

Sequence and acknowledgement numbers start at � and increment to ���
�� then
wrap around to zero� They are initialized in the host table for new hosts so that the
connection doesn�t need to be explicitly established between pvmds�

The �ags bits are de�ned as follows�
SOM� EOM # Mark the �rst and last fragments �packets� of a message� Intervening

fragments have both bits cleared� These are used by tasks and pvmd to detect message
boundaries� When the pvmd refragments a packet in order to send it over a network
with a small MTU� it adjusts the SOM and EOM bits as necessary�

DAT # Means that data is contained in the packet and the sequence number is

� �� �

Byte � � � �

���

$ Message Code $

���

$ Message Encoding �or� Remote Wait Context Number $

���

� �

Figure ��� Message Header

valid� The packet� even if zero�length� should be delivered�
ACK # Means that the acknowledgement number �eld is valid� This bit may be

combined with the DAT bit to piggyback an acknowledgement on a data packet� Cur�
rently� however� the pvmd generates an acknowledgement packet for each data packet
as soon as it is received� in order to get more accurate round�trip timing data�

FIN # Signals that the pvmd is closing down the connection� A packet with the
FIN bit set �and DAT cleared� signals the �rst phase of an orderly shutdown� When
an acknowledgement arrives �ACK bit and ack number matching the sequence number
from the FIN packet�� a �nal packet is sent with both FIN and ACK bits set� If the
pvmd panics� �for example on a trapped segment violation� it tries to send a packet
with FIN and ACK bits set to every peer before it exits�

The state of a connection between pvmds is kept in the host table entry �struct
hostd�� The state of a packet is kept in its struct pkt� Packets waiting to be sent to
a host are queued in FIFO hd txq� Packets may originate in local tasks or the pvmd
itself� and are appended to this queue by the routing code� No receive queues are
used� because incoming packets are passed immediately through to other send queues
or reassembled into messages �or discarded�� When the message is fully reassembled�
the pvmd passes it to function netentry��� which dispatches it to the appropriate
entry point� Figure �� shows a diagram of packet routing inside the pvmd�

To improve performance over high�latency networks� the protocol allows multiple
outstanding packets on a connection� so two more queues are required� hd opq �and
global opq� hold lists of unacknowledged packets� hd rxq holds packets received out of
sequence until they can be accepted�

When it arrives at the destination pvmd� each packet generates an acknowledge�
ment packet back to the sender� The di�erence in time between sending a packet
and getting the acknowledgement back is used to estimate the round�trip time to
the foreign host� Each update is �ltered into the estimate according to formula�
hd rttn " ��� � hd rttn�� ! ��� � rtt� When the acknowledgement for a packet comes
back� it is removed from hd opq and discarded� Each unacknowledged packet has a
retry timer and count� and is resent until it is acknowledged by the foreign pvmd� The
timer starts at three times the estimated round�trip time� and doubles for each retry
until it reaches �� seconds� The round�trip time estimate is limited to nine seconds and
the backo� is bounded in order to allow at least � packets to be sent to a host before
giving up� After three minutes of resending with no acknowledgement� a packets gets

� �� �

expired�
If a packet expires due to timeout� the foreign host or pvmd is assumed to be down

or unreachable� and the local pvmd gives up on it �forever�� calling hostfailentry��

All the parameters and default values mentioned above are de�ned in �le ddpro�h�

��	�	�	 Pvmd�Task Communication

A task talks to its pvmd over a TCP connection� UDP might seem more appropriate�
as it is already a packet delivery service� whereas TCP is a stream protocol� requiring
us to recreate packet boundaries� Unfortunately UDP isn�t reliable� it can lose packets
even within a host� Since an unreliable delivery system requires a retry mechanism
�with timers� at both ends� and because one design assumption is that tasks can�t
be interrupted while computing to perform I�O� we�re forced to use TCP� Note� We
originally used UNIX�domain datagrams �analogous to UDP but used within a single
host� for the pvmd�task connection� While this appeared to be reliable� it depends on
the operating system implementation� More importantly� this protocol isn�t as widely
available as TCP�

��	�	�	 Pvmd�Task Protocol

The packet delivery system between a pvmd and task is much simpler than between
two pvmds because TCP o�ers reliable delivery� The pvmd and task maintain a FIFO
of packets destined for each other� and switch between reading and writing on the TCP
connection�

The main drawback with using TCP �as opposed to UDP� for the pvmd�task link is
that the number of system calls needed to transfer a packet between a task and pvmd
increases� Over UDP� a single sendto�� and recvfrom�� are required to transfer a
packet� Since TCP provides no record marks �to distinguish back�to�back packets from
one another�� we have to send the overall packet length along with the header� So
a packet can still be sent by a single write�� call but� when done naively must be
received by two read�� calls� the �rst to get the header and the second to get the data�

When there is a lot of tra	c on the pvmd�task connection� a simple optimization
can reduce the average number of read calls back to about one per packet� If� when
reading the packet body� the requested length of the read is increased by the size of
a packet header� it may succeed in getting both the body of current packet and and
header of the next packet at once� We have the header for the next packet for free
and can read the body with a single call to read� so the average number of calls is
reduced� Note� This was once implemented� but was removed while updating the code
and hasn�t yet been reintroduced�

The packet header is shown in Figure ��� No sequence numbers are needed� and
the only �ags are SOM and EOM � which are used as in the pvmd�pvmd protocol�

��	�	�	 Databufs

The pvmd and libpvm both need to manage large amounts of dynamic data� mainly
fragments of message text� often in multiple copies� In order to avoid copying� data is

� �
 �

Byte � � � �

���

$ Destination TID $

���

$ Source TID $

���

$ Packet Length $

���

$ $ $ $ $ $ ES$ $

$ $ $ $ $ $ OO$ Unused $

$ $ $ $ $ $ MM$ $

���

� �

Figure ��� Pvmd�Task Packet Header

refcounted� allocating a few extra bytes for an integer at the head of the data� A pointer
to the data itself is passed around� and the refcount maintenance routines subtract from
this pointer to access the refcount or free the block� When the refcount of a databuf is
decremented to zero� the block is freed�

��	�	�	 Message Fragment Descriptors

PVM features dynamic�length messages� which means that a message can be composed
without declaring its maximum length ahead of time� The pack functions allocate
memory in steps� using databufs to store the data� and frag descriptors to chain the
databufs together� Fragments are generally allocated with length equal to the largest
UDP packet sendable by the pvmd� Space is reserved at the beginning of each fragment
bu�er to allow writing message and packet headers in place before sending� The struct
frag used to keep fragments is de�ned in frag�h�

struct frag 	

struct frag �fr�link
 �� chain or �

struct frag �fr�rlink

char �fr�buf
 �� buffer or zero if master frag

char �fr�dat
 �� data

int fr�max
 �� size of buffer

int fr�len
 �� length of data

struct 	

int ref � �#
 �� refcount �of chain if master else of frag�

int dab � �
 �� buffer is a databuf

int spr � �
 �� sparse data �csz� lnc valid�

� fr�u

int fr�csz
 �� chunk size

int fr�lnc
 �� lead to next chunk

�

A frag holds a pointer �fr dat� to a strip of data in memory and its length �fr len��

� �� �

It also keeps a pointer �fr buf� to the allocated bu�er containing the strip� and the
length of the whole bu�er �fr max�� these are used to reserve space to prepend or
append data� A frag has forward and backward link pointers so it can be chained into
a list� this is how a message is stored�

Each frag keeps a count of active references to it� When the refcount of a frag
is decremented to zero� the frag descriptor is freed �and the underlying data refcount
decremented�� In the case where a frag descriptor is the head of a list� its refcount �eld
applies to the entire list� When it reaches zero� every frag in the list is freed�

��	�		 Packet Bu�ers

Packet descriptors are used to track message fragments inside the pvmd� Their struc�
ture is de�ned as follows�

struct pkt 	

struct pkt �pk�link
 �� queue or �

struct pkt �pk�rlink

struct pkt �pk�tlink
 �� scheduling queue or �

struct pkt �pk�trlink

int pk�src
 �� source tid

int pk�dst
 �� dest tid

int pk�flag
 �� flags

char �pk�buf
 �� buffer or zero if master pkt

int pk�max
 �� size of buffer

char �pk�dat
 �� data

int pk�len
 �� length of data

struct hostd �pk�hostd
 �� receiving host

int pk�seq
 �� seq num

int pk�ack
 �� ack num

struct timeval pk�rtv
 �� time to retry

struct timeval pk�rta
 �� next�retry accumulator

struct timeval pk�rto
 �� total time spent on pkt

struct timeval pk�at
 �� time pkt first sent

int pk�nrt
 �� retry count

�

The �elds pk buf� pk max� pk dat and pk len are used in the same ways as the
similarly named �elds of a frag� The additional �elds to track sparse data are not
needed�

Unlike a frag� a packet can only be referenced in one place� so it doesn�t have a
refcount� The underlying data may be multiply referenced� though� In addition to
data� pkts contain several �elds necessary for operation of the pvmd�pvmd protocol�
The pvmd�task protocol is much simpler� so the timer and sequence number �elds are
unused in pkts queued for tasks�

In function netinput�� in the pvmd� packets are received directly into a packet
bu�er long enough to hold the largest packet the pvmd can receive� To route a packet�
the pvmd simply chains it onto the end of the send queue for its destination� If the
packet has multiple destinations �see multicasting section�� the packet descriptor is

� �� �

replicated� counting extra references on the underlying databuf� After the last copy of
the packet is sent� the databuf is freed�

In some cases� the pvmd can receive a packet �from a task� that is too long for the
network interface of the destination host� or even the local pvmd� It refragments the
packet by replicating the packet descriptor �similar to above�� The pk dat and pk len

�elds of the descriptors are adjusted to cover successive chunks of the original packet�
with each chunk small enough to send� At send time� in netoutput��� the pvmd saves
under where it writes the packet header� sends the packet� then restores the data�

��	�	�	 Message Bu�ers

In comparison to libpvm� the message packing functions in the pvmd are very simple�
The message encoders�decoders handle only integers and strings� Integers occupy four
bytes each with bytes in network order �bits
����� followed by bits �
����� ����� Byte
strings are packed as an integer length �including the terminating null if ASCII strings��
followed by the bytes and zero to three bytes of zero to round the total length to a
multiple of four� In libpvm� the �foo� encoder vector is used when talking to the pvmd�
This encoding su	ces for the needs of the pvmd� which never needs to pass around
�oating�point numbers or long�short integers�

In the pvmd as in libpvm� a message is stored in frag bu�ers� and can grow dynam�
ically as more data is packed into it� The structure used to hold a message is�

struct mesg 	

struct mesg �m�link
 �� chain or �

struct mesg �m�rlink

int m�ref
 �� refcount

int m�len
 �� total length

int m�dst
 �� dst addr

int m�src
 �� src addr

int m�enc
 �� data encoding �for pvmd�task�

int m�cod
 �� type code

int m�wid
 �� wait serial �for pvmd�pvmd�

int m�flag

struct frag �m�frag
 �� master frag or � if we�re master mesg

struct frag �m�cfrag
 �� keeps unpack state

int m�cpos
 �� keeps unpack state

�

��	�	�	 Messages in the Pvmd

Functions pkint�� and pkstr�� append integers and null�terminated strings� respec�
tively� onto a message� The corresponding unpacking functions are upkint�� and
upkstr��� Unsigned integers are packed as signed ones� but are unpacked using
upkuint��� Another function� upkstralloc��� dynamically allocates space for the
string it unpacks� All these functions use lower�level functions bytepk�� and byteupk���
to write and read raw bytes to and from messages�

Messages are sent by calling function sendmessage��� which routes the message by
its destination address� If for a remote destination� message fragments are attached

� �� �

to packets and delivered by the packet routing layer� If the message is addressed
to the pvmd itself� sendmessage�� simply passes the whole message descriptor to
netentry��� the network message entry point� avoiding the overhead of the packet
layer� This loopback interface is used often by the pvmd� For example� if it schedules a
request and chooses itself as the target� it doesn�t have to treat the message di�erently�
It sends the message as usual and waits for a reply� which comes immediately� During
a complex operation� netentry�� may be reentered several times as the pvmd sends
itself messages� Eventually the stack is unwound and a reply goes to the originator�

When it packetizes a message� sendmessage�� prepends a message header �shown
in Figure ��� to the �rst fragment before handing it o�� The pvmd and libpvm use the
same header for messages� Code contains an integer tag �message type�� The second
�eld has di�erent interpretations to the pvmd and libpvm� Pvmds use the second �eld
to pass the wait ID �if any� zero if none� associated with the message �operation��
The usage of wait IDs was described earlier� Libpvm uses the second �eld to pass the
encoding style of the message� as it can pack messages in a number of formats� When
sending to another pvmd� sendmessage�� sets the second �eld to m wid� and when
sending to a task� sets it to m cod ��� or �foo���

Incoming messages are reassembled from packets by loclinpkt�� if from a task
or by netinpkt�� if from another pvmd� Once reassembled� the appropriate entry
point is called �loclentry��� netentry�� or schedentry���� Using the tag in the
message header� these functions multiplex control to one of the dm xxx��� tm xxx�� or
sm xxx�� entry points if the tag has a legal value� otherwise the message is discarded�
Each of the entry points performs a speci�c function in the pvmd� In general it unpacks
parameters from the message body� takes some action �or looks up some data�� and
generates a response message�

Pvmds take almost no autonomous action� rather syscalls initiated by tasks are
what cause things to happen� The only functions that pvmds do automatically are to
ping other pvmds to check network health and delete down hosts from the machine
con�guration�

A graph of packet and message routing inside the pvmd is shown in Figure ���

��	�	�	 Message Encoders

To allow the PVM programmer to manage message bu�ers� for example to save� recall
or get information about them� they are labeled with integer message IDs �MIDs�� Each
message bu�er has a unique MID� which is its index in the message heap� allowing it to
be located quickly� When a message bu�er is freed� its MID is recycled� The message
heap starts out small and is extended as it runs out of free MIDs�

Libpvm provides a set of functions for packing typed data into messages and re�
covering it at the other end� Any primitive data type can be packed into a message�
in one of several encoding formats� Each message bu�er holds a vector of functions
for encoding�decoding all the primitive types �struct encvec�� initialized when the
bu�er is created� So� for example� to pack a long integer the generic pack function
pvm pklong�� calls �ub codef��enc long��� of the current pack bu�er�

There are currently �ve sets of encoders �and decoders� de�ned� The encoder�decoder

� �� �

work()

netinput()

loclinput()

loclinpkt()

netinpkt() netentry()

loclentry()

schentry()

sendmessage() mesg_to_task()

pkt_to_host()

netoutput()

locloutput()

t_txq

hd_txq

hd_txq

t_txq

Function call

Packet
Message

Figure ��� Packet and Message Routing

vector used in a bu�er is determined by the format parameter passed to pvm mkbuf��

when creating a new message� and by the encoding �eld of the message header when
receiving a message� The two most commonly used ones pack data into �raw� �host
native� and �default� �XDR� formats� �Inplace� encoders pack descriptors of the data
instead of the data itself� The data is left in place until the message is actually sent�
There are no inplace decoders� these entries call a function that always returns an error�
�Foo� encoders can pack only integers and strings� and must be used when composing a
message for the pvmd� Finally� �alien� decoders are installed when a received message
can�t be unpacked because its format doesn�t match any of the decoders available in
the task� This allows the message to be held or forwarded� but any attempt to read
data from it will result in an error�

One drawback to using encoder vectors is that� since they �touch� every function for
every format� the linker must include all the functions out of libpvm in every executable�
even if they�re not used�

��	�	��	 Packet Handling Functions

Four functions handle all packet tra	c into and out of libpvm�
Mroute�� is called by higher�level functions such as pvm send�� and pvm recv�� to

send and receive messages� It establishes any necessary routes before calling mxfer���
Mxfer�� polls for messages� possibly blocking until one is received or until a speci�ed

timeout� It calls mxinput�� to copy fragments into the task and assemble them into
messages� In the generic version of PVM� mxfer�� uses select�� to poll all routes

� �� �

�sockets� in order to �nd those ready for input or output�
Pvmmctl�� is called by mxinput�� whenever a control message is received� Control

messages are covered in the next section�

��	�	��	 Control Messages

Control messages are sent like regular messages to a task� but have tags in a reserved
space �between TC FIRST and TC LAST�� When the task downloads a control message�
instead of queueing it for receipt� it passes the message to the pvmmctl�� function�
and then discards it� Like loclentry�� in the pvmd� pvmmctl�� is an entry point in
the task� causing it to take some action� The main di�erence is that control messages
can�t always be used to get the task�s attention� since it must be in mxfer��� sending
or receiving in order to get them�

The following control message tags are de�ned� The �rst three are used by the
direct routing mechanism which is discussed in the next section� In the future control
messages may be used to do things such as set debugging and tracing masks in the task
as it runs�

Tag Meaning

TC
CONREQ Connection request
TC
CONACK Connection ack
TC
TASKEXIT Task exited�doesn�t exist
TC
NOOP Do nothing
TC
OUTPUT Claim child stdout data

��	�	��	 Message Direct Routing

Direct routing allows one task to send messages to another through a TCP link� avoiding
the overhead of copying them through the pvmds� This mechanism is implemented
entirely in libpvm� by taking advantage of the notify and control message facilities�

By default� any message sent to another task is routed to the pvmd� which forwards
it to the destination� If direct routing is enabled �pvmrouteopt " PvmRouteDirect�
when a message �addressed to a task� is passed to mroute��� it attempts to create a
direct route if one doesn�t already exist� The route may be granted or refused by the
destination task� or fail �if the destination doesn�t exist�� The message and route �or
default route� are then passed to mxfer���

Libpvm maintains a protocol control block �struct ttpcb� for each active or denied
connection� in list ttlist� To request a connection� mroute�� makes a new ttpcb and
creates and binds a socket� It sends a TC CONREQ control message to the destination
via the default route� At the same time� it sends a TM NOTIFY message to the pvmd�
to be noti�ed if the destination task exits� with closure �message tag� TC TASKEXIT�
Then it puts the ttpcb in TTCONWAIT state� and waits until the state of the ttpcb
changes to something other than TTCONWAIT� calling mxfer�� in blocking mode
repeatedly to receive messages�

When the destination task enters mxfer��� for example to receive a message� it gets
the TC CONREQ message� If its routing policy �pvmrouteopt% " PvmDontRoute�
and libpvm implementation allow a direct connection� and it has resources available�

� �� �

and the protocol version �TDPROTOCOL� in the request matches its own� it grants
the request� It makes a ttpcb with state TTGRNWAIT� creates and binds a socket and
listens on it� then replies with a TC CONACK message� If the destination denies the
connection� it creates a ttpcb with state TTDENY and nacks with a TC CONACK
message� The originator receives the TC CONACK message� and either opens the
connection �state " TTOPEN� or marks the route denied �state " TTDENY ��
Finally� mroute�� passes the original message to mxfer��� which sends it� Denied
connections must be cached in order to prevent repeated negotiation�

If the destination doesn�t exist� the TC CONACKmessage never arrives because the
TC CONREQ message is silently dropped by the pvmds� However� the TC TASKEXIT
message generated by the notify system arrives in its place� and the ttpcb state is set
to TTDENY�

This connect scheme also works if both ends try to establish a connection at
the same time� They both enter TTCONWAIT� and when they receive each others�
TC CONREQ messages� they go directly to the TTOPEN state� The state diagram
for a connection is shown in Figure ���

OPEN
link is up

waiting to free
PCB structure

DEAD

CONWAIT
have requested
expect ack or
crossed request

GRNWAIT
have granted
must accept() when other
connects

DENY
connection denied;
do not try again

(no PCB)

receive
TASKEXIT

socket connects,
accept()

mroute()
cleans up

receive
CONACK(NACK)

receive CONREQ
make ttpcb, socket
send CONGRN
listen()

make ttpcb, socket
send CONREQ
post TaskExit notify

receive
CONACK(ACK)
or CONREQ,
connect()

read EOF on sock,
bad write,
receive TASKEXIT

receive
TASKEXIT

Figure ��� Task�Task Connection State Diagram

� � �

��	�	��	 Multicasting

Libpvm provides a function� pvm mcast��� that sends a message to multiple destinations
simultaneously� hopefully in less time than several calls to pvm send��� The current
implementation only routes multicast messages through the pvmds and uses a ��N
fanout to simplify the fault�tolerance issues� The problem is to ensure that failure of a
host doesn�t cause the loss of any messages �other than ones to that host�� The packet
routing layer of the pvmd cooperates with the libpvm to multicast a message�

To form a multicast address TID �or GID�� the G bit is set �refer to Figure ���
Each pvmd owns part of the GID�space� with the H �eld set to its host index �as with
TIDs�� The L �eld is assigned by a counter that is incremented for each multicast�
So� a new multicast address is used for each message� then recycled� The pvmd uses a
struct mca to keep a record of active multicasts�

To initiate a multicast� the task sends a TM MCA message to its pvmd� containing
a list of all recipient tids� In tm mca��� the pvmd creates a new multicast descriptor and
GID� It sorts them� removes bogus ones and duplicates and caches the list of addresses
in the mca� Next� to each destination pvmd in the multicast list �ones with destination
tasks�� it sends a DM MCA message containing the destinations on that host� Finally�
the GID is sent back to the task in the TM MCA reply message�

The task now sends the multicast message to the pvmd� addressed to the multicast
address� As each packet arrives at the pvmd� the routing layer replicates it once for
each local destination �tasks on the same host�� and once for each foreign pvmd� When
a multicast packet arrives at a destination pvmd� it is again replicated and delivered
to each destination task� The pvmd�pvmd communication preserves packet order� so
the multicast address and data packets arrive in order at each destination�

As it forwards multicast packets� each pvmd eavesdrops on the header �ags� When
it sees a packet with bit EOM set� the pvmd knows it has reached the end of the
multicast message� and �ushes the mca�

��	�	 Environment Variables

Experience seems to indicate that inherited environment �UNIX environ� is useful to
an application� For example� environment variables can be used to distinguish a group
of related tasks or set debugging variables�

PVM makes increasing use of environment� and will probably eventually support it
even on machines where the concept is not native� For now� it allows a task to export
any part of environ to tasks spawned by it� Setting variable PVM EXPORT to the names
of other variables causes them to be exported through spawn� For example� setting�

PVM�EXPORT�DISPLAY�SHELL

exports the variables DISPLAY and SHELL to children tasks �and PVM EXPORT too��

��		 Standard Input and Output

Each task� except for anonymous ones �not started by spawn� inherits a stdout sink
from its parent� Any output generated by the task is sent to this device� packed into
PVM messages� The sink is a � TID� code � pair� messages are sent to the TID with

� �� �

tag equal to the speci�ed code� The tag helps the message sink task select messages to
receive and identify the source �since it may have no prior knowledge of the task from
which the message originates��

Output messages for a task come from its pvmd� since it reads the pipe connected
to the task�s stdout� If the output TID is set to zero �the default for a task with no
parent�� the messages go to the master pvmd� where they are written on its error log�

Children spawned by a task inherit its output sink� Before the spawn� the parent
can use pvm setopt to alter the output TID or code� This doesn�t a�ect where the
output of the parent task itself goes� A task may set output�TID to one of three things�
The value inherited from its parent� its own TID or zero� It can set output�code only
if outputTID is set to its own TID� This means that output can�t be assigned to an
arbitrary task� It�s not clear this restriction is a good one�

Four types of messages are sent to an output sink� The message body formats for
each type are�

Spawn�

�code� 	 �� task has been spawned

int tid� �� task id

int ��� �� signals spawn

int ptid �� TID of parent

�

Begin�

�code� 	 �� first output from task

int tid� �� task id

int ��� �� signals task creation

int ptid �� TID of parent

�

Output�

�code� 	 �� output from a task

int tid� �� task id

int count� �� length of output fragment

char datacount� �� output fragment

�

EOF�

�code� 	 �� last output from a task

int tid� �� task id

int � �� signals EOF

�

The �rst two items in the message body are always the task ID and output count�
which distinguishes between the four message types� For each task� one message each
with count equal to ��� ��� and will be sent� along with zero or more messages with
count � � Types ��� � and will be received in order� as they originate from the
same source �the pvmd of the target task�� Type �� originates at the pvmd of the
parent task� so it can be received in any order relative to the others�

� �� �

The output sink is expected to understand the di�erent types of messages and use
them to know when to stop listening for output from a task �EOF� or group of tasks
�global EOF�� The messages are designed this way to prevent race conditions when
a task spawns another task� then immediately exits� The output sink might get the
EOF message from the �rst task and decide the group is �nished� only to �nd more
output later from second task� But either the �� message or the �� message for the
second task must arrive before the message from the �rst task� The states of a task
as inferred from output messages received are shown in Figure ���

−1

−1

−1

−2

−2

>0

>0
0

0

Unstarted

Exited

Figure ��� Output States of a Task

The libpvm function pvm catchout�� uses this output collection feature to put the
output from children of a task into a �le �for example its own stdout stream��

It sets output TID to its own task ID� and the output code to TC OUTPUT� which
is a control message� Output from children and grandchildren tasks is collected by
the pvmds and sent to the task� where it is received by pvmmctl�� and printed by
pvmclaimo���

��	�	 Tracing

PVM includes a task tracing system built into the libpvm library� which records the
parameters and results of all calls to libpvm functions� This description is sketchy
because this is the release of the tracing code�

Libpvm generates trace�event messages when any of the functions is called� and
sends the messages to its inherited trace data sink� Tasks also inherit a trace mask�
which is used to enable tracing per function� The mask is passed as a hexadecimal
string in environment variable PVMTMASK� Trace data isn�t generated at all if tracing
isn�t enabled �since it�s expensive��

Constants related to interpreting trace messages are de�ned in public header �le

� �
 �

pvmtev�h� Trace data from a task is collected in a manner similar to the output
redirection discussed above� Like the type ��� �� and messages which bracket
output from a task� TEV SPNTASK� TEV NEWTASK and TEV ENDTASK trace messages are
generated by the pvmds to bracket trace messages�

��	�	 Console Internals

The PVM console is used to manage the virtual machine # to recon�gure it or start
and stop processes� In addition� it�s an example program that makes use of most of
the libpvm functions�

The console uses pvm getfds�� and select�� to check for input from the keyboard
and messages from the pvmd simultaneously� Keyboard input is passed to the command
interpreter� while messages contain noti�cation �for example HostAdd� or output from
a task�

The console can use output redirection �described earlier� to collect output from
spawned tasks� Normally� when spawning a task the console sets output�TID to zero�
so any output goes to the default sink �for example� the master pvmd log �le�� Using
spawn �ags �� or ��� causes the console to set output�TID to itself and output�code
to a unique �job� number �assigned by a counter��

Unless some intermediate task redirects the output again� when output is generated
by child tasks or their children� it is sent back to the console� By assigning a unique code
to each task spawned� the console can maintain separate �jobs� or �process groups��
which are sets of tasks with matching output codes� Most of the code to handle output
redirection is in the console� while only a few small changes were made to the pvmd
and libpvm� We chose this route because it keeps the complexity out of the core of the
system�

The console has a tickle command� which in turn calls libpvm function pvm tickle���
This is used to set the pvmd debug mask and dump the contents of various data struc�
tures� For example� the command tickle � �� sets the pvmd debug mask to x��
�bits
 and �� and tickle � dumps the current host table �to the pvmd log �le��
pvm tickle�� is an undocumented function in libpvm and not considered an o	cial
part of the PVM interface� Nevertheless� if you wish to use this function� the options
for tickle can be found by typing help tickle in the console�

��	�	 Resource Limitations

Resource limits imposed by the operating system and available hardware are in turn
passed to PVM applications� Whenever possible� PVM tries to avoid setting explicit
limits� rather it returns an error when resources are exhausted� Naturally� competition
between users on the same host or network a�ects some limits dynamically�

��	�	�	 In the PVM Daemon

How many tasks each pvmd can manage is limited by two factors� The number of
processes allowed a user by the operating system� and the number of �le descriptors
available to the pvmd� The limit on processes is generally not an issue� since it doesn�t

� �� �

make sense to have a huge number of tasks running on a uniprocessor machine�
Each task consumes one �le descriptor in the pvmd� for the pvmd�task TCP stream�

Each spawned task �not ones connected anonymously� consumes an extra descriptor�
since its output is read through a pipe by the pvmd �closing stdout and stderr in the
task would reclaim this slot�� A few more �le descriptors are always in use by the pvmd
for the local and network sockets and error log �le� For example� with a limit of ��
open �les� a user should be able to have up to
 tasks running per host�

The pvmd may become a bottleneck if all these tasks try to talk to one another
through it�

The pvmd uses dynamically allocated memory to store message packets en route
between tasks� Until the receiving task accepts the packets� they accumulate in the
pvmd in a FIFO� No �ow control is imposed by the pvmd # it will happily store all the
packets given to it� until it can�t get any more memory� If an application is designed
so that tasks can keep sending even when the receiving end is o� doing something else
and not receiving� the system will eventually run out of memory�

��	�	�	 In the Task

As with the pvmd� a task may have a limit on the number of others it can connect
to directly� Each direct route to a task has a separate TCP connection �which is
bidirectional�� and so consumes a �le descriptor� Thus with a limit of �� open �les�
a task can establish direct routes to about � other tasks� Note this limit is only in
e�ect when using task�task direct routing� Messages routed via the pvmds only use the
default pvmd�task connection�

The maximum size of a PVM message is limited by the amount of memory available
to the task� Because messages are generally packed using data existing elsewhere in
memory� and they must reside in memory between being packed and sent� the largest
possible message a task can send should be somewhat less than half the available
memory� Note that as a message is sent� memory for packet bu�ers is allocated by
the pvmd� aggravating the situation� Inplace message encoding alleviates this problem
somewhat� because the data is not copied into message bu�ers in the sender� However�
on the receiving end� the entire message is downloaded into the task before the receive
call accepts it� possibly leaving no room to unpack it�

In a similar vein� if many tasks send to a single destination all at once� the des�
tination task or pvmd may be overloaded as it tries to store the messages� Keeping
messages from being freed when new ones are received by using pvm setrbuf�� also
uses up memory�

These problems can sometimes be avoided by rearranging the application code� for
example to use smaller messages� eliminate bottlenecks� and process messages in the
order in which they are generated�

��	��	 Multiprocessor Ports

This section describes the technical details of the PVMmultiprocessor ports to message�
passing multicomputers as well as shared�memory systems� The implementations and
related issues are discussed to assist the experienced programmers who are interested

� �� �

in porting PVM to other multiprocessor platforms�
PVM provides an interface that hides the system details from the programmer�

PVM applications will run unchanged between multicomputer and workstations as
long as �le I�O and the multicomputer�s memory limitations are respected� The only
thing that needs to be changed is the Make�le� The user does not have to know how
to allocate nodes on the system or how to load a program onto the nodes� since PVM
takes care of these tasks�

A single PVM daemon runs on the iPSC���� CM��� and T
D MPP systems and
serves as the gateway to the outside world� On some sytems this requires the pvmd be
run on a front�end machine and to be built with a di�erent compiler� On other MPP
systems such as the Paragon and the IBM SP�� one pvmd runs on each computational
node� On most shared�memory systems the operating system selects a processor to run
the pvmd� and may even migrate the pvmd�

Because the Paragon OS creates proxy processes when executing scripts� it is gen�
erally not possible to �add� the Paragon to a virtual machine� Instead� the user should
start PVM on the Paragon and then �add� outside hosts� For example� to start PVM
on a four node partition type�

pexec �PVM
ROOT�lib�PGON�pvmd� �sz �

pvm

At this point the user can add other hosts or run a PVM application�
Note that a useful hack for Paragon sites running PVM is to modify the PVM ROOT�lib�pvmd

script to account for the fact that the PVM daemon starts in the compute partition�
To keep the PVM daemon from trying to grab the entire compute partition� the penul�
timate line of this script can be modi�ed to something like�

exec �PVM
ROOT�lib��PVM
ARCH�pvmd� �pn (whoami(��

This hack forces a Paragon user to create a speci�cally named partition to run PVM in�
if the partition does not exist then the daemon startup will fail� Such local modi�cations
to the Paragon pvmd script can be done on a site�wide or per�user basis to suit the
needs of PVM users or the Paragon system administrator�

��	��	�	 Message Passing Architectures

On MPPs where message�passing is supported by the operating system� the PVM
message�passing functions are translated into the native send and receive system calls�
Since the TID contains the task�s location� the messages to be sent directly to the
target task� without any help from the daemon�

When a task calls pvm spawn��� the daemon handles the request and loads the new
processes onto the nodes� The way PVM allocates nodes is system�dependent� On the
CM�� the entire partition is allocated to the user when he logs on� On the iPSC����
PVM will get a subcube big enough to accommodate all the tasks to be spawned� only
tasks spawned together reside in the same subcube� �Note the NX operating system
limits the number of active subcubes system wide to �� pvm spawn�� will fail when
this limit is reached or when there are not enough nodes available�� In the case of the

� �� �

Paragon� PVM uses the default partition unless a di�erent one is speci�ed when pvmd
is invoked� Pvmd and the spawned tasks form one giant parallel application� The
user can set the appropriate NX environment variables such as NX DFLT SIZE before
starting PVM� or he can specify the equivalent command�line arguments to pvmd �i�e��
pvmd �sz
���

PVM uses the native asynchronous message�passing primitives whenever possible�
One drawback to this choice is that the operating system can run out of message handles
or bu�er space very quickly if a lot of messages are sent at once� In this case� PVM will
be forced to switch to synchronous send� To improve performance� a task should call
pvm send�� as soon as the data become available� so �hopefully� when the other task
calls pvm recv�� the message will already be in its bu�er� PVM bu�ers one incoming
packet between calls to pvm send���pvm recv��� A large message� however� is broken
up into many �xed�size fragments during packing� and each piece is sent separately� The
size of these fragments is set by MAXFRAGSIZE in pvmmimd�h� Bu�ering one of these
fragments won�t do much good unless pvm send�� and pvm recv�� are synchronized�

��	��	�	 Shared�Memory Architectures

In the shared�memory implementation� each task owns a shared bu�er created with a
shmget�� �or equivalent� system call� The task ID is used as the �key� to the shared
segment� A task communicates with other tasks by mapping their message bu�ers into
its own memory space�

To enroll in PVM� the task �rst writes its UNIX process ID into pvmd�s incoming
box� It then looks for the assigned task ID in pvmd�s pid�tid table�

The message bu�er is divided into pages� each holds one fragment� The fragment
size is therefore equal to the system page size subtracted by the size of the shared�
memory header� which contains the lock and the reference count� The �rst page is the
incoming box� while the rest of the pages hold outgoing fragments� To send a message�
the task �rst packs the message body into its bu�er� then delivers the message header�
which contains the sender�s TID and the location of the data� to the incoming box
of the intended recipient� When pvm recv�� is called� PVM checks the incoming box�
locates and unpacks the messages �if any�� and decreases the reference count so the
space can be reused� If a task is not able to deliver the header directly because the
receiving box is full� it will block until the other task is ready�

Inevitably some overhead will be incurred when a message is packed into and un�
packed from the bu�er� as is the case with all other PVM implementations� If the bu�er
is full� then the data must �rst be copied into a temporary bu�er in the process�s private
space and later transferred to the shared bu�er�

Memory contention is usually not a problem� Each process has its own bu�er and
each page of the bu�er has its own lock� Only the page being written to is locked�
and no process should be trying to read from this page because the header has not
been sent out� Di�erent processes can read from the same page without interfering
with each other� so multicasting will be e	cient �they do have to decrease the counter
afterwards� resulting in some contention�� The only time contention occurs is when
two or more processes trying to deliver the message header to the same process at the

� �� �

same time� But since the header is very short �� bytes�� such contention should not
cause any signi�cant delay�

To minimize the possibility of page faults� PVM attempts to use only a small number
of pages in the message bu�er and recycle them as soon as they have been read by all
intended recipients�

Once a task�s bu�er has been mapped� it will not be unmapped� unless the system
limits the number of mapped segments� This saves time for any subsequent message
exchanges with the same process�

��	��	�	 Functions to Port

Seven functions serve as the MPP �interface� for PVM� The implementation of these
functions is system dependent� and the source code should be kept in the �le pvmdmimd�c
�message�passing� or pvmdshmem�c �shared�memory�� We give a brief description of
each of these functions below�

void mpp�init�int argc� char ��argv�

Initialization� Called once when PVM is started� Arguments argc and argv

are passed from pvmd main���

int mpp�load�int flags� char �name� char �argv� int count� int �tids� int ptid�

Create partition if necessary� Load executable onto nodes
 create new

entries in task table� encode node number and process type into task IDs�

flags� exec options

name� executable to be loaded

argv� command line argument for executable

count� number of tasks to be created

tids� array to store new task IDs

ptid� parent task ID�

void mpp�output�struct task �tp� struct pkt �pp�

Send all pending packets to nodes via native send� Node number and process

type are extracted from task ID�

tp� destination task

pp� packet�

int mpp�mcast�struct pkt pp� int �tids� int ntask�

Global send�

pp� packet

tids� list of destination task IDs

ntask� how many�

int mpp�probe��

Probe for pending packets from nodes �non�blocking�� Returns � if packets

are found� otherwise ��

void mpp�input��

Receive pending packets �from nodes� via native receive�

void mpp�free�int tid�

� �� �

Remove node�process�type from active list�

tid� task ID�

��	��	 Debugging the PVM Source

To help catch memory allocation errors in the system code� the pvmd and libpvm use
a sanity�checking library called imalloc� Imalloc functions are wrappers for the regular
libc functions malloc��� realloc�� and free��� Upon detecting an error� the imalloc
functions abort the program so the fault can be traced�

The following checks and functions are performed by imalloc�

�� The length argument to malloc is checked for insane values� A length of zero is
changed to one so it succeeds�

�� Each allocated block is tracked in a hash table to detect when free�� is called
more than once on a block or on something not from malloc���

� I malloc�� and i realloc�� write pads �lled with a pseudo�random pattern
outside the bounds of each block� which are checked by i free�� to detect when
something writes past the end of a block�

�� I free�� zeros each block before it frees it so further references may fail and
make themselves known�

�� Each block is tagged with a serial number and string to indicate its use� The
heap space can be dumped or sanity�checked at any time by calling i dump���
This helps �nd memory leaks�

Since the overhead of this checking is quite severe� it is disabled at compile time by
default� De�ning USE PVM ALLOC in the source Make�le�s� switches it on�

The pvmd and libpvm each have a debugging mask that can be set to enable logging
of various information� Logging information is divided up into classes� each of which
is enabled separately by a bit in the debug mask� The pvmd command line option �d

sets the debug mask of the pvmd to the �hexadecimal� value speci�ed� the default is
zero� Slave pvmds inherit the debug mask of the master at the time they are started�
The debug mask of a pvmd can be set at any time using the console tickle command
on that host� The debug mask in libpvm can be set in the task with pvm setopt���

Note� The debug mask is not intended for debugging application programs�
The pvmd debug mask bits are de�ned in ddpro�h� and the libpvm bits in lpvm�c�

The meanings of the bits are not well de�ned and are subject to change� as they�re
intended to be used when �xing or modifying the pvmd or libpvm� Presently� the bits
in the debug mask correspond to�

� �� �

Name bit debug messages about

pkt � packet routing
msg � message routing
tsk � task creation�exit
slv � slave pvmd con�guration
hst � host table updates
sel � select loop in pvmd �below packet routing layer�
net � network twiddling
mpp � mpp related options
sch � scheduler interface

The pvmd includes several registers and counters to sample certain events� such
as the number of calls made to select�� or the number of packets refragmented by
the network code� These values can be computed from a debug log� but the counters
have less adverse impact on the performance of the pvmd than would generating a
huge log �le� The counters can be dumped or reset using the pvm tickle�� function
or the console tickle command� The code to gather statistics is normally switched out
at compile�time� To enable it� edit the make�le and add �DSTATISTICS to the compile
options�

��� Support

Several avenues exist for getting help with using PVM� A PVM bulletin board exists
on the Internet for users to exchange ideas� tricks� successes and problems� The news
group name is comp�parallel�pvm� Several vendors including Cray Research� Convex�
SGI� IBM� Intel� DEC� and Thinking Machines have decided to supply and support
PVM software on their systems� Several software companies have also sprung up to
o�er user installation and support for PVM� The PVM developers also answer mail as
time permits� PVM problems or questions can be sent to pvm�msr�epm�ornl�gov for
a quick and friendly reply� The �rst annual PVM User�s Group meeting was held in
Knoxville in May ���
� The slides from this meeting are available in postscript form
by ftp from netlib��cs�utk�edu in the pvm
�ug directory�

��� References

��� Beguelin� Dongarra� Geist� Manchek� Sunderam A User�s Guide to PVM �Parallel
Virtual Machine� ORNL�TM������� July �����

��� T� Green� J� Pasko DQS ��x�
� Proceedings of Cluster Workshop ��
 at SCRI
Florida State University� Dec� ���
�

�
� M� Litzkow� M� Livny� and M� Mutka� Condor & A hunder of idle workstations� In
Proceedings of the Eighth Conference on Distributed Computing Systems� San Jose�
California� June �����

��� R� Manchek PVM Design Master�s Thesis University of Tennessee� June �����

� � �

��� Platform Computing Corporation �
 College St� Suite

� Toronto Ontario�

��� B� Schmidt� V� Sunderam Empirical Analysis of Overheads in Cluster Environments
Concurrency� Practice and Experience � ���� pp ��
� February �����

� �� �

��� Appendix A� Reference pages for PVM � routines

This appendix contains an alphabetical listing of all the PVM
 routines� Each routine
is described in detail for both C and Fortran use� There are examples and diagnostics
for each routine�

� �� �

pvmfaddhost�� pvm addhosts��

Adds one or more hosts to the virtual machine�

Synopsis

C int info � pvm addhosts� char ��hosts& int nhost& int �infos �

Fortran call pvmfaddhost� host& info �

Parameters

hosts # an array of pointers to character strings containing the
names of the machines to be added�

nhost # integer specifying the number of hosts to be added�

infos # integer array of length nhost which contains the status code
returned by the routine for the individual hosts� Values less
than zero indicate an error�

host # character string containing the name of the machine to be
added�

info # integer status code returned by the routine� Values less than
nhost indicate partial failure� values less than � indicate
total failure�

Discussion

The routine pvm addhosts adds the list of computers pointed to in hosts to the
existing con�guration of computers making up the virtual machine� If pvm addhosts
is successful info will be equal to nhost� Partial success is indicated by �
�"info�nhost� and total failure by info� �� The array infos can be checked
to determine which host caused the error�

The Fortran routine pvmfaddhost adds a single host to the con�guration with
each call�

If a host fails� the PVM system will continue to function� The user can use this
routine to increase the fault tolerance of the PVM application� The status of
hosts can be requested by the application using pvm mstat and pvm con�g� If
a host has failed it will be automatically deleted from the con�guration� Using
pvm addhosts a replacement host can be added by the application� It is still
the responsibility of the application developer to make the application tolerant
of host failure� Another use of this feature would be to add more hosts as they
become available� for example on a weekend� or if the application dynamically
determines it could use more computational power�

Examples

� �
 �

C�

static char �hosts�� � !

�sparky�&

�thud�cs�utk�edu�&

"'

info � pvm
addhosts� hosts& �& infos �'

Fortran�
CALL PVMFADDHOST� azure & INFO �

Errors

The following error conditions can be returned by pvm addhosts

Name Possible cause

PvmBadParam giving an invalid argument value�

PvmAlready already been added�

PvmSysErr local pvmd is not responding�

The following error conditions can be returned in infos

Name Possible cause

PvmBadParam bad hostname syntax�

PvmNoHost no such host�
PvmCantStart failed to start pvmd on host�

PvmDupHost host already in con�guration�

PvmBadVersion remote pvmd version doesn�t match�

PvmOutOfRes PVM has run out of system resources�

� �� �

pvmfbarrier�� pvm barrier��

Blocks the calling process until all processes in a group have called it�

Synopsis

C int info � pvm barrier� char �group& int count �

Fortran call pvmfbarrier� group& count& info �

Parameters

group # character string group name� The group must exist and the
calling process must be a member of the group�

count # integer specifying the number of group members that must
call pvm barrier before they are all released� Though not
required� count is expected to be the total number of mem�
bers of the speci�ed group�

info # integer status code returned by the routine� Values less
than zero indicate an error�

Discussion

The routine pvm barrier blocks the calling process until count members of the
group have called pvm barrier� The count argument is required because processes
could be joining the given group after other processes have called pvm barrier�
Thus PVM doesn�t know how many group members to wait for at any given in�
stant� Although count can be set less� it is typically the total number of members
of the group� So the logical function of the pvm barrier call is to provide a group
synchronization� During any given barrier call all participating group members
must call barrier with the same count value� Once a given barrier has been suc�
cessfully passed� pvm barrier can be called again by the same group using the
same group name�

As a special case if count equals �� then PVM will use the value of pvm gsize��
i�e� all the group members� This case is useful after a group is established and
not changing during an application�

If pvm barrier is successful� info will be � If some error occurs then info will
be � �

� �� �

Examples

C�
inum � pvm
joingroup� �worker� �'

�

�

info � pvm
barrier� �worker�& � �'

Fortran�

CALL PVMFJOINGROUP� shakers & INUM �

COUNT � �	

CALL PVMFBARRIER� shakers & COUNT& INFO �

Errors

These error conditions can be returned by pvm barrier

Name Possible cause

PvmSysErr pvmd was not started or has crashed�

PvmBadParam giving a count � ��

PvmNoGroup giving a non�existent group name�

PvmNotInGroup calling process is not in speci�ed group�

� �� �

pvmfbcast�� pvm bcast��

broadcasts the data in the active message bu�er�

Synopsis

C int info � pvm bcast� char �group& int msgtag �

Fortran call pvmfbcast� group& msgtag& info �

Parameters

group # character string group name of an existing group�

msgtag # integer message tag supplied by the user� msgtag should be
�" � It allows the user�s program to distinguish between
di�erent kinds of messages �

info # integer status code returned by the routine� Values less
than zero indicate an error�

Discussion

The routine pvm bcast broadcasts a message stored in the active send bu�er to
all the members of group� In PVM
�� the broadcast message is not sent back to
the sender� Any PVM task can call pvm bcast��� it need not be a member of the
group� The content of the message can be distinguished by msgtag� If pvm bcast
is successful� info will be � If some error occurs then info will be � �

pvm bcast is asynchronous� Computation on the sending processor resumes as
soon as the message is safely on its way to the receiving processors� This is
in contrast to synchronous communication� during which computation on the
sending processor halts until a matching receive is executed by all the receiving
processors�

pvm bcast �rst determines the tids of the group members by checking a group
data base� A multicast is performed to these tids� If the group is changed during
a broadcast the change will not be re�ected in the broadcast� Multicasting is
not supported by most multiprocessor vendors� Typically their native calls only
support broadcasting to all the user�s processes on a multiprocessor� Because of
this omission� pvm bcast may not be an e	cient communication method on some
multiprocessors�

� �� �

Examples

C�
info � pvm
initsend� PvmDataRaw �'

info � pvm
pkint� array& �	& � �'

msgtag � � '

info � pvm
bcast� �worker�& msgtag �'

Fortran�

CALL PVMFINITSEND� PVMDEFAULT �

CALL PVMFPKFLOAT� DATA& �		& �& INFO �

CALL PVMFBCAST� worker & �& INFO �

Errors

These error conditions can be returned by pvm bcast

Name Possible cause

PvmSysErr pvmd was not started or has crashed�

PvmBadParam giving a negative msgtag�

PvmNoGroup giving a non�existent group name�

� �� �

pvmfbu�nfo�� pvm bu�nfo��

returns information about the requested message bu�er�

Synopsis

C int info � pvm
bufinfo� int bufid& int �bytes&

int �msgtag& int �tid �

Fortran call pvmfbufinfo� bufid& bytes& msgtag& tid& info �

Parameters

bufid # integer specifying a particular message bu�er identi�er�

bytes # integer returning the length in bytes of the entire message�

msgtag # integer returning the message label�

tid # integer returning the source of the message�

info # integer status code returned by the routine� Values less
than zero indicate an error�

Discussion

The routine pvm bufinfo returns information about the requested message bu�er�
Typically it is used to determine facts about the last received message such as
its size or source� pvm bu�nfo is especially useful when an application is able to
receive any incoming message� and the action taken depends on the source tid
and the msgtag associated with the message that comes in �rst� If pvm bu�nfo
is successful� info will be � If some error occurs then info will be � �

Examples

C�

bufid � pvm
recv� ��& �� �'

info � pvm
bufinfo� bufid& �bytes& �type& �source �'

Fortran�
CALL PVMFRECV� ��& ��& BUFID �

CALL PVMFBUFINFO� BUFID& BYTES& TYPE& SOURCE& INFO �

Errors

These error conditions can be returned by pvm bufinfo�

Name Possible cause

PvmNoSuchBuf speci�ed bu�er does not exist�

PvmBadParam invalid argument

� �� �

pvmfcatchout�� pvm catchout��

Catch output from child tasks�

Synopsis

C �include �stdio�h�

int bufid � pvm catchout� FILE �ff �

Fortran call pvmfcatchout� onoff �

Parameters

ff # File descriptor on which to write collected output�

onoff # Integer parameter� Turns output collection on or o��

Discussion

The routine pvm catchout causes the calling task �the parent� to catch output
from tasks spawned after the call to pvm catchout� Characters printed on stdout
or stderr in children tasks are collected by the pvmds and sent in control messages
to the parent task� which tags each line and appends it to the speci�ed �le�
Output from grandchildren �spawned by children� tasks is also collected� provided
the children don�t reset PvmOutputTid using pvm setopt���

Each line of output has one of the following forms�

�txxxxx� BEGIN

�txxxxx� �text from child task�

�txxxxx� END

The output from each task includes one BEGIN line and one END line with
whatever the task prints in between�

In C� the output �le descriptor may be speci�ed� Giving a null pointer turns
output collection o�� �Note �le option not implemented in PVM
�
� output
goes to calling task�s stdout�

In Fortran� output collection can only be turned on or o�� and is logged to stdout
of the parent task�

If pvm exit is called while output collection is in e�ect� it will block until all
tasks sending it output have exited� in order to print all their output� To avoid
this� output collection can be turned o� by calling pvm catchout�� before calling
pvm exit�

pvm catchout�� always returns PvmOk�

� � �

Examples

C�
�include �stdio�h�

pvm
catchout�stdout�'

Fortran�

CALL PVMFCATCHOUT� � �

Errors

No error conditions are returned by pvm catchout

� �� �

pvmfcon�g�� pvm con�g��

Returns information about the present virtual machine con�guration�

Synopsis

C int info � pvm config� int �nhost& int �narch&

struct pvmhostinfo ��hostp �

struct pvmhostinfo!

int hi
tid'

char �hi
name'

char �hi
arch'

int hi
speed'

" hostp'

Fortran call pvmfconfig� nhost& narch& dtid&

name& arch& speed& info �

Parameters

nhost # integer returning the number of hosts �pvmds� in the virtual
machine�

narch # integer returning the number of di�erent data formats being
used�

hostp # pointer to an array of structures that contain information
about each host� including its pvmd task ID� name� archi�
tecture� and relative speed�

dtid # Integer returning pvmd task ID for this host�

name # Character string returning name of this host�

arch # Character string returning name of host architecture�

speed # Integer returning relative speed of this host� Default value
is ��

info # integer status code returned by the routine� Values less
than zero indicate an error�

Discussion

The routine pvm config returns information about the present virtual machine�
The information returned is similar to that available from the console command
conf� The C function returns information about the entire virtual machine in
one call� The Fortran function returns information about one host per call and
cycles through all the hosts� Thus� if pvmfcon�g is called nhost times� the entire
virtual machine will be represented� If pvm con�g is successful� info will be �
If some error occurs� info will be � �

� �� �

Examples

C�
info � pvm
config� �nhost& �narch& �hostp �'

Fortran�
Do i��& NHOST

CALL PVMFCONFIG� NHOST&NARCH&DTID�i�&HOST�i�&ARCH�i�&

SPEED�i�&INFO �

Enddo

Errors

The following error condition can be returned by pvm config

Name Possible Cause

PvmSysErr pvmd not responding�

� �
 �

pvmfdelhost�� pvm delhosts��

deletes one or more hosts from the virtual machine�

Synopsis

C int info � pvm delhosts� char ��hosts& int nhost& int �infos �

Fortran call pvmfdelhost� host& info �

Parameters

hosts # an array of pointers to character strings containing the
names of the machines to be deleted�

nhost # integer specifying the number of hosts to be deleted�

infos # integer array of length nhost which contains the status code
returned by the routine for the individual hosts� Values less
than zero indicate an error�

host # character string containing the name of the machine to be
deleted�

info # integer status code returned by the routine� Values less than
nhost indicate partial failure� values less than � indicate
total failure�

Discussion

The routine pvm delhosts deletes the computers pointed to in hosts� from the
existing con�guration of computers making up the virtual machine� All PVM
processes and the pvmd running on these computers are killed as the computer
is deleted� If pvm delhosts is successful� info will be nhost� Partial success is
indicated by � �" info � nhost� and total failure by info � �� The array infos
can be checked to determine which host caused the error�

The Fortran routine pvmfdelhost deletes a single host from the con�guration
with each call�

If a host fails� the PVM system will continue to function and will automatically
delete this host from the virtual machine� An application can be noti�ed of a
host failure by calling pvm notify� It is still the responsibility of the application
developer to make his application tolerant of host failure�

� �� �

Examples

C�
static char �hosts�� � !

�sparky�&

�thud�cs�utk�edu�&

"'

info � pvm
delhosts� hosts& � �'

Fortran�
CALL PVMFDELHOST� azure & INFO �

Errors

These error conditions can be returned by pvm delhosts

Name Possible cause

PvmBadParam giving an invalid argument value�

PvmSysErr local pvmd not responding�

PvmOutOfRes PVM has run out of system resources�

� �� �

pvmfexit�� pvm exit��

tells the local pvmd that this process is leaving PVM�

Synopsis

C int info � pvm exit� void �

Fortran call pvmfexit� info �

Parameters

info # integer status code returned by the routine� Values less
than zero indicate an error�

Discussion

The routine pvm exit tells the local pvmd that this process is leaving PVM� This
routine does not kill the process� which can continue to perform tasks just like
any other serial process�

Pvm exit should be called by all PVM processes before they stop or exit for good�
It must be called by processes that were not started with pvm spawn�

Examples

C�
�� Program done ��

pvm
exit��'

exit��'

Fortran�
CALL PVMFEXIT�INFO�

STOP

Errors

Name Possible cause

PvmSysErr pvmd not responding

� �� �

pvm�reebuf�� pvm freebuf��

disposes of a message bu�er�

Synopsis

C int info � pvm freebuf� int bufid �

Fortran call pvmffreebuf� bufid& info �

Parameters

bufid # integer message bu�er identi�er�

info # integer status code returned by the routine� Values less
than zero indicate an error�

Discussion

The routine pvm freebuf frees the memory associated with the message bu�er
identi�ed by bufid� Message bu�ers are created by pvm mkbuf� pvm initsend�
and pvm recv� If pvm freebuf is successful� info will be � If some error occurs
then info will be � �

pvm freebuf can be called for a send bu�er created by pvm mkbuf after the
message has been sent and is no longer needed�

Receive bu�ers typically do not have to be freed unless they have been saved
in the course of using multiple bu�ers� But pvm freebuf can be used to destroy
receive bu�ers as well� So messages that have arrived but are no longer needed
due to some other event in an application can be destroyed so they will not
consume bu�er space�

Typically multiple send and receive bu�ers are not needed and the user can simply
use the pvm initsend routine to reset the default send bu�er�

There are several cases where multiple bu�ers are useful� One example where
multiple message bu�ers are needed involves libraries or graphical interfaces that
use PVM and interact with a running PVM application but do not want to
interfere with the application�s own communication�

When multiple bu�ers are used they generally are made and freed for each mes�
sage that is packed� In fact� pvm initsend simply does a pvm freebuf followed by
a pvm mkbuf for the default bu�er�

� �� �

Examples

C�
bufid � pvm
mkbuf� PvmDataDefault �'

�

info � pvm
freebuf� bufid �'

Fortran�
CALL PVMFMKBUF� PVMDEFAULT& BUFID �

�

CALL PVMFFREEBUF� BUFID& INFO �

Errors

These error conditions can be returned by pvm freebuf

Name Possible cause

PvmBadParam giving an invalid argument value�

PvmNoSuchBuf giving an invalid bu�d value�

� �� �

pvmfgather�� pvm gather��

A speci�ed member of the group gathers data from each member of the group into a
single array�

Synopsis

C int info � pvm
gather� void �result& void �data&

int count& int datatype& int msgtag&

char �group& int rootginst�

Fortran call pvmfgather�result& data& count& datatype&

msgtag& group& rootginst& info�

Parameters

result # On the root this is a pointer to the starting address of an
array datatype of local values which are to be accumulated
from the members of the group� This array should be of
length at least equal to the number of group members� times
count� This argument is signi�cant only on the root�

data # For each group member this is a pointer to the starting
address of an array of length count which will be sent to
the speci�ed root member of the group�

count # Integer specifying the number of elements of type datatype
to be sent by each member of the group to the root�

datatype # Integer specifying the type of the entries in the result and
data arrays� For a list of supported types see pvm psend���

msgtag # Integer message tag supplied by the user� msgtag should be
�" �

group # Character string group name of an existing group�

rootginst # Integer instance number of group member who performs the
gather of the messages from the members of the group�

info # Integer status code returned by the routine� Values less
than zero indicate an error�

Discussion

pvm gather�� gathers data from each member of the group to a single member
of the group� speci�ed by rootginst� All group members must call pvm gather���
each sends its array of length count of datatype to the root which concatenates
these messages in order relative to the sender�s instance number in the group�
Thus the �rst count entries in the result array will be the data from group member
�� the next count entries from group member �� and so on�

� �� �

In using the scatter and gather routines� keep in mind that C stores multidimen�
sional arrays in row order� typically starting with an initial index of � whereas�
Fortran stores arrays in column order� typically starting with an index of ��

Note� pvm gather�� does not block� If a task calls pvm gather and then leaves
the group before the root has called pvm gather an error may occur�

The current algorithm is very simple and robust� Future implementations will
make more e	cient use of the architecture to allow greater parallelism�

Examples

C�

info � pvm
gather��getmatrix& �myrow& �	& PVM
INT&

msgtag& �workers�& rootginst�'

Fortran�

CALL PVMFGATHER�GETMATRIX& MYCOLUMN& COUNT& INTEGER&

MTAG& workers & ROOT& INFO�

Errors

These error conditions can be returned by pvm gather

Name Possible cause

PvmBadParam giving an invalid argument value�

PvmNoInst Calling task is not in the group�

PvmSysErr local pvmd is not responding�

� � �

pvmfgetinst�� pvm getinst��

returns the instance number in a group of a PVM process�

Synopsis

C int inum � pvm getinst� char �group& int tid �

Fortran call pvmfgetinst� group& tid& inum �

Parameters

group # character string group name of an existing group�

tid # integer task identi�er of a PVM process�

inum # integer instance number returned by the routine� Instance
numbers start at and count up� Values less than zero
indicate an error�

Discussion

The routine pvm getinst takes a group name group and a PVM task identi�er
tid and returns the unique instance number that corresponds to the input� If
pvm getinst is successful� inum will be �" � If some error occurs then inum will
be � �

Examples

C�
inum � pvm
getinst� �worker�& pvm
mytid�� �'

��������

inum � pvm
getinst� �worker�& tid�i� �'

Fortran�
CALL PVMFGETINST� GROUP� & TID& INUM �

Errors

These error conditions can be returned by pvm getinst

Name Possible cause

PvmSysErr pvmd was not started or has crashed�

PvmBadParam giving an invalid tid value�

PvmNoGroup giving a non�existent group name�

PvmNotInGroup specifying a group in which the tid is not a mem�
ber�

� �� �

pvmfgetopt�� pvm getopt��

Shows various libpvm options

Synopsis

C int val � pvm getopt� int what �

Fortran call pvmfgetrbuf� what& val �

Parameters

what # Integer de�ning what to get� Options include�

Option value MEANING

PvmRoute � routing policy
PvmDebugMask � debugmask
PvmAutoErr
 auto error reporting
PvmOutputTid � stdout device for children
PvmOutputCode � output msgtag
PvmTraceTid � trace device for children
PvmTraceCode � trace msgtag
PvmFragSize � message fragment size
PvmResvTids � Allow use of reserved msgtags and TIDs

val # Integer specifying value of option� Prede�ned route values
are�

Option value MEANING

PvmDontRoute �
PvmAllowDirect �
PvmRouteDirect

Discussion

The routine pvm getopt allows the user to see the value of options set in PVM�
See pvm setopt for a description of options that can be set�

Examples

C�
route
method � pvm
getopt� PvmRoute �'

Fortran�
CALL PVMFGETOPT� PVMAUTOERR& VAL �

� �� �

Errors

These error conditions can be returned by pvm getopt

Name Possible cause

PvmBadParam giving an invalid argument�

� �
 �

pvmfgetrbuf�� pvm getrbuf��

returns the message bu�er identi�er for the active receive bu�er�

Synopsis

C int bufid � pvm getrbuf� void �

Fortran call pvmfgetrbuf� bufid �

Parameters

bufid # integer the returned message bu�er identi�er for the active
receive bu�er�

Discussion

The routine pvm getrbuf returns the message bu�er identi�er bufid for the active
receive bu�er or if there is no current bu�er�

Examples

C�
bufid � pvm
getrbuf��'

Fortran�
CALL PVMFGETRBUF� BUFID �

Errors

No error conditions are returned by pvm getrbuf

� �� �

pvmfgetsbuf�� pvm getsbuf��

returns the message bu�er identi�er for the active send bu�er�

Synopsis

C int bufid � pvm getsbuf� void �

Fortran call pvmfgetsbuf� bufid �

Parameters

bufid # integer the returned message bu�er identi�er for the active
send bu�er�

Discussion

The routine pvm getsbuf returns the message bu�er identi�er bufid for the active
send bu�er or if there is no current bu�er�

Examples

C�
bufid � pvm
getsbuf��'

Fortran�
CALL PVMFGETSBUF� BUFID �

Errors

No error conditions are returned by pvm getsbuf

� �� �

pvmfgettid�� pvm gettid��

returns the tid of the process identi�ed by a group name and instance number�

Synopsis

C int tid � pvm gettid� char �group& int inum �

Fortran call pvmfgettid� group& inum& tid �

Parameters

group # character string that contains the name of an existing group�

inum # integer instance number of the process in the group�

tid # integer task identi�er returned�

Discussion

The routine pvm gettid returns the tid of the PVM process identi�ed by the
group name group and the instance number inum� If pvm gettid is successful�
tid will be � � If some error occurs then tid will be � �

Examples

C�

tid � pvm
gettid��worker�&	�'

Fortran�

CALL PVMFGETTID� worker &�&TID�

Errors

These error conditions can be returned by pvm gettid�

Name Possible cause

PvmSysErr Can not contact the local pvmd most likely it is
not running�

PvmBadParam Bad Parameter most likely a NULL character
string�

PvmNoGroup No group exists by that name�

PvmNoInst No such instance in the group�

� �� �

pvmfgsize�� pvm gsize��

returns the number of members presently in the named group�

Synopsis

C int size � pvm gsize� char �group �

Fortran call pvmfgsize� group& size �

Parameters

group # character string group name of an existing group�

size # integer returning the number of members presently in the
group� Values less than zero indicate an error�

Discussion

The routine pvm gsize returns the size of the group named group� If there is an
error size will be negative�

Since groups can change dynamically in PVM
� this routine can only guarantee
to return the instantaneous size of a given group�

Examples

C�
size � pvm
gsize� �worker� �'

Fortran�

CALL PVMFGSIZE� group� & SIZE �

Errors

These error conditions can be returned by pvm gsize

Name Possible cause

PvmSysErr pvmd was not started or has crashed�

PvmBadParam giving an invalid group name�

� �� �

pvmfhalt pvm halt��

Shuts down the entire PVM system�

Synopsis

C int info � pvm halt� void �

Fortran call pvmfhalt� info �

Parameters

info # Integer returns the error status�

Discussion

The routine pvm halt shuts down the entire PVM system including remote tasks�
remote pvmd� the local tasks �including the calling task� and the local pvmd�

Errors

The following error condition can be returned by pvm halt

Name Possible cause

PvmSysErr local pvmd is not responding�

� �� �

pvmfhostsync�� pvm hostsync��

Get time�of�day clock from PVM host�

Synopsis

C �include �sys�time�h�

int info � pvm hostsync� int host& struct timeval �clk&

struct timeval �delta �

Fortran call pvmfhostsync� host& clksec& clkusec&

deltasec& deltausec& info �

Parameters

host # TID of host�
clk or
clksec and
clkusec� # Returns time�of�day clock sample from host�

delta or
deltasec and
deltausec� # Returns di�erence between local clock and remote host

clock�

Discussion

pvm hostsync�� samples the time�of day clock of a host in the virtual machine
and returns both the clock value and the di�erence between local and remote
clocks�

To reduce the delta error due to message transit time� local clock samples are
taken before and after reading the remote clock� Delta is the di�erence between
the mean local clocks and remote clock�

Note that the delta time can be negative� The microseconds �eld is always nor�
malized to ��������� while the sign of the seconds �eld gives the sign of the
delta�

In C� if clk or delta is input as a null pointer� that parameter is not returned�

Errors

The following error conditions can be returned by pvm synchost

Name Possible cause

PvmSysErr local pvmd is not responding�

PvmNoHost no such host�
PvmHostFail host is unreachable �and thus possibly failed��

� �� �

pvm�nitsend�� pvm initsend��

clear default send bu�er and specify message encoding�

Synopsis

C int bufid � pvm initsend� int encoding �

Fortran call pvmfinitsend� encoding& bufid �

Parameters

encoding # integer specifying the next message�s encoding scheme�

Options in C are�

Encoding value MEANING

PvmDataDefault XDR
PvmDataRaw � no encoding
PvmDataInPlace � data left in place

bufid # integer returned containing the message bu�er identi�er�
Values less than zero indicate an error�

Discussion

The routine pvm initsend clears the send bu�er and prepares it for packing a
new message� The encoding scheme used for this packing is set by encoding�
XDR encoding is used by default because PVM can not know if the user is going
to add a heterogeneous machine before this message is sent� If the user knows
that the next message will only be sent to a machine that understands the native
format� then he can use PvmDataRaw encoding and save on encoding costs�

PvmDataInPlace encoding speci�es that data be left in place during packing�
The message bu�er only contains the sizes and pointers to the items to be sent�
When pvm send is called the items are copied directly out of the user�s memory�
This option decreases the number of times a message is copied at the expense of
requiring the user to not modify the items between the time they are packed and
the time they are sent� The PvmDataInPlace is not implemented in PVM
���

If pvm initsend is successful� then bufid will contain the message bu�er identi�er�
If some error occurs then bufid will be � �

See also pvm mkbuf�

Examples

� � �

C�

bufid � pvm
initsend� PvmDataDefault �'

info � pvm
pkint� array& �	& � �'

msgtag � � '

info � pvm
send� tid& msgtag �'

Fortran�

CALL PVMFINITSEND�PVMRAW& BUFID�

CALL PVMFPACK� REAL& DATA& �		& �& INFO �

CALL PVMFSEND� TID& �& INFO �

Errors

These error conditions can be returned by pvm initsend

Name Possible cause

PvmBadParam giving an invalid encoding value

PvmNoMem Malloc has failed� There is not enough memory
to create the bu�er

� �� �

pvmfjoingroup�� pvm joingroup��

enrolls the calling process in a named group�

Synopsis

C int inum � pvm joingroup� char �group �

Fortran call pvmfjoingroup� group& inum �

Parameters

group # character string group name of an existing group�

inum # integer instance number returned by the routine� Instance
numbers start at and count up� Values less than zero
indicate an error�

Discussion

The routine pvm joingroup enrolls the calling task in the group named group

and returns the instance number inum of this task in this group� If there is an
error inum will be negative�

Instance numbers start at and count up� When using groups a �group� inum�
pair uniquely identi�es a PVM process� This is consistent with the previous
PVM naming schemes� If a task leaves a group by calling pvm lvgroup and
later rejoins the same group� the task is not guaranteed to get the same instance
number� PVM attempts to reuse old instance numbers� so when a task joins a
group it will get the lowest available instance number� A PVM
 task can be a
member of multiple groups simultaneously�

Examples

C�
inum � pvm
joingroup� �worker� �'

Fortran�
CALL PVMFJOINGROUP� group� & INUM �

Errors

These error conditions can be returned by pvm joingroup

Name Possible cause

PvmSysErr pvmd was not started or has crashed�

PvmBadParam giving a NULL group name�

PvmDupGroup trying to join a group you are already in�

� �� �

pvmfkill�� pvm kill��

terminates a speci�ed PVM process�

Synopsis

C int info � pvm kill� int tid �

Fortran call pvmfkill� tid& info �

Parameters

tid # integer task identi�er of the PVM process to be killed �not
yourself��

info # integer status code returned by the routine� Values less
than zero indicate an error�

Discussion

The routine pvm kill sends a terminate �SIGTERM� signal to the PVM process
identi�ed by tid� In the case of multiprocessors the terminate signal is replaced
with a host dependent method for killing a process� If pvm kill is successful� info
will be � If some error occurs then info will be � �

pvm kill is not designed to kill the calling process� To kill yourself in C call
pvm exit�� followed by exit��� To kill yourself in Fortran call pvmfexit followed
by stop�

Examples

C�
info � pvm
kill� tid �'

Fortran�
CALL PVMFKILL� TID& INFO �

Errors

These error conditions can be returned by pvm kill

Name Possible cause

PvmBadParam giving an invalid tid value�

PvmSysErr pvmd not responding�

� �
 �

pvm�vgroup�� pvm lvgroup��

unenrolls the calling process from a named group�

Synopsis

C int info � pvm lvgroup� char �group �

Fortran call pvmflvgroup� group& info �

Parameters

group # character string group name of an existing group�

info # integer status code returned by the routine� Values less
than zero indicate an error�

Discussion

The routine pvm lvgroup unenrolls the calling process from the group named
group� If there is an error info will be negative�

If a process leaves a group by calling either pvm lvgroup or pvm exit� and later
rejoins the same group� the process may be assigned a new instance number� Old
instance numbers are reassigned to processes calling pvm joingroup�

Examples

C�

info � pvm
lvgroup� �worker� �'

Fortran�

CALL PVMFLVGROUP� group� & INFO �

Errors

These error conditions can be returned by pvm lvgroup

Name Possible cause

PvmSysErr pvmd not responding�

PvmBadParam giving a NULL group name�

PvmNoGroup giving a non�existent group name�

PvmNotInGroup asking to leave a group you are not a member of�

� �� �

pvmfmcast�� pvm mcast��

multicasts the data in the active message bu�er to a set of tasks�

Synopsis

C int info � pvm mcast� int �tids& int ntask& int msgtag �

Fortran call pvmfmcast� ntask& tids& msgtag& info �

Parameters

ntask # integer specifying the number of tasks to be sent to�

tids # integer array of length at least ntask containing the task
IDs of the tasks to be sent to�

msgtag # integer message tag supplied by the user� msgtag should be
�" �

info # integer status code returned by the routine� Values less
than zero indicate an error�

Discussion

The routine pvm mcast multicasts a message stored in the active send bu�er to
ntask tasks speci�ed in the tids array� The message is not sent to the caller
even if its tid is in tids�� The content of the message can be distinguished by
msgtag� If pvm mcast is successful� info will be � If some error occurs then
info will be � �

The receiving processes can call either pvm recv or pvm nrecv to receive their
copy of the multicast� pvm mcast is asynchronous� Computation on the sending
processor resumes as soon as the message is safely on its way to the receiving
processors� This is in contrast to synchronous communication� during which
computation on the sending processor halts until the matching receive is executed
by the receiving processor�

pvm mcast �rst determines which other pvmds contain the speci�ed tasks� Then
passes the message to these pvmds which in turn distribute the message to their
local tasks without further network tra	c�

Multicasting is not supported by most multiprocessor vendors� Typically their
native calls only support broadcasting to all the user�s processes on a multiproces�
sor� Because of this omission� pvm mcast may not be an e	cient communication
method on some multiprocessors except in the special case of broadcasting to all
PVM processes�

Examples

� �� �

C�

info � pvm
initsend� PvmDataRaw �'

info � pvm
pkint� array& �	& � �'

msgtag � � '

info � pvm
mcast� tids& ntask& msgtag �'

Fortran�

CALL PVMFINITSEND�PVMDEFAULT�

CALL PVMFPACK� REAL& DATA& �		& �& INFO �

CALL PVMFMCAST� NPROC& TIDS& �& INFO �

Errors

These error conditions can be returned by pvm mcast

Name Possible cause

PvmBadParam giving a msgtag � �

PvmSysErr pvmd not responding�

PvmNoBuf no send bu�er�

� �� �

pvmfmkbuf�� pvm mkbuf��

creates a new message bu�er�

Synopsis

C int bufid � pvm mkbuf� int encoding �

Fortran call pvmfmkbuf� encoding& bufid �

Parameters

encoding # integer specifying the bu�er�s encoding scheme�

Options in C are�

Encoding value MEANING

PvmDataDefault XDR
PvmDataRaw � no encoding
PvmDataInPlace � data left in place

bufid # integer message bu�er identi�er returned� Values less than
zero indicate an error�

Discussion

The routine pvm mkbuf creates a new message bu�er and sets its encoding status
to encoding� If pvm mkbuf is successful� bufid will be the identi�er for the new
bu�er� which can be used as a send bu�er� If some error occurs then bufid will
be � �

With the default setting XDR encoding is used when packing the message because
PVM can not know if the user is going to add a heterogeneous machine before this
message is sent� The other options to encoding allow the user to take advantage of
knowledge about his virtual machine even when it is heterogeneous� For example�
if the user knows that the next message will only be sent to a machine that
understands the native format� then he can use PvmDataRaw encoding and save
on encoding costs�

PvmDataInPlace encoding speci�es that data be left in place during packing�
The message bu�er only contains the sizes and pointers to the items to be sent�
When pvm send is called the items are copied directly out of the user�s memory�
This option decreases the number of times a message is copied at the expense of
requiring the user to not modify the items between the time they are packed and
the time they are sent� The PvmDataInPlace is also not implemented in PVM

���

pvm mkbuf is required if the user wishes to manage multiple message bu�ers and
should be used in conjunction with pvm freebuf� pvm freebuf should be called
for a send bu�er after a message has been sent and is no longer needed�

� �� �

Receive bu�ers are created automatically by the pvm recv and pvm nrecv rou�
tines and do not have to be freed unless they have been explicitly saved with
pvm setrbuf�

Typically multiple send and receive bu�ers are not needed and the user can simply
use the pvm initsend routine to reset the default send bu�er�

There are several cases where multiple bu�ers are useful� One example where
multiple message bu�ers are needed involves libraries or graphical interfaces that
use PVM and interact with a running PVM application but do not want to
interfere with the application�s own communication�

When multiple bu�ers are used they generally are made and freed for each mes�
sage that is packed�

Examples

C�
bufid � pvm
mkbuf� PvmDataRaw �'

�� send message ��

info � pvm
freebuf� bufid �'

Fortran�

CALL PVMFMKBUF�PVMDEFAULT& MBUF�

� SEND MESSAGE HERE

CALL PVMFFREEBUF� MBUF& INFO �

Errors

These error condition can be returned by pvm mkbuf

Name Possible cause

PvmBadParam giving an invalid encoding value�

PvmNoMem Malloc has failed� There is not enough memory
to create the bu�er

� �� �

pvmfmstat�� pvm mstat��

returns the status of a host in the virtual machine�

Synopsis

C int mstat � pvm mstat� char �host �

Fortran call pvmfmstat� host& mstat �

Parameters

host # character string containing the host name�

mstat # integer returning machine status�

value MEANING

PvmOk host is OK
PvmNoHost host is not in virtual machine
PvmHostFail host is unreachable �and thus possibly failed�

Discussion

The routine pvm mstat returns the status mstat of the computer named host

with respect to running PVM processes� This routine can be used to determine
if a particular host has failed and if the virtual machine needs to be recon�gured�

Examples

C�
mstat � pvm
mstat� �msr�ornl�gov� �'

Fortran�
CALL PVMFMSTAT� msr�ornl�gov & MSTAT �

Errors

These error conditions can be returned by pvm mstat

Name Possible cause

PvmSysErr pvmd not responding�

PvmNoHost giving a host name not in the virtual machine�

PvmHostFail host is unreachable �and thus possibly failed��

� �� �

pvmfmytid�� pvm mytid��

returns the tid of the process

Synopsis

C int tid � pvm mytid� void �

Fortran call pvmfmytid� tid �

Parameters

tid # integer task identi�er of the calling PVM process is re�
turned� Values less than zero indicate an error�

Discussion

The routine enrolls this process into PVM on its �rst call and generates a unique
tid if this process was not created by pvm spawn� pvm mytid returns the tid
of the calling process and can be called multiple times in an application� Any
PVM system call �not just pvm mytid� will enroll a task in PVM if the task is
not enrolled before the call�

The tid is a
� bit positive integer created by the local pvmd� The
� bits are
divided into �elds that encode various information about this process such as its
location in the virtual machine �i�e� local pvmd address�� the CPU number in
the case where the process is on a multiprocessor� and a process ID �eld� This
information is used by PVM and is not expected to be used by applications�

If PVM has not been started before an application calls pvm mytid the returned
tid will be � �

Examples

C�
tid � pvm
mytid� �'

Fortran�
CALL PVMFMYTID� TID �

Errors

This error condition can be returned by pvm mytid

Name Possible cause

PvmSysErr pvmd not responding�

� �� �

pvmfnotify�� pvm notify��

Request noti�cation of PVM event such as host failure�

Synopsis

C int info � pvm
notify� int what& int msgtag&

int cnt& int �tids �

Fortran call pvmfnotify� what& msgtag& cnt& tids& info �

Parameters

what # integer identi�er of what event should trigger the noti�ca�
tion� Presently the options are�

value MEANING

PvmTaskExit notify if task exits
PvmHostDelete notify if host is deleted
PvmHostAdd notify if host is added

msgtag # integer message tag to be used in noti�cation�

cnt # integer specifying the length of the tids array for Pvm�
TaskExit and PvmHostDelete� For PvmHostAdd speci�es
the number of times to notify�

tids # integer array of length ntask that contains a list of task or
pvmd tids to be noti�ed� The array should be empty with
the PvmHostAdd option�

info # integer status code returned by the routine� Values less
than zero indicate an error�

Discussion

The routine pvm notify requests PVM to notify the caller on detecting certain
events� In response to a notify request� some number of messages �see below� are
sent by PVM back to the calling task� The messages are tagged with the code
�msgtag� supplied to notify�

The tids array speci�es who to monitor when using TaskExit or HostDelete� it
contains nothing when using HostAdd� If required� the routines pvm con�g and
pvm tasks can be used to obtain task and pvmd tids�

The noti�cation messages have the following format�

PvmTaskExit One notify message for each tid requested� The message body
contains a single tid of exited task�

PvmHostDelete One message for each tid requested� The message body contains
a single pvmd�tid of exited pvmd�

PvmHostAdd Up to cnt notify messages are sent� The message body contains an
integer count followed by a list of pvmd�tids of the new pvmds� The counter of

� ��� �

PvmHostAdd messages remaining is updated by successive calls to pvm notify�
Specifying a cnt of �� turns on PvmHostAdd messages until a future notify� a
count of zero disables them�

Tids in the notify messages are packed as integers�

The calling task�s� are responsible for receiving the message with the speci�ed
msgtag and taking appropriate action� Future versions of PVM may expand the
list of available noti�cation events�

Note that the notify request is �consumed� � e�g� a PvmHostAdd request gener�
ates a single reply message�

Examples

C�
info � pvm
notify� PvmHostAdd& ����& �& dummy �

Fortran�
CALL PVMFNOTIFY� PVMHOSTDELETE& ����& NPROC& TIDS& INFO �

Errors

Name Possible cause

PvmSysErr pvmd not responding�

PvmBadParam giving an invalid argument value�

� ��� �

pvmfnrecv�� pvm nrecv��

non�blocking receive�

Synopsis

C int bufid � pvm nrecv� int tid& int msgtag �

Fortran call pvmfnrecv� tid& msgtag& bufid �

Parameters

tid # integer task identi�er of sending process supplied by the
user� �A �� in this argument matches any tid �wildcard���

msgtag # integer message tag supplied by the user� msgtag should
be �" � �A �� in this argument matches any message tag
�wildcard���

bufid # integer returning the value of the new active receive bu�er
identi�er� Values less than zero indicate an error�

Discussion

The routine pvm nrecv checks to see if a message with label msgtag has arrived
from tid� If a matching message has arrived pvm nrecv immediately places the
message in a new active receive bu�er� which also clears the current receive bu�er
if any� and returns the bu�er identi�er in bufid�

If the requested message has not arrived� then pvm nrecv immediately returns
with a in bufid� If some error occurs bufid will be � �

A �� in msgtag or tid matches anything� This allows the user the following
options� If tid " �� and msgtag is de�ned by the user� then pvm nrecv will
accept a message from any process which has a matching msgtag� If msgtag
" �� and tid is de�ned by the user� then pvm nrecv will accept any message
that is sent from process tid� If tid " �� and msgtag " ��� then pvm nrecv will
accept any message from any process�

pvm nrecv is non�blocking in the sense that the routine always returns immedi�
ately either with the message or with the information that the message has not
arrived at the local pvmd yet� pvm nrecv can be called multiple times to check if
a given message has arrived yet� In addition pvm recv can be called for the same
message if the application runs out of work it could do before receiving the data�

If pvm nrecv returns with the message� then the data in the message can be
unpacked into the user�s memory using the unpack routines�

The PVM model guarantees the following about message order� If task � sends
message A to task �� then task � sends message B to task �� message A will arrive
at task � before message B� Moreover� if both messages arrive before task � does
a receive� then a wildcard receive will always return message A�

� ��
 �

Examples

C�
tid � pvm
parent��'

msgtag � '

arrived � pvm
nrecv� tid& msgtag �'

if� arrived � 	 �

info � pvm
upkint� tid
array& �	& � �'

else

�� go do other computing ��

Fortran�
CALL PVMFNRECV� ��& & ARRIVED �

IF � ARRIVED �GT� 	 � THEN

CALL PVMFUNPACK� INTEGER& TIDS& ��& �& INFO �

CALL PVMFUNPACK� REAL�& MATRIX& �		& �		& INFO �

ELSE

� GO DO USEFUL WORK

ENDIF

Errors

These error conditions can be returned by pvm nrecv�

Name Possible cause

PvmBadParam giving an invalid tid value or msgtag�

PvmSysErr pvmd not responding�

� ��� �

pvmfpack�� pvm pk���

pack the active message bu�er with arrays of prescribed data type�

Synopsis

C
int info � pvm
packf� const char �fmt& ��� �

int info � pvm
pkbyte� char �xp& int nitem& int stride �

int info � pvm
pkcplx� float �cp& int nitem& int stride �

int info � pvm
pkdcplx� double �zp& int nitem& int stride �

int info � pvm
pkdouble�double �dp& int nitem& int stride �

int info � pvm
pkfloat� float �fp& int nitem& int stride �

int info � pvm
pkint� int �ip& int nitem& int stride �

int info � pvm
pkuint� unsigned int �ip& int nitem& int stride �

int info � pvm
pkushort� unsigned short �ip& int nitem& int stride �

int info � pvm
pkulong� unsigned long �ip& int nitem& int stride �

int info � pvm
pklong� long �ip& int nitem& int stride �

int info � pvm
pkshort� short �jp& int nitem& int stride �

int info � pvm
pkstr� char �sp �

Fortran

call pvmfpack� what& xp& nitem& stride& info �

Parameters

fmt # Printflike format expression specifying what to pack� �See discus�
sion��

nitem # The total number of items to be packed �not the number of bytes��

stride # The stride to be used when packing the items� For example� if stride"
� in pvm pkcplx� then every other complex number will be packed�

xp # pointer to the beginning of a block of bytes� Can be any data type�
but must match the corresponding unpack data type�

cp # complex array at least nitem�stride items long�

zp # double precision complex array at least nitem�stride items long�

dp # double precision real array at least nitem�stride items long�

fp # real array at least nitem�stride items long�

ip # integer array at least nitem�stride items long�

jp # integer�� array at least nitem�stride items long�

sp # pointer to a null terminated character string�

� ��� �

what # integer specifying the type of data being packed�

what options

STRING REAL �
BYTE� � COMPLEX� �
INTEGER� � REAL� �
INTEGER
 COMPLEX�� �

info # integer status code returned by the routine� Values less than zero
indicate an error�

Discussion

Each of the pvm
pk� routines packs an array of the given data type into the
active send bu�er� The arguments for each of the routines are a pointer to the
�rst item to be packed� nitem which is the total number of items to pack from
this array� and stride which is the stride to use when packing�

An exception is pvm pkstr�� which by de�nition packs a NULL terminated char�
acter string and thus does not need nitem or stride arguments� The Fortran
routine pvmfpack� STRING� ���� expects nitem to be the number of characters
in the string and stride to be ��

If the packing is successful� info will be � If some error occurs then info will
be � �

A single variable �not an array� can be packed by setting nitem" � and stride"
�� C structures have to be packed one data type at a time�

The routine pvm packf�� uses a printflike format expression to specify what and
how to pack data into the send bu�er� All variables are passed as addresses if
count and stride are speci�ed� otherwise� variables are assumed to be values� A
BNF�like description of the format syntax is�

format � null) init) format fmt

init � null) � $

fmt � � count stride modifiers fchar

fchar � c) d) f) x) s

count � null) �	���$) �

stride � null) � � �	���$) � �

modifiers � null) modifiers mchar

mchar � h) l) u

Formats�

$ means initsend � must match an int �how� in the param list�

c pack�unpack bytes

d integers

f float

x complex float

s string

� ��� �

Modifiers�

h short �int�

l long �int& float& complex float�

u unsigned �int�

 � count or stride must match an int in the param list�

Future extensions to the what argument in pvmfpack will include �� bit types
when XDR encoding of these types is available� Meanwhile users should be aware
that precision can be lost when passing data from a �� bit machine like a Cray
to a
� bit machine like a SPARCstation� As a mnemonic the what argument
name includes the number of bytes of precision to expect� By setting encoding
to PVMRAW �see pvm�nitsend� data can be transferred between two �� bit
machines with full precision even if the PVM con�guration is heterogeneous�

Messages should be unpacked exactly like they were packed to insure data in�
tegrity� Packing integers and unpacking them as �oats will often fail because a
type encoding will have occurred transferring the data between heterogeneous
hosts� Packing � integers and � �oats then trying to unpack only
 integers
and the � �oats will also fail�

Examples

C�
info � pvm
initsend� PvmDataDefault �'

info � pvm
pkstr� �initial data� �'

info � pvm
pkint� �size& �& � �'

info � pvm
pkint� array& size& � �'

info � pvm
pkdouble� matrix& size�size& � �'

msgtag � � '

info � pvm
send� tid& msgtag �'

Fortran�

CALL PVMFINITSEND�PVMRAW& INFO�

CALL PVMFPACK� INTEGER& NSIZE& �& �& INFO �

CALL PVMFPACK� STRING& row � of NXN matrix & ��& �& INFO �

CALL PVMFPACK� REAL�& A��&��& NSIZE& NSIZE & INFO �

CALL PVMFSEND� TID& MSGTAG& INFO �

Errors

Name Possible cause

PvmNoMem Malloc has failed� Message bu�er size has ex�
ceeded the available memory on this host�

PvmNoBuf There is no active send bu�er to pack into� Try
calling pvm initsend before packing message�

� ��� �

pvmfparent�� pvm parent��

returns the tid of the process that spawned the calling process�

Synopsis

C int tid � pvm parent� void �

Fortran call pvmfparent� tid �

Parameters

tid # integer returns the task identi�er of the parent of the call�
ing process� If the calling process was not created with
pvm spawn� then tid " PvmNoParent�

Discussion

The routine pvm parent returns the tid of the process that spawned the calling
process� If the calling process was not created with pvm spawn� then tid is set
to PvmNoParent�

Examples

C�
tid � pvm
parent��'

Fortran�

CALL PVMFPARENT� TID �

Errors

this error condition can be returned by pvm parent�

Name Possible cause

PvmNoParent The calling process was not created with
pvm spawn�

� ��� �

pvmfperror�� pvm perror��

prints the error status of the last PVM call�

Synopsis

C int info � pvm perror� char �msg �

Fortran call pvmfperror� msg& info �

Parameters

msg # character string supplied by the user which will be
prepended to the error message of the last PVM call�

info # integer status code returned by the routine� Values less
than zero indicate an error�

Discussion

The routine pvm perror returns the error message of the last PVM call� The user
can use msg to add additional information to the error message� for example� its
location�

All stdout and stderr messages are placed in the �le �tmp�pvml��uid� on the
master pvmd�s host�

Examples

C�
if� pvm
send� tid& msgtag �'

pvm
perror��'

Fortran�
CALL PVMFSEND� TID& MSGTAG �

IF� INFO �LT� 	 � CALL PVMFPERROR� Step � & INFO �

Errors

No error condition is returned by pvm perror�

� ��� �

pvmfprecv�� pvm precv��

Receive a message directly into a bu�er�

Synopsis

C int info � pvm psend� int tid& int msgtag&

char �buf& int len& int datatype �

int atid& int atag& int alen �

Fortran call pvmfpsend� tid& msgtag& buf& len& datatype&

atid& atag& alen& info �

Parameters

tid # integer task identi�er of sending process �to match��

msgtag # integer message tag �to match� msgtag should be �" �

buf # Pointer to a bu�er to receive into�
len # Length of bu�er �in multiple of data type size��

datatype # Type of data to which buf points �see below��

atid # Returns actual TID of sender�
atag # Returns actual message tag�

atid # Returns actual message length�

info # integer status code returned by the routine� Values less
than zero indicate an error�

Discussion

The routine pvm precv blocks the process until a message with label msgtag has
arrived from tid� pvm precv then places the contents of the message in the
supplied bu�er� buf� up to a maximum length of len � �size of data type��

pvm precv can receive messages sent by pvm psend� pvm send� pvm mcast� or
pvm bcast�

A �� in msgtag or tid matches anything� This allows the user the following
options� If tid " �� and msgtag is de�ned by the user� then pvm precv will
accept a message from any process which has a matching msgtag� If msgtag
" �� and tid is de�ned by the user� then pvm precv will accept any message
that is sent from process tid� If tid " �� and msgtag " ��� then pvm precv will
accept any message from any process�

In C the datatype parameter must be one of the following� depending on the type
of data to be sent�

datatype Data Type

PVM
STR string

� �� �

PVM
BYTE byte

PVM
SHORT short

PVM
INT int

PVM
FLOAT real

PVM
CPLX complex

PVM
DOUBLE double

PVM
DCPLX double complex

PVM
LONG long integer

PVM
USHORT unsigned short int

PVM
UINT unsigned int

PVM
ULONG unsigned long int

In Fortran the same data types speci�ed for pvmfunpack�� should be used�

The PVM model guarantees the following about message order� If task � sends
message A to task �� then task � sends message B to task �� message A will arrive
at task � before message B� Moreover� if both messages arrive before task � does
a receive� then a wildcard receive will always return message A�

pvm precv is blocking which means the routine waits until a message matching
the user speci�ed tid and msgtag values arrives at the local pvmd� If the message
has already arrived then pvm recv returns immediately with the message�

pvm precv does not a�ect the state of the current receive message bu�er �created
by the other receive functions��

Examples

C�
info � pvm
precv� tid& msgtag& array& cnt& PVM
FLOAT&

�src& �atag& �acnt �'

Fortran�
CALL PVMFPRECV� ��& & BUF& CNT& REAL&

SRC& ATAG& ACNT& INFO �

Errors

These error conditions can be returned by pvm prec

Name Possible cause

PvmBadParam giving an invalid tid or a msgtag�

PvmSysErr pvmd not responding�

� ��� �

pvmfprobe�� pvm probe��

check if message has arrived

Synopsis

C int bufid � pvm probe� int tid& int msgtag �

Fortran call pvmfprobe� tid& msgtag& bufid �

Parameters

tid # integer task identi�er of sending process supplied by the
user� �A �� in this argument matches any tid �wildcard���

msgtag # integer message tag supplied by the user� msgtag should
be �" � �A �� in this argument matches any message tag
�wildcard���

bufid # integer returning the value of the new active receive bu�er
identi�er� Values less than zero indicate an error�

Discussion

The routine pvm probe checks to see if a message with label msgtag has arrived
from tid� If a matching message has arrived pvm probe returns a bu�er identi�er
in bufid� This bufid can be used in a pvm bu�nfo call to determine information
about the message such as its source and length�

If the requested message has not arrived� then pvm probe returns with a in
bufid� If some error occurs bufid will be � �

A �� in msgtag or tid matches anything� This allows the user the following
options� If tid " �� and msgtag is de�ned by the user� then pvm probe will
accept a message from any process which has a matching msgtag� If msgtag
" �� and tid is de�ned by the user� then pvm probe will accept any message
that is sent from process tid� If tid " �� and msgtag " ��� then pvm probe will
accept any message from any process�

pvm probe can be called multiple times to check if a given message has arrived
yet� After the message has arrived� pvm recv must be called before the message
can be unpacked into the user�s memory using the unpack routines�

� ��� �

Examples

C�
tid � pvm
parent��'

msgtag � '

arrived � pvm
probe� tid& msgtag �'

if� arrived � 	 �

info � pvm
bufinfo� arrived& �len& �tag& �tid �'

else

�� go do other computing ��

Fortran�
CALL PVMFPROBE� ��& & ARRIVED �

IF � ARRIVED �GT� 	 � THEN

CALL PVMFBUFINFO� ARRIVED& LEN& TAG& TID& INFO �

ELSE

� GO DO USEFUL WORK

ENDIF

Errors

These error conditions can be returned by pvm probe�

Name Possible cause

PvmBadParam giving an invalid tid value or msgtag�

PvmSysErr pvmd not responding�

� ��
 �

pvmfpsend�� pvm psend��

Pack and send data in one call�

Synopsis

C int info � pvm psend� int tid& int msgtag&

char �buf& int len& int datatype �

Fortran call pvmfpsend� tid& msgtag& buf& len& datatype& info �

Parameters

tid # integer task identi�er of destination process�

msgtag # integer message tag supplied by the user� msgtag should be
�" �

buf # Pointer to a bu�er to send�
len # Length of bu�er �in multiple of data type size��

datatype # Type of data to which buf points �see below��

info # integer status code returned by the routine� Values less
than zero indicate an error�

Discussion

The routine pvm psend takes a pointer to a bu�er buf its length len and its data
type datatype and sends this data directly to the PVM task identi�ed by tid�

pvm psend data can be received by pvm precv� pvm recv� pvm trecv� or pvm nrecv�

msgtag is used to label the content of the message� If pvm psend is successful�
info will be � If some error occurs then info will be � �

The pvm psend routine is asynchronous� Computation on the sending processor
resumes as soon as the message is safely on its way to the receiving processor�
This is in contrast to synchronous communication� during which computation on
the sending processor halts until the matching receive is executed by the receiving
processor�

In C the datatype parameter must be one of the following� depending on the type
of data to be sent�

datatype Data Type

PVM
STR string

PVM
BYTE byte

PVM
SHORT short

PVM
INT int

PVM
FLOAT real

PVM
CPLX complex

PVM
DOUBLE double

� ��� �

PVM
DCPLX double complex

PVM
LONG long integer

PVM
USHORT unsigned short int

PVM
UINT unsigned int

PVM
ULONG unsigned long int

In Fortran the same data types speci�ed for pack should be used�

The PVM model guarantees the following about message order� If task � sends
message A to task �� then task � sends message B to task �� message A will arrive
at task � before message B� Moreover� if both messages arrive before task � does
a receive� then a wildcard receive will always return message A�

pvm psend does not a�ect the state of the current outgoing message bu�er �cre�
ated by pvm initsend and used by pvm send��

Examples

C�
info � pvm
psend� tid& msgtag& array& �			& PVM
FLOAT �'

Fortran�
CALL PVMFPSEND� TID& MSGTAG& BUF& CNT& REAL& INFO �

Errors

These error conditions can be returned by pvm psend

Name Possible cause

PvmBadParam giving an invalid tid or a msgtag�

PvmSysErr pvmd not responding�

� ��� �

pvmfpstat�� pvm pstat��

returns the status of the speci�ed PVM process�

Synopsis

C int status � pvm pstat� tid �

Fortran call pvmfpstat� tid& status �

Parameters

tid # integer task identi�er of the PVM process in question�

status # integer returns the status of the PVM process identi�ed by
tid� Status is PvmOk if the task is running� PvmNoTask
if not� and PvmBadParam if the tid is bad�

Discussion

The routine pvm pstat returns the status of the process identi�ed by tid� Also
note that pvm notify�� can be used to notify the caller that a task has failed�

Examples

C�

tid � pvm
parent��'

status � pvm
pstat� tid �'

Fortran�
CALL PVMFPARENT� TID �

CALL PVMFPSTAT� TID& STATUS �

Errors

The following error conditions can be returned by pvm pstat�

Name Possible cause

PvmBadParam Bad Parameter most likely an invalid tid value�

PvmSysErr pvmd not responding�

PvmNoTask Task not running�

� ��� �

pvmfrecv�� pvm recv��

receive a message

Synopsis

C int bufid � pvm recv� int tid& int msgtag �

Fortran call pvmfrecv� tid& msgtag& bufid �

Parameters

tid # integer task identi�er of sending process supplied by the
user� �A �� in this argument matches any tid �wildcard���

msgtag # integer message tag supplied by the user� msgtag should be
�" � It allows the user�s program to distinguish between
di�erent kinds of messages � �A �� in this argument matches
any message tag �wildcard���

bufid # integer returns the value of the new active receive bu�er
identi�er� Values less than zero indicate an error�

Discussion

The routine pvm recv blocks the process until a message with label msgtag has
arrived from tid� pvm recv then places the message in a new active receive bu�er�
which also clears the current receive bu�er�

A �� in msgtag or tid matches anything� This allows the user the following
options� If tid " �� and msgtag is de�ned by the user� then pvm recv will accept
a message from any process which has a matching msgtag� If msgtag " �� and
tid is de�ned by the user� then pvm recv will accept any message that is sent
from process tid� If tid " �� and msgtag " ��� then pvm recv will accept any
message from any process�

The PVM model guarantees the following about message order� If task � sends
message A to task �� then task � sends message B to task �� message A will arrive
at task � before message B� Moreover� if both messages arrive before task � does
a receive� then a wildcard receive will always return message A�

If pvm recv is successful� bufid will be the value of the new active receive bu�er
identi�er� If some error occurs then bufid will be � �

pvm recv is blocking which means the routine waits until a message matching the
user speci�ed tid and msgtag values arrives at the local pvmd� If the message
has already arrived then pvm recv returns immediately with the message�

Once pvm recv returns� the data in the message can be unpacked into the user�s
memory using the unpack routines�

� ��� �

Examples

C�
tid � pvm
parent��'

msgtag � '

bufid � pvm
recv� tid& msgtag �'

info � pvm
upkint� tid
array& �	& � �'

info � pvm
upkint� problem
size& �& � �'

info � pvm
upkfloat� input
array& �		& � �'

Fortran�

CALL PVMFRECV� ��& & BUFID �

CALL PVMFUNPACK� INTEGER& TIDS& ��& �& INFO �

CALL PVMFUNPACK� REAL�& MATRIX& �		& �		& INFO �

Errors

These error conditions can be returned by pvm recv

Name Possible cause

PvmBadParam giving an invalid tid value� or msgtag � ���

PvmSysErr pvmd not responding�

� ��� �

���� pvm recvf��

rede�nes the comparison function used to accept messages�

Synopsis

C int ��old��� � pvm
recvf� int ��new�� int bufid&

int tid& int tag ��

Fortran NOT AVAILABLE

Parameters

tid # integer task identi�er of sending process supplied by the
user�

tag # integer message tag supplied by the user�

bufid # integer message bu�er identi�er�

Discussion

The routine pvm recvf de�nes the comparison function to be used by the pvm recv
and pvm nrecv functions� It is available as a means to customize PVM message
passing� pvm recvf sets a user supplied comparison function to evaluate messages
for receiving � The default comparison function evaluates the source and message
tag associated with all incoming messages�

pvm recvf is intended for sophisticated C programmers who understand the func�
tion of such routines �like signal� and who require a receive routine that can match
on more complex message contexts than the default provides�

pvm recvf returns if the default matching function� otherwise� it returns the
matching function� The matching function should return�

Value Action taken

� return immediately with this error code
 do not pick this message
� pick this message and do not scan the rest

� � pick this highest ranked message after scanning them all

� ��� �

Example� Implementing probe with recvf

�include �pvm��h�

static int foundit � 	'

static int

foo
match�mid& tid& code�

int mid'

int tid'

int code'

!

int t& c& cc'

if ��cc � pvm
bufinfo�mid& �int��	& �c& �t�� � 	�

return cc'

if ��tid �� ��)) tid �� t�

�� �code �� ��)) code �� c��

foundit � �'

return 	'

"

int

probe�src& code�

!

int ��omatch���'

int cc'

omatch � pvm
recvf�foo
match�'

foundit � 	'

if ��cc � pvm
nrecv�src& code�� � 	�

return cc'

pvm
recvf�omatch�'

return foundit'

"

Errors

No error conditions are returned by pvm recvf

� �
 �

pvmfreduce�� pvm reduce��

Performs a reduce operation over members of the speci�ed group�

Synopsis

C int info � pvm
reduce� void ��func���&

void �data& int count& int datatype&

int msgtag& char �group& int root�

Fortran call pvmfreduce� func& data& count& datatype&

msgtag& group& root& info �

Parameters

func # Function which de�nes the operation performed on the
global data� Prede�ned are PvmMax� PvmMin� PvmSum
and PvmProduct� Users can de�ne their own function�

data # Pointer to the starting address of an array of local values�
On return� the data array on the root will be overwritten
with the result of the reduce operation over the group�

count # integer specifying the number of elements in data array�

datatype # integer specifying the type of the entries in the data array�

msgtag # integer message tag supplied by the user� msgtag should be
�" �

group # Character string group name of an existing group�

root # Integer instance number of group member who gets the re�
sult�

info # Integer status code returned by the routine� Values less
than zero indicate an error�

Discussion

The routine pvm reduce�� performs global operations such as max� min� and sum
over all the tasks in a group� All group members call pvm reduce�� with their
local data� and the result of the reduction operation appears on the user speci�ed
root task root� The root task is identi�ed by its instance number in the group�

The pvm supplies the following prede�ned global functions that can be speci�ed
in func�

PvmMin

PvmMax

PvmSum

PvmProduct

� �
� �

PvmMax and PvmMin are implemented for all the datatypes listed below� For
complex values the minimum �maximum� is that complex pair with the minimum
�maximum� modulus� PvmSum and PvmProduct are implemented for for all the
datatypes listed below with the exception of PVM BYTE and BYTE��

C and Fortran de�ned datatypes are�

C datatypes FORTRAN datatypes

�����������������������������������

PVM
BYTE BYTE�

PVM
SHORT INTEGER�

PVM
INT INTEGER

PVM
FLOAT REAL

PVM
CPLX COMPLEX�

PVM
DOUBLE REAL�

PVM
DCPLX COMPLEX��

PVM
LONG

A user de�ned function may be used used in func�

SYNOPSIS for func

C void func�int �datatype& void �x& void �y&

int �num& int �info�

Fortran call func�datatype& x& y& num& info�

func is the base function used for the reduction operation� Both x and y are
arrays of type speci�ed by datatype with num entries� The arguments datatype
and info are as speci�ed above� The arguments x and num correspond to data
and count above� The argument y contains received values�

Note� pvm reduce�� does not block� if a task calls pvm reduce and then leaves
the group before the root has called pvm reduce an error may occur�

The current algorithm is very simple and robust� A future implementation may
make more e	cient use of the architecture to allow greater parallelism�

Examples

C�
info � pvm
reduce�PvmMax& �myvals& �	& PVM
INT&

msgtag& �workers�& roottid�'

Fortran�
CALL PVMFREDUCE�PvmMax& MYVALS& COUNT& INTEGER&

MTAG& workers & ROOT& INFO�

� �
� �

Errors

The following error conditions can be returned by pvm reduce

Name Possible cause

PvmBadParam giving an invalid argument value�

PvmNoInst Calling task is not in the group�

PvmSysErr local pvmd is not responding�

� �

 �

��� pvm reg hoster��

Register this task as responsible for adding new PVM hosts�

Synopsis

C �include �pvmsdpro�h�

int info � pvm reg hoster��

Parameters

info # integer status code returned by the routine�

Discussion

The routine pvm reg hoster registers the calling task as a PVM slave pvmd
starter� When the master pvmd receives a DM ADD message� instead of starting
the new slave pvmd processes itself� it passes a message to the hoster� which does
the dirty work and sends a message back to the pvmd�

Note� This function isn�t for beginners� If you don�t grok what it does� you
probably don�t need it�

For a more complete explanation of what�s going on here� you should refer to
the PVM source code and�or user guide section on implementation� this is just
a man page� That said���

When the master pvmd receives a DM ADD message �request to add hosts to the
virtual machine�� it looks up the new host IP addresses� gets parameters from the
host �le if it was started with one� and sets default parameters� It then either
attempts to start the processes �using rsh or rexec��� or� if a hoster has registered�
sends it a SM STHOST message�

The format of the SM STHOST message is�

int nhosts �� number of hosts

!

int tid �� of host

string options �� from hostfile so� field

string login �� in form ((�username��hostname�domain

string command �� to run on remote host

" �nhosts�

The hoster should attempt to run each command on each host and record the
result� A command usually looks like�

�PVM
ROOT�lib�pvmd �s �d� �nhonk � �	a�ca���	f�a 	�� � �	a��c��				

and a reply from a slave pvmd like�

� �
� �

ddpro������ arch�ALPHA� ip��	a��c��	b�f� mtu�	���

When �nished� the hoster should send a SM STHOSTACK message back to the ad�
dress of the sender �the master pvmd�� The format of the reply message is�

!

int tid �� of host& must match request

string status �� result line from slave or error code

" �� �� implied count

The TIDs in the reply must match those in the request� They may be in a
di�erent order� however�

The result string should contain the entire reply �a single line� from each new
slave pvmd� or an error code if something went wrong� Legal error codes are the
literal names of the pvm errno codes� for example �PvmCantStart�� The default
PVM hoster can return PvmDSysErr or PvmCantStart� and the slave pvmd itself
can return PvmDupHost�

The hoster task must use pvm setopt�PvmResvTids� �� to allow sending reserved
messages� Messages must be packed using data format PvmDataFoo�

� �
� �

��� pvm reg rm��

Register this task as PVM resource manager�

Synopsis

C �include �pvmsdpro�h�

int info � pvm reg rm� struct hostinfo ��hip �

struct hostinfo!

int hi
tid'

char �hi
name'

char �hi
arch'

int hi
speed'

" hip'

Parameters

hostp # pointer to an array of structures which contain information
about each host including its pvmd task ID� name� archi�
tecture� and relative speed�

info # integer status code returned by the routine� Values less
than zero indicate an error�

Discussion

The routine pvm reg rm�� registers the calling task as a PVM task and slave
host scheduler� This means it intercepts certain libpvm calls from other tasks
in order to have a say in scheduling policy� The scheduler will asynchronously
receive messages from tasks containing requests for service� as well as messages
from pvmds notifying it of system failures�

Before you start using this function� be warned that it�s not a trivial thing� i�e�
you can�t just call it to turn o� the default round�robin task assignment� Rather�
it allows you to write your own scheduler and hook it to PVM�

To understand what the following messages mean� you should refer to the PVM
source code and�or user guide section on implementation� There�s just too much
to say about them�

When one of the following libpvm functions is called in a task with resource
manager set� the given message tag is sent to the scheduler�

� �
� �

Libpvm call Sched� message Normal message

pvm addhosts�� SM ADDHOST TM ADDHOST
pvm con�g�� SM CONFIG TM CONFIG
pvm delhosts�� SM DELHOST TM DELHOST
pvm notify�� SM NOTIFY TM NOTIFY
pvm spawn�� SM SPAWN TM SPAWN
pvm tasks�� SM TASK TM TASK
pvm reg sched�� SM SCHED TM SCHED

The resource manager must in turn compose the following messages and send
them to the pvmds�

Sched� message Normal message

SM EXEC DM EXEC
SM EXECACK DM EXECACK
SM ADD DM ADD
SM ADDACK DM ADDACK
SM HANDOFF �none�

The following messages are sent asynchronously to the resource manager by the
system�

Sched� message Meaning

SM TASKX notify of task exit�fail
SM HOSTX notify of host delete�fail

The resource manager task must use pvm setopt�PvmResvTids� �� to allow send�
ing reserved messages� Messages must be packed using data format PvmDataFoo�

� �
� �

��� pvm reg tasker��

Register this task as responsible for starting new PVM tasks�

Synopsis

C �include �pvmsdpro�h�

int info � pvm reg tasker��

Parameters

info # integer status code returned by the routine�

Discussion

The routine pvm reg tasker registers the calling task as a PVM task starter�
When a tasker is registered with a pvmd� and the pvmd receives a DM EXEC
message� instead of fork��ing and exec��ing the task itself� it passes a message to
the tasker� which does the dirty work and sends a message back to the pvmd�

Note� If this doesn�t make sense� don�t worry about it� This function is for
folks who are writing stu� like debugger servers and so on� For a more complete
explanation of what�s going on here� you should refer to the PVM source code
and�or user guide section on implementation� this is only a man page� That
said���

When the pvmd receives a DM EXEC message �request to exec new tasks�� it
searches epath �the PVM executable search path� for the �le name� If it �nds the
�le� it then either attempts to start the processes �using fork�� and exec��� or� if
a tasker has registered� sends it a SM STTASK message�

The format of the SM STTASK message is�

int tid �� of task

int flags �� as passed to spawn��

string path �� absolute path of the executable

int argc �� number of args to process

string argv�argc� �� args

int nenv �� number of envars to pass to task

string env�nenv� �� environment strings

The tasker must attempt to start the process when it gets one of these messages�
The tasker doesn�t reply to the pvmd if the task is successfully started� the task
will reconnect to the pvmd on its own �using the identi�er in envar PVMEPID��

The tasker must send a SM TASKX message to the pvmd when any task that it
owns �has started� exits� or if it can�t start a particular task� The format of the
SM TASKX message is�

� �
� �

int tid �� of task

int status �� the Unix exit status �from Iwait���

int u
sec �� user time used by the task& seconds

int u
usec �� microseconds

int s
sec �� system time used by the task& seconds

int s
usec �� microseconds

The tasker task must use pvm setopt�PvmResvTids� �� to allow sending reserved
messages� Messages must be packed using data format PvmDataFoo�

� �
� �

pvmfscatter�� pvm scatter��

one group member sends a di�erent portion of an array to each group member�

Synopsis

C int info � pvm
scatter� void �result& void �data&

int count& int datatype& int msgtag&

char �group& int rootginst�

Fortran call pvmfscatter�result& data& count& datatype&

msgtag& group& rootginst& info�

Parameters

result # Pointer to the starting address of an array of length count

of datatype

data # On the root this is a pointer to the starting address of an
array datatype of local values which are to be accumulated
from the members of the group� This array should be of
length at least equal to the number of group members� times
count� This argument is signi�cant only on the root�

count # Integer specifying the number of array elements to be sent
to each member of the group from the root�

datatype # Integer specifying the type of the entries in the result and
data arrays� For a list of supported types see pvm psend���

msgtag # Integer message tag supplied by the user� msgtag should be
�" �

group # Character string group name of an existing group�

rootginst # Integer instance number of group member who performs the
gather of the messages from the members of the group�

info # Integer status code returned by the routine� Values less
than zero indicate an error�

Discussion

pvm scatter�� performs a scatter of data from the speci�ed root member of the
group to each of the members of the group� including itself� All group members
must call pvm scatter��� and each receives a portion of the data array from the
root in their local result array� pvm scatter�� is the inverse of pvm gather���
The �rst count entries in the root data array are sent to group member �� the
next count entries to group member �� and so on�

In using the scatter and gather routines� keep in mind that C stores multidimen�
sional arrays in row order� typically starting with an initial index of � whereas�
Fortran stores arrays in column order� typically starting with an index of ��

� �� �

The current algorithm is very simple and robust� Future implementations will
make more e	cient use of the architecture to allow greater parallelism�

Examples

C�

info � pvm
scatter��getmyrow& �matrix& �	& PVM
INT&

msgtag& �workers�& rootginst�'

Fortran�
CALL PVMFSCATTER�GETMYCOLUMN& MATRIX& COUNT& INTEGER&

MTAG& workers & ROOT& INFO�

Errors

These error conditions can be returned by pvm scatter

Name Possible cause

PvmBadParam giving an invalid argument value�

PvmNoInst Calling task is not in the group�

PvmSysErr local pvmd is not responding�

� ��� �

pvmfsend�� pvm send��

sends the data in the active message bu�er�

Synopsis

C int info � pvm send� int tid& int msgtag �

Fortran call pvmfsend� tid& msgtag& info �

Parameters

tid # integer task identi�er of destination process�

msgtag # integer message tag supplied by the user� msgtag should be
�" �

info # integer status code returned by the routine� Values less
than zero indicate an error�

Discussion

The routine pvm send sends a message stored in the active send bu�er to the PVM
process identi�ed by tid� msgtag is used to label the content of the message� If
pvm send is successful� info will be � If some error occurs then info will be
� �

The pvm send routine is asynchronous� Computation on the sending processor
resumes as soon as the message is safely on its way to the receiving processor�
This is in contrast to synchronous communication� during which computation on
the sending processor halts until the matching receive is executed by the receiving
processor�

pvm send �rst checks to see if the destination is on the same machine� If so
and this host is a multiprocessor then the vendor�s underlying message passing
routines are used to move the data between processes�

Examples

C�
info � pvm
initsend� PvmDataDefault �'

info � pvm
pkint� array& �	& � �'

msgtag � � '

info � pvm
send� tid& msgtag �'

Fortran�
CALL PVMFINITSEND�PVMRAW& INFO�

CALL PVMFPACK� REAL�& DATA& �		& �& INFO �

CALL PVMFSEND� TID& �& INFO �

� ��� �

Errors

These error conditions can be returned by pvm send

Name Possible cause

PvmBadParam giving an invalid tid or a msgtag�

PvmSysErr pvmd not responding�

PvmNoBuf no active send bu�er� Try calling pvm initsend��
before sending�

� ��
 �

pvmfsendsig�� pvm sendsig��

sends a signal to another PVM process

Synopsis

C int info � pvm sendsig� int tid& int signum �

Fortran call pvmfsendsig� tid& signum& info �

Parameters

tid # integer task identi�er of PVM process to receive the signal�

signum # integer signal number�

info # integer status code returned by the routine� Values less
than zero indicate an error�

Discussion

The routine pvm sendsig sends the signal number signum to the PVM process
identi�ed by tid� If pvm sendsig is successful� info will be � If some error
occurs then info will be � �

pvm sendsig should only be used by programmers with signal handling experi�
ence� It is very easy in a parallel environment for interrupts to cause nonde�
terministic behavior� deadlocks� and even system crashes� For example� if an
interrupt is caught while a process is inside a Unix kernel call� then a graceful
recovery may not be possible�

Examples

C�
tid � pvm
parent��'

info � pvm
sendsig� tid& SIGKILL�'

Fortran�

CALL PVMFBUFINFO� BUFID& BYTES& TYPE& TID& INFO �'

CALL PVMFSENDSIG� TID& SIGNUM& INFO �

Errors

These error conditions can be returned by pvm sendsig

Name Possible cause

PvmSysErr pvmd not responding�

PvmBadParam giving an invalid tid value�

� ��� �

pvmfsetopt�� pvm setopt��

Sets various libpvm options

Synopsis

C int oldval � pvm setopt� int what& int val �

Fortran call pvmfsetopt� what& val& oldval �

Parameters

what # Integer de�ning what is being set� Options include�

Option value MEANING

PvmRoute � routing policy
PvmDebugMask � debugmask
PvmAutoErr
 auto error reporting
PvmOutputTid � stdout device for children
PvmOutputCode � output msgtag
PvmTraceTid � trace device for children
PvmTraceCode � trace msgtag
PvmFragSize � message fragment size
PvmResvTids � Allow messages to reserved tags and TIDs
PvmSelfOutputTid � Stdout destination
PvmSelfOutputCode �� Output message tag
PvmSelfTraceTid �� Trace data destination
PvmSelfTraceCode �
 Trace message tag

val # Integer specifying new setting of option� Prede�ned route
values are�

Option value MEANING

PvmDontRoute �
PvmAllowDirect �
PvmRouteDirect

oldval # Integer returning the previous setting of the option�

Discussion

The routine pvm setopt is a general purpose function to allow the user to set
options in the PVM system� In PVM
�� pvm setopt can be used to set several
options including� automatic error message printing� debugging level� and com�
munication routing method for all subsequent PVM calls� Pvm setopt returns
the previous value of set in oldval�

PvmRoute� In the case of communication routing� pvm setopt advises PVM on
whether or not to set up direct task�to�task links PvmRouteDirect �using TCP�

� ��� �

for all subsequent communication� Once a link is established it remains until
the application �nishes� If a direct link can not be established because one of
the two tasks has requested PvmDontRoute or because no resources are available�
then the default route through the PVM daemons is used� On multiprocessors
such as Intel Paragon this option is ignored because the communication between
tasks on these machines always uses the native protocol for direct communication�
pvm setopt can be called multiple times to selectively establish direct links� but
is typically set only once near the beginning of each task� PvmAllowDirect is the
default route setting� This setting on task A allows other tasks to set up direct
links to A� Once a direct link is established between tasks both tasks will use it
for sending messages�

PvmDebugMask� For this option val is the debugging level� When debugging is
turned on� PVM will log detailed information about its operations and progress
on it�s stderr stream� Default is no debug information�

PvmAutoErr� In the case of automatic error printing� Any PVM routines that
return an error condition will automatically print the associated error message�
The argument val de�nes whether this reporting is to be turned on ��� or turned
o� �� for subsequent calls� A value of ��� will cause the program to exit after
printing the error message �Not implemented in
���� Default is reporting turned
on�

PvmOutputTid� For this option val is the stdout device for children� All the
standard output from the calling task and any tasks it spawns will be redirected
to the speci�ed device� Val is the tid of a PVM task or pvmd� The Default val of
 redirects stdout to master host� which writes to the log �le �tmp�pvml�xxxx�
where xxxx is the uid of the user�

PvmOutputCode� Only meaningful on task with PvmOutputTid set to itself�
This is the message tag value to be used in receiving messages containing standard
output from other tasks�

PvmTraceTid� For this option val is the task responsible for writing out trace
event for the calling task and all its children� Val is the tid of a PVM task or
pvmd� The Default val of redirects trace to master host�

PvmTraceCode� Only meaningful on task with PvmTraceTid set to itself� This
is the message tag value to be used in receiving messages containing trace output
from other tasks�

PvmFragSize� For this option val speci�es the message fragment size in bytes�
Default value varies with host architecture�

PvmResvTids� A val of � enables the task to send messages with reserved tags
and to non�task destinations� The default �� results in a PvmBadParam error
instead�

PvmSelfOutputTid� Sets the Istdout destination for the task� Everything printed
on stdout is packed into messages and sent to the destination� Note� this only
works for spawned tasks� because the pvmd doesn�t get the output from tasks

� ��� �

started by other means� val is the TID of a PVM task� Setting PvmSelfOut�
putTid to redirects stdout to the master pvmd� which writes to the log �le
�tmp�pvml�xxxx� The default setting is inherited from the parent task� else is �
Setting either PvmSelfOutputTid or PvmSelfOutputCode also causes both Pv�
mOutputTid and PvmOutputCode to take on the values of PvmSelfOutputTid
and PvmSelfOutputCode� respectively�

PvmSelfOutputCode Sets the message tag for standard output messages�

PvmSelfTraceTid Sets the trace data message destination for the task� Libpvm
trace data is sent as messages to the destination� val is the TID of a PVM
task� Setting PvmSelfTraceTid to discards trace data� The default setting
is inherited from the parent task� else is � Setting either PvmSelfTraceTid or
PvmSelfTraceCode also causes both PvmTraceTid and PvmTraceCode to take
on the values of PvmSelfTraceTid and PvmSelfTraceCode� respectively�

PvmSelfTraceCode Sets the message tag for trace data messages�

pvm setopt returns the previous value of the option�

Examples

C�

oldval � pvm
setopt� PvmRoute& PvmRouteDirect �'

Fortran�
CALL PVMFSETOPT� PVMAUTOERR& �& OLDVAL �

Errors

These error conditions can be returned by pvm setopt

Name Possible cause

PvmBadParam giving an invalid arg�

� ��� �

pvmfsetrbuf�� pvm setrbuf��

switches the active receive bu�er and saves the previous bu�er�

Synopsis

C int oldbuf � pvm setrbuf� int bufid �

Fortran call pvmfsetrbuf� bufid& oldbuf �

Parameters

bufid # integer specifying the message bu�er identi�er for the new
active receive bu�er�

oldbuf # integer returning the message bu�er identi�er for the pre�
vious active receive bu�er�

Discussion

The routine pvm setrbuf switches the active receive bu�er to bufid and saves
the previous active receive bu�er oldbuf� If bufid is set to then the present
active receive bu�er is saved and no active receive bu�er exists�

A successful receive automatically creates a new active receive bu�er� If a previous
receive has not been unpacked and needs to be saved for later� then the previous
bu�d can be saved and reset later to the active bu�er for unpacking�

The routine is required when managing multiple message bu�ers� For example
switching back and forth between two bu�ers� One bu�er could be used to send
information to a graphical interface while a second bu�er could be used send data
to other tasks in the application�

Examples

C�
rbuf� � pvm
setrbuf� rbuf� �'

Fortran�
CALL PVMFSETRBUF� NEWBUF& OLDBUF �

Errors

These error conditions can be returned by pvm setrbuf

Name Possible cause

PvmBadParam giving an invalid bu�d�

PvmNoSuchBuf switching to a non�existent message bu�er�

� ��� �

pvmfsetsbuf�� pvm setsbuf��

switches the active send bu�er�

Synopsis

C int oldbuf � pvm setsbuf� int bufid �

Fortran call pvmfsetsbuf� bufid& oldbuf �

Parameters

bufid # integer message bu�er identi�er for the new active send
bu�er� A value of indicates the default receive bu�er�

oldbuf # integer returning the message bu�er identi�er for the pre�
vious active send bu�er�

Discussion

The routine pvm setsbuf switches the active send bu�er to bufid and saves the
previous active send bu�er oldbuf� If bufid is set to then the present active
send bu�er is saved and no active send bu�er exists�

The routine is required when managing multiple message bu�ers� For example
switching back and forth between two bu�ers� One bu�er could be used to send
information to a graphical interface while a second bu�er could be used send data
to other tasks in the application�

Examples

C�
sbuf� � pvm
setsbuf� sbuf� �'

Fortran�
CALL PVMFSETSBUF� NEWBUF& OLDBUF �

Errors

These error conditions can be returned by pvm setsbuf

Name Possible cause

PvmBadParam giving an invalid bu�d�

PvmNoSuchBuf switching to a non�existent message bu�er�

� ��� �

pvmfspawn�� pvm spawn��

starts new PVM processes�

Synopsis

C int numt � pvm spawn� char �task& char ��argv&

int flag& char �where&

int ntask& int �tids �

Fortran call pvmfspawn� task& flag& where&

ntask& tids& numt �

Parameters

task # character string containing the executable �le name
of the PVM process to be started� The executable
must already reside on the host on which it is to
be started� The default location PVM looks is
�HOME�pvm��bin��PVM
ARCH�filename �

argv # pointer to an array of arguments to the executable with the
end of the array speci�ed by NULL� If the executable takes
no arguments� then the second argument to pvm spawn is
NULL�

flag # integer specifying spawn options�

In C flag should be the sum of�

Option value MEANING

PvmTaskDefault PVM can choose any machine to start task
PvmTaskHost � where speci�es a particular host
PvmTaskArch � where speci�es a type of architecture
PvmTaskDebug � start up processes under debugger
PvmTaskTrace � processes will generate PVM trace data� �
PvmMppFront �� Start process on MPP front�end�
PvmHostCompl
� Use complement host set

� �� �

where # character string specifying where to start the PVM process� De�
pending on the value of flag� where can be a host name such as
�ibm��epm�ornl�gov� or a PVM architecture class such as �SUN���
If flag is � then where is ignored and PVM will select the most
appropriate host�

ntask # integer specifying the number of copies of the executable to start up�

tids # integer array of length at least ntask� On return the array contains
the tids of the PVM processes started by this pvm spawn call� If
there is a error starting a given task� then that location in the array
will contain the associated error code�

numt # integer returning the actual number of tasks started� Values less
than zero indicate a system error� A positive value less than ntask

indicates a partial failure� In this case the user should check the tids
array for the error code�s��

Discussion

The routine pvm spawn starts up ntask copies of the executable named task� On
systems that support environment� spawn passes exported variables in the parent
environment to children tasks� If set� the envar PVM EXPORT is passed and if
PVM EXPORT contains other names �separated by ���� they will be passed too�
this is useful for e�g��

setenv DISPLAY myworkstation�	�	

setenv MYSTERYVAR ��

setenv PVM
EXPORT DISPLAY�MYSTERYVAR

The hosts on which the PVM processes are started is set by the flag and where

arguments� On return the array tids contains the PVM task identi�ers for each
process started�

If pvm spawn starts one or more tasks� numt will be the actual number of tasks
started� If a system error occurs then numt will be � � If numt is less than ntask
then some executables have failed to start and the user should check the last
ntask � numt locations in the tids array which will contain the associated error
codes� see below for meaning� Meaning the �rst numt tids in the array are good�
which can be useful for functions such as pvm mcast���

When flag is set to and where is set to NULL �or ��� in Fortran� a heuristic
is used to distribute the ntask processes across the virtual machine� Initially
the heuristic is round�robin assignment starting with the next host in the table�
Later PVM will use the metrics of machine load and rated performance �sp"� to
determine the most appropriate hosts�

If the PvmHostCompl �ag is set� the resulting host set gets complemented� Also�
the TaskHost hostname ��� is taken as localhost� This allows spawning tasks on

� ��� �

��� to get the localhost or to spawn n � � things on TaskHost&HostCompl ��� to
get any but the localhost�

In the special case where a multiprocessor is speci�ed by where� pvm spawn
will start all ntask copies on this single machine using the vendor�s underlying
routines�

If PvmTaskDebug is set� then the pvmd will start the task�s� in a debugger� In
this case� instead of executing pvm��bin�ARCH�task args it executes pvm��lib�debugger
pvm��bin�ARCH�task args� Debugger is a shell script that the users can mod�
ify to their individual tastes� Presently the script starts an xterm with dbx or
comparable debugger in it�

Examples

C�

numt � pvm
spawn� �host�& 	& PvmTaskHost& �sparky�& �& �tid�	� �'

numt � pvm
spawn� �host�& 	& �PvmTaskHost$PvmTaskDebug�&

�sparky�& �& �tid�	� �'

numt � pvm
spawn� �node�& 	& PvmTaskArch& �RIOS�& �& �tid�i� �'

numt � pvm
spawn� �FEM��& args& 	& 	& ��& tids �'

numt � pvm
spawn� �pde�& 	& PvmTaskHost& �paragon�ornl�& ���& tids �'

Fortran�
FLAG � PVMARCH $ PVMDEBUG

CALL PVMFSPAWN� node & FLAG& SUN & �& TID���& NUMT �

CALL PVMFSPAWN� FEM� & PVMDEFAULT& � & ��& TIDS& NUMT �

CALL PVMFSPAWN� TBMD & PVMHOST& cm��utk�edu & ��& TIDS& NUMT �

Errors

These error conditions can be returned by pvm spawn either in numt or in the
tids array�

Name Value Possible cause

PvmBadParam �� giving an invalid argument value�

PvmNoHost �� Speci�ed host is not in the virtual machine�

PvmNoFile �� Speci�ed executable can not be found� The de�
fault location PVM looks in ��pvm��bin�ARCH

where ARCH is PVM architecture name�
PvmNoMem �� Malloc failed� Not enough memory on host�

PvmSysErr ��� pvmd not responding�

PvmOutOfRes ��� out of resources�

� ��� �

pvmftasks�� pvm tasks��

Returns information about the tasks running on the virtual machine�

Synopsis

C int info � pvm
tasks� int where& int �ntask&

struct pvmtaskinfo ��taskp �

struct pvmtaskinfo!

int ti
tid'

int ti
ptid'

int ti
host'

int ti
flag'

char �ti
a
out'

int ti
pid'

" taskp'

Fortran call pvmftasks� where& ntask& tid& ptid&

dtid& flag& aout&info �

Parameters

where # integer specifying what tasks to return information about�
The options are the following�

 for all the tasks on the virtual machine
pvmd tid for all tasks on a given host
tid for a speci�c task

ntask # integer returning the number of tasks being reported on�

taskp # pointer to an array of structures which contain information
about each task including its task ID� parent tid� pvmd task
ID� status �ag� the name of this task�s executable �le� and
task �O�S dependent� process id� The status �ag values are
waiting for a message� waiting for the pvmd� and running�

tid # integer returning task ID of one task

ptid # integer returning parent task ID

dtid # integer returning pvmd task ID of host task is on�

flag # integer returning status of task

aout # character string returning the name of spawned task� Man�
ually started tasks return blank�

info # integer status code returned by the routine� Values less
than zero indicate an error�

Discussion

The routine pvm tasks returns information about tasks running on the virtual
machine� The information returned is the same as that available from the con�

� ��
 �

sole command ps� The C function returns information about the entire virtual
machine in one call� The Fortran function returns information about one task
per call and cycles through all the tasks� Thus� if where " � and pvmftasks is
called ntask times� all tasks will be represented�

If pvm tasks is successful� info will be � If some error occurs� info will be � �

Examples

C�
info � pvm
tasks� 	& �ntask& �taskp �'

Fortran�

CALL PVMFTASKS� DTID& NTASK& INFO �

Errors

The following error conditions can be returned by pvm tasks�

Name Possible Cause

PvmBadParam invalid value for where argument�

PvmSysErr pvmd not responding�

PvmNoHost speci�ed host not in virtual machine�

� ��� �

pvmftidtohost�� pvm tidtohost��

returns the host ID on which the speci�ed task is running�

Synopsis

C int dtid � pvm tidtohost� int tid �

Fortran call pvmftidtohost� tid& dtid �

Parameters

tid # integer task identi�er speci�ed�

dtid # integer tid of the host�s pvmd returned�

Discussion

The routine pvm tidtohost returns the host ID dtid on which the speci�ed task
tid is running�

Examples

C�

host � pvm
tidtohost� tid�	� �'

Fortran�

CALL PVMFTIDTOHOST�TID& HOSTID�

Errors

These error conditions can be returned by pvm tidtohost�

Name Possible cause

PvmBadParam giving an invalid tid�

� ��� �

pvmftrecv�� pvm trecv��

receive with timeout�

Synopsis

C int bufid � pvm trecv� int tid& int msgtag& struct timeval �tmout �

Fortran call pvmftrecv� tid& msgtag& sec& usec& bufid �

Parameters

tid # Integer to match task identi�er of sending process�

msgtag # Integer to match message tag� should be '" �

tmout # Time to wait before returning without a message�

sec& usec # Integers de�ning Time to wait before returning without a
message�

bufid # integer returns the value of the new active receive bu�er
identi�er� Values less than zero indicate an error�

Discussion

The routine pvm trecv blocks the process until a message with label msgtag has
arrived from tid� pvm trecv then places the message in a new active receive
bu�er� also clearing the current receive bu�er� If no matching message arrives
within the speci�ed waiting time� pvm trecv returns without a message�

A �� in msgtag or tid matches anything� This allows the user the following
options� If tid " �� and msgtag is de�ned by the user� then pvm recv will accept
a message from any process which has a matching msgtag� If msgtag " �� and
tid is de�ned by the user� then pvm recv will accept any message that is sent
from process tid� If tid " �� and msgtag " ��� then pvm recv will accept any
message from any process�

In C� the tmout �elds tv sec and tv usec specify how long pvm trecv will wait
without returning a matching message� In Fortran� two separate parameters� sec
and usec are passed� With both set to zero� pvm trecv behaves the same as
pvm nrecv��� which is to probe for messages and return immediately even if none
are matched� In C� passing a null pointer in tmout makes pvm trecv act like
pvm recv��� that is� it will wait inde�nitely� In Fortran� setting sec to �� has the
same e�ect�

The PVM model guarantees the following about message order� If task � sends
message A to task �� then task � sends message B to task �� message A will arrive
at task � before message B� Moreover� if both messages arrive before task � does
a receive� then a wildcard receive will always return message A�

If pvm trecv is successful� bufid will be the value of the new active receive bu�er
identi�er� If some error occurs then bufid will be � �

� ��� �

Once pvm trecv returns� the data in the message can be unpacked into the user�s
memory using the unpack routines�

Examples

C�

struct timeval tmout'

tid � pvm
parent��'

msgtag � '

if ��bufid � pvm
trecv� tid& msgtag& �tmout �� �	� !

pvm
upkint� tid
array& �	& � �'

pvm
upkint� problem
size& �& � �'

pvm
upkfloat� input
array& �		& � �'

"

Fortran�
CALL PVMFRECV� ��& & �	& 	& BUFID �

IF �BUFID �GT� 	� THEN

CALL PVMFUNPACK� INTEGER& TIDS& ��& �& INFO �

CALL PVMFUNPACK� REAL�& MATRIX& �		& �		& INFO �

ENDIF

Errors

These error conditions can be returned

Name Possible cause

PvmBadParam giving an invalid tid value� or msgtag � ���

PvmSysErr pvmd not responding�

� ��� �

pvmfunpack�� pvm upk���

unpack the active message bu�er into arrays of prescribed data type�

Synopsis

C
int info � pvm
unpackf� const char �fmt& ��� �

int info � pvm
upkbyte� char �xp& int nitem& int stride �

int info � pvm
upkcplx� float �cp& int nitem& int stride �

int info � pvm
upkdcplx� double �zp& int nitem& int stride �

int info � pvm
upkdouble�double �dp& int nitem& int stride �

int info � pvm
upkfloat� float �fp& int nitem& int stride �

int info � pvm
upkint� int �ip& int nitem& int stride �

int info � pvm
upklong� long �ip& int nitem& int stride �

int info � pvm
upkshort� short �jp& int nitem& int stride �

int info � pvm
upkstr� char �sp �

Fortran
call pvmfunpack� what& xp& nitem& stride& info �

Parameters

fmt # Printf�like format expression specifying what to pack� �See discus�
sion�

nitem # The total number of items to be unpacked �not the number of bytes��

stride # The stride to be used when packing the items� For example� if
stride" � in pvm upkcplx� then every other complex number will
be unpacked�

xp # pointer to the beginning of a block of bytes� Can be any data type�
but must match the corresponding pack data type�

cp # complex array at least nitem�stride items long�

zp # double precision complex array at least nitem�stride items long�

dp # double precision real array at least nitem�stride items long�

fp # real array at least nitem�stride items long�

ip # integer array at least nitem�stride items long�

jp # integer�� array at least nitem�stride items long�

sp # pointer to a null terminated character string�

� ��� �

what # integer specifying the type of data being unpacked�

what options

STRING REAL �
BYTE� � COMPLEX� �
INTEGER� � REAL� �
INTEGER
 COMPLEX�� �

info # integer status code returned by the routine� Values less than zero
indicate an error�

Discussion

Each of the pvm
upk� routines unpacks an array of the given data type from the
active receive bu�er� The arguments for each of the routines are a pointer to the
array to be unpacked into� nitem which is the total number of items to unpack�
and stride which is the stride to use when unpacking�

An exception is pvm upkstr�� which by de�nition unpacks a NULL terminated
character string and thus does not need nitem or stride arguments� The Fortran
routine pvmfunpack� STRING� ���� expects nitem to be the number of characters
in the string and stride to be ��

If the unpacking is successful� info will be � If some error occurs then info will
be � �

A single variable �not an array� can be unpacked by setting nitem" � and
stride" ��

The routine pvm unpackf�� uses a printf�like format expression to specify what
and how to unpack data from the receive bu�er� All variables are passed as
addresses� A BNF�like description of the format syntax is�

format � null) init) format fmt

init � null) � $

fmt � � count stride modifiers fchar

fchar � c) d) f) x) s

count � null) �	���$) �

stride � null) � � �	���$) � �

modifiers � null) modifiers mchar

mchar � h) l) u

Formats�

$ means initsend � must match an int �how� in the param list�

c pack�unpack bytes

d integer

f float

x complex float

s string

� ��� �

Modifiers�

h short �int�

l long �int& float& complex float�

u unsigned �int�

 � count or stride must match an int in the param list�

Future extensions to the what argument will include �� bit types when XDR
encoding of these types is available� Meanwhile users should be aware that preci�
sion can be lost when passing data from a �� bit machine like a Cray to a
� bit
machine like a SPARCstation� As a mnemonic the what argument name includes
the number of bytes of precision to expect� By setting encoding to PVMRAW
�see pvm�nitsend� data can be transferred between two �� bit machines with full
precision even if the PVM con�guration is heterogeneous�

Messages should be unpacked exactly like they were packed to insure data in�
tegrity� Packing integers and unpacking them as �oats will often fail because a
type encoding will have occurred transferring the data between heterogeneous
hosts� Packing � integers and � �oats then trying to unpack only
 integers
and the � �oats will also fail�

Examples

C�

info � pvm
recv� tid& msgtag �'

info � pvm
upkstr� string �'

info � pvm
upkint� �size& �& � �'

info � pvm
upkint� array& size& � �'

info � pvm
upkdouble� matrix& size�size& � �'

Fortran�

CALL PVMFRECV� TID& MSGTAG �'

CALL PVMFUNPACK� INTEGER& NSIZE& �& �& INFO �

CALL PVMFUNPACK� STRING& STEPNAME& �& �& INFO �

CALL PVMFUNPACK� REAL& A��&��& NSIZE& NSIZE & INFO �

Errors

Name Possible cause

PvmNoData Reading beyond the end of the receive bu�er�
Most likely cause is trying to unpack more items
than were originally packed into the bu�er�

PvmBadMsg The received message can not be decoded� Most
likely because the hosts are heterogeneous and
the user speci�ed an incompatible encoding� Try
setting the encoding to PvmDataDefault �see
pvm mkbuf��

PvmNoBuf There is no active receive bu�er to unpack�

