SAN FRANCISCO JULY 22-26

Volume 19, Number 3, 1985

The University of Alberta User Interface Management System

Mark Green
Department of Computing Science
University of Alberta
Edmonton, Alberta, Canada

ABSTRACT: In this paper the design and implementation of
the University of Alberta user interface management system
(UIMS) is discussed. This UIMS is based on the Seeheim
model of user interfaces, which divides the user interface
into three separate components. The Seeheim model of user
interfaces is discussed along with its relationship to the
design of UIMSs. The techniques used to design the three
user interface components are briefly presented. A mixture
of interactive and written notations are used in the design of
the user interface. Some interesting features of this UIMS
are interactive screen and menu layout, support for three
dialogue notations, flexible interface to the application pro-
gram, ability to adapt to different users, and the use of con-
current processes in user interface implementation The tech-
niques used in the implementation of this UIMS are dis-
cussed.

KEYWORDS: user interface design, user interface manage-
ment systems, human-computer interaction

1. Introduction

The user interface is the component of a computer sys-
tem that stands between the user and the rest of the system.
Good software engineering practice suggests that the user
interface should be a separate program module. All interac-
tions between the user and the program are handled by the
user interface module (in this paper the term user interface
will usually mean the user interface module that implements
it). A separate user interface module naturally leads to the
notion of a User Interface Management System (UIMS). A
UIMS facilitates the design, construction, and maintenance
of user interfaces. A good introduction to current research
on UIMSs can be found ir the reports of the Graphical Input
Interaction Technique workshop sponsored by SIGGRAPH
[17] and the Seeheim Workshop on User Interface Manage-
ment Systems sponsored by Eurographics and IFIPS [18].

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1985 ACM 0-89791-166-0/85/007/0205 $00.75

In this paper we discuss the design and implementation
of the University of Alberta UIMS (for lack of a better
name). This UIMS is based on the Secheim model of user
interfaces that was developed at the Seecheim workshop.
This model is presented in section 2 of this paper. Some of
the user interface design tools provided by the University of
Alberta UIMS are briefly described in section 3. The set of
design tools is fairly extensive and cannot be properly
described in one paper. The fourth section describes the
run-time structure of the user interfaces produced by this
UIMS. This section presents a general implementation stra-
tegy for user interfaces based on the Seeheim model. The
last section summarizes this work and provides suggestions
for further research.

There were a number of reasons for developing the
UIMS presented in this paper. First, we wanted to evaluate
the feasibility of the Seeheim model as the basis for UIMSs.
When this model was proposed it had not been used as the
basis of a user interface or a UIMS, so there was no way of
evaluating it. By basing our UIMS on the Seeheim model we
have some evidence for its uwsability. Second, we wanted a
test bed for our ideas on user interface design and implemen-
tation. We wanted a way of testing our ideas without build-
ing a complete user interface or UIMS. Third, we wanted a
practical tool that can be used in other research projects
within our department. The last two goals are to some
degree contradictory. The last goal implies that the UIMS
should be relatively stable so other users have a solid foun-
dation to build on. On the other hand the second goal
requires the UIMS to be relatively easy to modify. This
question is discussed further in section 5.

2. The Seeheim Model of User Interfaces

In this section we briefly describe the Seeheim model of
user interfaces, a more detailed description of this model is
presented in [6]. This model was developed at the Seeheim
Workshop on User Interface Management Systems by a
working group whose members were: Jan Derksen, Ernest
Edmonds, Mark Green, Dan Olsen, and Robert Spence. The
Seeheim model is based on dividing the user interface into
threc components as shown in fig. 1. The presentation com-
ponent is responsible for the physical appearance of the user
interface including all the device interactions. The dialogue
control component manages the dialogue between the user
and the program. The application interface model forms the
interface between the user interface and the rest of the pro-
gram. It is the user interface's view of the application pro-
gram.

205

© SIGGRAPH85

The information flowing between the components is in
the form of tokens. Each token comsists of a type field,
which identifies the token, and a number of data fields that
depend upon the type of the token. This abstract represen-
tation is independent of the devices nsed by the user inter-
face. The only component of the user interface that must
deal with the details of devices is the presentation com-
pornent. An input token is a token moving from the user
towards the application and an output token is moving from
the application towards the user.

2.1. Presentation Component

The presentation component can be viewed as the lexi-
cal level of the user interface. It is respomnsible for screen
management, information display, input devices, interaction
techniques and lexical feedback. The menus in an applica-
tion are part of the presentation component. When the user
selects an item from a menu the presentation component
generates an input token that is sent to the dialogue control
component. If multiple menus are used dialogue control

sends output tokens to the presentation component indicat--

ing when the menus should be active. The presentation
component guarantees that the user can always select from
any of the active menus, but beyond this dialogue control
has no control over menu appearance.

There are a number of advantages to having a separate
presentation component. First, all the device interactions
are isolated in this component. This increases the portabili-
ty of the user interface since only the presentation com-
ponent needs to be changed when the user interface is moved
to a different display device. The presentation component
can be designed to support a range of display devices and
automatically adapt to the one being used. This is easier to
do when the device interactions are isolated in one com-
ponent. Second, a separate presentation component pro-
vides a convenient means of tailoring the lexical level of the
user interface to individual users. The sc¢reen layout can be
changed to accommodate both left and right handed users,
default command options can be changed, and the user can
select his favorite interaction or display technique for a par-
ticular type of data. Third, a separate presentation com-
ponent encourages the development and use of a standard
library of interaction techniques. This will reduce the cost
of user interfaces and improve their quality.

2.2. Dialogue Control Component

The dialogue control component manages the dialogue
between the user and the application. This component con-
verts the stream of input tokens originating in the presenta-
tion component into a structure representing the commands
and operands intended by the user. This structure is then
converted into a sequence of input tokens sent to the appli-
cation interface model in order to execute the command.
Similarly the output tokens sent by the application interface
model are interpreted by dialogue control and a sequence of
output tokens for the presentation component is generated.

Most existing UIMSS$ have concentrated on the dialogue
control component, therefore, we have more experience with
it than the other components. There are three main nota-
tions for the dialogue between the user and computer.
These notations are recursive transition networks, BNF
grammars, and events.

2.2.1. Recursive Transition Networks

A recursive transition network (RTN) is a collection of
directed graphs. Each directed graph has a set of nodes
representing the state of the dialogue, and a set of arcs
representing the actions the user can perform. An arc con-
nects two nodes in the directed graph. The user interface
moves from the state at the end of the arc to the state at its
head if the user performs the action labeling the arc. In a
given state the user must perform omne of the actions that
labels an arc leaving the node representing that state. The
arc labels are either the name of an input token generated
by the presentation component or the name of another
directed graph. In the latter case the named directed graph
must be traversed before the state at the end of the arc is
reached. In the case of recursive transition networks a
directed graph can reference itself.

The tokens to be sent to the application interface
model or presentation component can be attached to either
the arcs or the nodes (in some systems they can be attached
to both). If a token is attached to an arc the token is sent
when the arc is traversed. If a token is attached to a node it
is sent when the node is entered.

The use of multiple directed graphs facilitates the
description of large user interfaces and increases the descrip-
tive power of the technique. The use of a transition network
to describe the login sequence for a time sharing system is
shown 1n fig. 2.

<user_d> < password >
D0

3

Actions:
1) print 'login:’
2) print 'password’
3) print 'login junk ...’
Fig. 2 Transition diagram for login sequence
Transition diagrams have been used extensively in

UIMSs. One of the earliest uses of transition diagrams is the
work of Newman [15]. Another example of their use is the

Presentation

USER ()

Component

Dialogue .I'\pplication
nterface e_)
Control Model

‘e

T

_J

L

Fig. 1 The components of a user interface

206

SAN FRANCISCO JULY 22-26

Volume 19, Number 3, 1985

SYNICS system developed by Edmonds [4]. An extension of
RTNs called augmented transition networks (ATN) have
been used for parsing natural languages [21]. In an ATN

arbitrary functions can be attached to the arcs. These func-

tions can store values in registers and use the register values
to determine whether an arc should be traversed. This
extension greatly increases the computational power of tran-
sition networks (ATNs are equivalent to Turing machines).

2.2.2. Context Free Grammars

The second mnotation for the dialogue control com-
ponent is context free grammars or BNF. The terminals in
these grammars are the input tokens produced by the
presentation component. The non-terminals and produc-
tions are used to structure the dialogue. For example, there
could be a non-terminal for each of the commands in the
user interface. The productions with these non-terminals on
the left side define the structure or syntax of the commands.
A BNF grammar for the login example is shown in fig. 3.

login -> user_jd password
user_jd -> <character_string>
password -> < character_string>

Fig. 3 BNF grammar for the login sequence

The grammar in fig. 3 only describes the actions per-
formed by the user, it does not cover the output produced
by the program. In order to do this some way of associating
tokens with the productions is required. Wlenever a pro-
duction is used in the parse of the user’s input these tokens
are sent to the presentation component or application inter-
face model.

An unresolved issue with this approach to dialogue con-
trol is how to handle the output tokens passed from the
application interface model to dialogue control. In some
types of dialogues (mixed or system initiated) this flow of
tokens may be just as important as the one originating in
the presentation component.

Two examples of the use of grammars in the construc-
tion of user interfaces are the SYNGRAPH system of Olsen
and Dempsey {14] and the work of Hanau and Lenorovitz

[11
2.2.3. Events

The third main notation for the dialogue control com-
ponent is events. This notation is loosely based on the
object oriented approach to user interface design used in
Smalltalk [5] and related languages. In this notation the
input tokens from the presentation component and the out-
put tokens from the application interface model are viewed
as events. These events are processed by event handlers.
Each event handler has its own collection of local variables
and a collection of procedures for processing events. When
an event handler receives an event the associated procedure
is executed. These procedures can perform calculations,
send events to other event handlers, and send tokens to the
presentation component and application interface model.
The dialogue control component consists of a collection of
event handlers that can change dynamically.

There are several important differences between the
event notation and Smalltalk. The event handlers perform
the same function as the objects and classes in Smalltalk.
The main difference is that there is no explicit inheritance
mechanism for event handlers. The main difference between
messages and events is that messages are synchronous and
events are asynchronous. When a Smalltalk object sends a

message it suspends its execution and transfers control to
the receiving object. When the receiving object completes
its computation control returns to the sending object with a
value for the message. In the case of events there is no hand
shaking between the sending and receiving event handlers.
An event has no value in the sending event handler and the
receiving event handler may receive the event any time after
it is generated (the sending event handler may not suspend
its execution when it generates an event).

An event handler for the login sequence example is
shown in fig. 4. This event handler responds to two types of
events. The Init event is sent when the event handler is
created. In response to this event the login message is print-
ed. The other event is received whenever the user types a
character string. The "state” variable is used to determine
whether the character string is a user id or a password. In
practice the print and process_login statements would be
tokens sent to the presentation component and application
interface model.

Eventhandler login Is

Token
keyboardstring s;

Var
int state = 0;
string user_id, password;

Event Init {
print "login:";

Event s : string {

if(state == 0) {
user_id = s;
state = 1;
print "password:";

} else {
password = s;
state = 0;
process_Jogin(user_jd,password);

>

}
End login;

Fig. 4 Event handler for the login sequence

The obvious disadvantage to the event notation is that
it looks more like a program than the other two notations
(depending upon personal biases this may be an advantage).
This disadvantage is offset by a number of advantages.
First, the expressive power of events is greater than that of
recursive transition networks or grammars (the event nota-
tions is equivalent to Turing machines while recursive tran-
sition networks and BNF grammars are equivalent to push-
down automata [8]). This implies that there are user inter-
faces that can be described by events that cannot be
described by recursive transition networks or BNF gram-
mars. The dialogues in these user interfaces typically
depend upon the context of the interaction (the next step in
the dialogue depends upon the values of previously entered
operands, not just their syntax). The ATN notations men-
tioned in section 2.2.1 are also capable of describing these
dialogues and have the same descriptive power as the event
notations. [t is important to mnote that the additional
descriptive power of the event notation may not be useful or
desirable. The main point of this observation is that dialo-

207

« SIGGRAPH85

gues described in the other notations can always be translat-
ed into the event notation. This observation forms the basis
of our implementation of the dialogue control component.
Second, events support multi-threaded dialogues. Since
each event handler has its own local state and multiple
event handlers can be active at any one time, the user is free
to move from any spot in the dialogue to another without
completing the current command or explicitly saving the
state of the dialogue. In this way event handlers can be
developed for help, cancel and other special commands that
must always be available. The event handlers processing
these commands will always be available whenever the user
enters them, it does not require special programming.

2.3. Application Interface Model

The application interface model is the user interface’s
view of the application. It contains descriptions of all the
application’s data structures and routines that are accessible
to the user interface. The description of this component can
be divided into two sections. The first section contains the
descriptions of the application routires and data structures.
These descriptions are at an abstract or logical level, they
are not concerned with how the data structures or routines
are implemented.

The description of the application’s data structures
include the type of information stored and how it is struc-
tured. This description might also include the routines that
can be used to access and modify the data structures. The
description of the application’s routines include the name of
the routine and the number and types or its parameters.
The routine descriptions might also include pre- and post-
conditions. The pre-conditions state the conditions that
must hold before the routine can successfully be used. They
can be used to detect semantic errors, such as manipulating
a database before it is opened or printing a binary file. The
post-conditions describe the effect of the routine. They can
be used to generate help information or aid in undo process-
ing.

The second section of the description of the application
interface model covers how the user interface communicates
with the application. There are three possible modes of
communication called interaction modes. In the first
interaction mode, the user initiated mode, the user interface
calls routines in the application. This is similar to the exter-
ral control model presented at the Seattle workshop {17]. In
the system initiated mode the application calls routines in
the user interface. This is similar to the internal control
model. The third interaction mode, mixed initiative, is
based on two communicating processes, one for the user
interface and one for the application. In this case neither
the user interface nor the application has control over the
other. In the mixed initiative mode some mechanism for
interleaving the execution of the user interface and the
application must be used. This could take the form of mul-
tiple processes or coroutines. The user interface designer
specifies the interaction mode and the UIMS establishes the
procedures to implement it. The descriptions of the presen-
tation component and dialogue control are independent of
the interaction mode.

3. Designing the User Interface

The University of Alberta UIMS is divided into two
main parts, which are: user interface design and run-time
support. The design part of the UIMS supports the user
interface designer. It provides tools for describing screen
layout, device assignments, dialogue structure, and the
interaction with the application program. The result of the
design part of the UIMS is a detailed specification of the

208

dow systems including overlapping windows that can be
moved and resized. Some of the nonstandard features of
this package are device independence and a set of two and
three dimensional graphics primitives. Three features of
WINDLIB are used extensively in the presentation com-
ponent. These features are events, event handlers, and con-
tents structures.

Al the input in WINDLIB is in the form of events. An
event has a name, a position, and possibly some event
specific data. The event name indicates the device that gen-
erated the event. In the case of keyboards and other devices
that don’t generate coordinate information the position of
the display’s pointing device is used as the position of the
event. A window can have an event handler associated with
it. An event handler is a procedure that processes the events
that are directed at the window. The body of an event
handler is usually a case statement on the name of the
event. The event handlers can generate events to be sent to
other windows. The window that receives a particular event
is determined by examining the windows in priority order
(from highest to lowest). The first window with an event
handler covering the position of the event receives the event.

Contents structures are a hierarchical modeling scheme
used for grouping together related pieces of graphical infor-
mation. A contents structure can be displayed in any win-
dow that is currently on the screen. WINDLIB provides con-
tents structures for its two and three dimensional graphics
primitives. The programmer can define his own type of con-
tents structure. Programmer defined contents structures are
used to represent graphical information in a form that is
more convenient to the application. For example, in a
charting application the programmer could define contents
structures for line graphs, pie charts, bar charts, and histo-
grams. The application only needs to provide the data
required for each type of chart, it does not need to produce
the graphics primitives that draw the chart. When the pro-
grammer defines a contents structure he must provide a rou-
tine that traverses the contents structure converting it into
graphics primitives. In this way the graphics programmer
can provide the applications programmers with a set of rou-
tines and data structures that are tuned to their application.
user interface that can automatically be converted into the
code required to implement it. The run-time part of the
UIMS supports the execution of the user interface. It uses
the results of the design part to form a complete executable
user interface. This division of the UIMS into design and
ruli-ti]me support is fairly standard and is discussed further
in [20].

In this section the design tools provided by the Univer-
sity of Alberta UIMS are briefly described. This discussion
serves as the background for the description of the imple-
mentation techniques presented in the next section.

3.1. Designing the Presentation Component

The presentation component is concerned with the lexi-
cal level of the user interface, including screen layout, menu
design, interaction techniques, and icon design. This sug-
gests an interactive approach to the design of this com-
ponent (this approach has been successfully used in the
University of Toronto UIMS [2]). In the University of Alber-
ta UIMS an interactive layout program is used to design the
presentation component and a window based graphics pack-
age, called WINDLIB [9], is used as the basis of its imple-
mentation.

WINDLIB is a window based graphics package similar
to the GiGo package developed by Rosenthal [18].
WINDLIB has all the features normally associated with win-

SAN FRANCISCO JULY 22-26

Volume 19, Number 3, 1985

The application programmers do not need to be experts in
graphics or be concerned with how the data is displayed.

The design of the presentation component can be divid-
ed into three activities, screen layout, interaction tech-
niques, and display techniques. These activities are support-
ed by an interactive layout program, called ipcs (interactive
presentation component specification), developed by G.

Singh [19].

Ipcs allows the designer to divide the screen into a
number of overlapping windows. The designer specifies the
size and position of a window by pointing at two opposing
corners. The designer can then specify the background
colour of the window, its coordinate system, a name for the
window, and an output token. The output token associated
with a window is used to indicate when the window is to be
displayed. When the presentation component receives this
token the window is displayed on the screen. A menu can be
associated with each of the windows. A menu can either be
static (always displayed in the same position) or pop-up (the
current cursor position is the upper left corner of the menu).
Each menu is viewed as a collection of menu items. A menu
item consists of an input token, and a text string or icon.
When the menu item is selected its input token is sent to the
dialogue control component.

A window can have an interaction technique associated
with it. This interaction technique becomes the event
handler for the window when it is displayed. The user inter-
face designer specifies the interaction technique by entering
the name of a C procedure. This C procedure performs the
initialization required by the interaction techmique and
establishes its event handler. When the window associated
with the event handler is removed from the screen a special
finish event is sent to the event handler allowing it to deallo-
cate any resources it has acquired. The user interface
designer can select interaction techniques from a library or
he can write his own.

Ipcs allows the designer to associate display procedures
with each of the output tokens that can be processed by the
presentation component. For each output token the
designer specifies the name of a display procedure and a win-
dow where the information is to be displayed. The display
procedure is either chosen from a library of standard display
procedures or written by the designer. One of the standard
display procedures calls WINDLIB to display the contents
structure stored in the output token.

The description of the presentation ¢component is stored
in an FDB database [10]. This database stores the state of
the design between ipcs sessions and is used to generate the
presentation component at run time.

3.2. Designing the Dialogue Control Component

The University of Alberta UIMS supports all three
notations for the dialogue control component. This gives
the user interface designer considerable flexibility in his
approach to the design of this component. In order to pro-
vide this flexibility the UIMS must have a common format
that all three notations can be tramslated into. This com-
mon format forms the basis for the run-time support of the
dialogue control component. Since the event notation has
more descriptive power than the other two mnotations the
common format, EBIF (Event Based Internal Form) is based
on the event notation. EBIF is described in section 4.1.

3.2.1. Event Language

The event language used in the University of Alberta
UIMS is based on the C programming language [12]. Since C
is the main programming language used in our research
group this significantly reduces the time required to learn
the language. A program in the event language consists of a
number of event handlers. The text of the program contains
one or more event handler definitions. When the program is
executed instances of these event handlers are created. It is
the instances that perform computations, not the event
handlers themselves. There may be several instances of the
same event handler, parameters can be used to establish the
state of an instance when it is created.

Eventhandler event_handler_name Is

Token
token_name event_name ;

Var
type variable_pame = initial_value ;

Event event_npame : type {
statements
}

Event event_name : type {
statements
}

end event_handler_name;

Fig. 5 Structure of event handler declarations

The structure of an event handler declaration is shown
in fig. 5. An event handler declaration is divided into three
sections. The first section lists the tokens (either input or
output) that the event handler can process. This informa-
tion is used by the assembler (see section 4.2) to map tokens
into events for event handlers. The event language compiler
places the token information in a table separate from the
event handlers. In this way the the assignment of token
names, and the mapping between tokens and events can be
changed (in the assembly process) without effecting the
event handlers themselves.

The second section of an event handler declaration con-
tains the declarations of the event handler’s local variables.
Each instance of the event handler has its own set of local
variables, there is no sharing of storage between instances.
A variable declaration consists of a type, a variable name,
and an optional initial value. The type can be any valid C
type that occupies the same amount of space as a pointer.
This includes characters, integers, floating points numbers
(single precision only) and pointers to any C type. This res-
triction simplifies the implementation of the language and
may be lifted in the future.

The third section consists of event declarations. An
event declaration starts with the keyword Event followed by
the name of the event and its type. The body of the event
declaration consists of one or more C statements. These

209

@ SIGGRAPH85

statements are executed when an instance of the event
handler receives this event. The statements can reference
the instance’s local variables and the global variables in the
program. The data associated with the event is assigned to
the event name before the execution of the statements in the
event declaration.

There are a number of special procedures that are used
in event handlers. The format of these procedures is shown
in fig. 6. The create_instance procedure is used to create a
new event handler instance. The parameters to this pro-
cedure are the name of the event handler, the number of.
local variables to be initialized and their initial values. The
local variables are initialized in the order they are listed in
the variable declaration section. The value returned by this.
procedure is the name of the new instance. When an
instance is created an Init event is automatically sent to it.
The send_event procedure is used to send an event to an
event handler instance. The parameters to this procedure
are the name of the instance, the name of the event, and the
data associated with the event. The send_token procedure
is used to send a token to another component of the user
interface. The parameters to this procedure are the com-
ponent to receive the token, the direction of the token
(input or output), the name of the token, and its value. The
destroy_jnstance procedure is used to destroy the instance
that is given as its parameter. Before destroy_instance deal-
locates the instance a Finish event is sent to it. This event
allows the instance to free any resources it has accumulated
in its execution.

1) create_jnstance(event_handler, n, Vi Vo e vn)
2) send_event(instance_name, event_name, value)
3) send_token(destination, direction, name, value)

4) destroy_instance(instance_name)
Fig. 6 Event language support procedures

More details on the event language and its implementa-
tion can be found in [3].

3.2.2. Recursive Transition Networks

In the University of Alberta UIMS an interactive
approach is taken to the design of recursive transition net-
works. There is a natural graphical representation for recur-
sive transition networks, this suggests that an interactive
graphical approach is appropriate for them.

The interactive transition diagram editor produced by
S.C. Lau [13] is used to enter and edit RTNs. This editor is
based on a graphical display of the transition network. The
designer can use a tablet or mouse to enter and edit the
nodes and arcs in a diagram. Each arc in the diagram has an
input tokean, and optional output tokens to be sent to the
presentation component and application interface model
when the arc is traversed. One interesting feature of this
editor is the ability to select and save a group of nodes and
arcs. This group can then be added to another diagram in
the user interface.

The transition diagrams are stored in an FDB database.
This database is used to store the diagrams between editing
sessions and is used to generate the EBIF for the dialogue
control component. A separate program is used to convert

210

the transition diagrams to EBIF. More details on the transi-
tion diagram editor and conversion to EBIF can be found in
[13].

3.2.3. Grammars

At the present time a grammar based notation has not
been implemented. A number of grammar based notations
exist (for example [14]). The major activity in implementing
this type of notation is developing the algorithms required to
convert productions into event handlers or EBIF. We intend
to do this sometime in the future.

3.3. Designing the Application Interface Model

At the present time support for the application inter-
face model is under development. Currently only one
interaction mode (user initiated) is supported and the main
use of this component is to map between tokens and the rou-
tines in the application.

The mapping between tokens and application routines
may not be one-to-one. A token may cause several applica-
tion routines to be executed, or it may contain data used in
a subsequent call of an application routine. In order to sup-
port this behavior the application interface model must pro-
vide storage for saving token values and a means of associat-
ing a sequence of actions with a token.

Var
type variable_name;

Token token_name : token_type {
statements

Fig. 7 Structure of the application interface model

In the University of Alberta UIMS a written notation is
used for describing the application interface model. This
notation is converted into C code and tables which become
part of the user interface at run-time. The structure of the
application interface is shown in fig. 7. The first part of this
description defines the storage locations used by the applica-
tion interface model. The variable declarations in this sec-
tion have the same syntax as C variable declarations. The
values of these variable are preserved from one token to the
next. The second section of the description contains one
entry for each token processed by the application interface
model. This entry contains the name of the token, its type,
and the statements to be executed when it is received. The
statements are standard C statements that can call applica-
tion routines and save the value of the token. Note the simi-
larity between the application interface model and the event
language discussed in section 3.2.1.

4. Implementation

In this section an overview of the implementation of the
University of Alberta UIMS is presented. This discussion
centers around the structure of the event based internal
form and how it is interpreted by the run-time routines.

SAN FRANCISCO JULY 22-26

Volume 19, Number 3, 1985

4.1. EBIF

All the program used to design the dialogue control
component produce EBIF as output. An EBIF file consists
of a number of event handler definitions. Each event
handler definition is divided into two parts. The first part
contains information used by the run-time routines to create
instances of event handlers and route tokens between these
instances. This information is placed in the three main
tables that drive the run-time routines (see fig. 8).

The second part of the event handler definition is a C
procedure containing all the executable statements in the
event handler. This procedure is called each time an event
must be executed. The body of this procedure is a case
statement on the name of the event. This procedure has
four parameters, which are: the name of the instance, the
name of the event to be processed, the value of the event,
and an array containing the values of the instance’s local
variables.

The three tables used by the run-time routines are
shown in fig. 8. The event table has one entry for each event
handler. This entry contains a pointer to the corresponding

C procedure, and the number of local variables for each
instance. There is one entry in the instance table for each
active instance. This entry points to the array containing
the instance’s variable values, and the index in the event
table of the corresponding event handler. The token table is
used to map between tokens and the event handlers that
process them. Each entry in this table contains the name of
a token, the name of the event it is converted to, and the
event handler that can process it.

4.2. User Interface Assembly

The assembly of the user interface is performed by a
program called the assembler. The input to this program is
the EBIF files produced by the dialogue control programs, a
file of the input and output tokens associated with the
presentation component (produced by ipes), the output file
from the design of the application interface model, and a
token definition file. The output from the assembler is a file
of C routines, which must be compiled, and the tables used
by the run-time support routines. The process of converting
a program in the event language into an executable user
interface is shown in fig. 9.

Instance Table Event Table Token Table
variables EH # of var. C proc Tname Ename EH
'—‘\ 3 4
5 —_—
\ 1 x(a, b, c, d) {
2
3
4
5 }
Fig. 8 Run-time tables
scheduling
routines
event Event L. Ogje:t 1
. code 1or user
la:)guage ™ Compiler |~ EBIF e Assembler Compiler dialogue-.Loader_.interface
program control 1
other
software
modules

Fig. 9 Converting an event program into a user interface

21

@ SI1GGRAPH5

v

4.3. Run-time Routines

In the design of the user interface it has been assumed
that each of the components is a separate process. The only
way of exchanging information between components is
through tokens, which is an asynchronous communications
mechanism. This illusion of concurrency must be main-
tained by the run-time support routines. The approach that
we have used is to view the run-time routines as a scheduler
that allocates processing time to the individual components.
The unit of scheduling at the component level is the token.

When one component sends a token to apother com-
ponent that token is placed on a scheduling queue associated
with the receiving component. The scheduler examines the
scheduling queue associated with each of the components
and selects one of the tokens for execution. Highest priority
is placed on the presentation component, and lowest priority
on the application interface model queue, with the restric-
tion that a token will not be blocked for an arbitrary long
time. The scheduler then calls the appropriate routine in
the receiving component to process the token. This routine
can be determined from the tables produced by the assem-

bler.

1) If an input device has input ready call the
presentation component to process it.

2) If there are pending events in dialogue con-
trol execute several of them

3) Select a token from one of the scheduling
queues and execute it.

4) Goto step (1)

Fig. 10 Steps in the scheduling process

Both the presentation component and dialogue control
have a lower level of scheduling. Before the higher level
scheduler can process a token the presentation component
determines if any of its input devices has a value ready. If
this is the case the value is converted into a WINDLIB event
and processed by the presentation component. Similarly if
there are events waiting in the dialogue control component a
small number of them are processed before the next token is
processed. The steps in this two level scheduling process are
shown in fig. 10.

This two level scheduling process has three main
advantages. First, it gives priority to the components closer
to the user, thus he will have fast feedback to lexical opera-
tions, and slower feedback to semantic operations. Second,
it supports the view of the three components as separate
processes allowing them to be designed separately. Third, it
leaves the door open for the implementation of the user
interface as three separate processes on three closely coupled
processors, which may be feasible in the near future.

5. Summary

In this paper we have presented the design of the
University of Alberta UIMS. The goals of this UIMS have
been outlined along with discussions of its main components
and implementation. The implementation has reached the
point where we have built several small applications with
the system. We are now working on rewriting all the
interactive design programs so they use the UIMS.

One of our original aims was to produce a system archi-
tecture that allows for growth ard experimentation, and at

212

the same time supports production applications. We believe
we have at least partially reached this goal by separating the
design of the user interface from its run-time support. The
run-time support is fairly stable and the users of the UIMS
are largely not aware of the internal formats it uses. By tak-
ing this approach we hope to be able to incorporate com-
ments from designers and users into future versions of the

UIMS.

There are a number of enhancements and extensions to
the University of Alberta UIMS that we would like to inves-
tigate. One of the most obvious extensions is adding a
grammar based notation for the dialogue control component.
This would give the user interface designer the full spectrum
of design notations for this component. Another useful
extension would be providing an interactive assembly pro-
gram. This would be more convenient than the current
batch approach to user interface assembly. It might also
facilitate the management of different versions of the user
interface intended for different workstations and user
groups.

There are three extensions that have a sigrificant
research component. The first is developing a more flexible
approach to screen layout. The current approach is based
on a relatively static screen layout, the only variability is in
pop-up menus. We would like to be able to automatically
adjust the screen layout based on the type and amount of
information displayed. For example, automatically changing-
the size of a window depending upon the amount of informa-
tion stored in it, or automatic selection of display techniques
based on the type of data and the amount of detail required.
The second extension is automatic undo processing. This
would be an extension to the application interface model
that would allow the user to undo any recent action, or
replay recent commands with different operands. This undo
mechanism should be automatically provided by the UIMS.
The third major extension involves the interaction between
the UIMS and database systems. The schemas used by most
database systems are a good first order approximation to the
application interface model. Given a schema we would like
to automatically produce the corresponding application
interface model. The schema might also suggest commands
and operations that should appear in the user interface. It
might be possible to produce an augmented schema that can
be used to produce both the database and the user interface.
This issue is explored in [1}.

References

[1] Armstrong W.W., M. Green, P. Srirangaptna, "A Data-
base Management System and Associated Tools for a
General Design Environment", Proceedings of the 1984
Canadian Conference on Very Large Scale Integration,
p-183-187, 1934.

[2] Buxton W.,, M.R. Lamb, D. Sherman, K.C. Smith,
"Towards a Comprehensive User Interface Manage-
ment System”, Siggraph’83 Proceedings, p.35-42, 1983.

(3] Chia M.S., An Event Based Dialogue Specification for
Automatsc Generation of User Interfaces, MSc Thesis,
Department of Computing Science, University of
Alberta, 1985 (expected).

[4] Edmonds E.A., "Adaptive Man-Computer Interfaces”, in
M.J. Coombs and J.L. Alty, Computing Skills and the
User Interface, Academic Press, London, 1981.

[5] Goldberg A., D. Robson, Smelltalk-80: The Language and
its Implementation, Addison-Wesley, Reading Mass.,

SAN FRANCISCO JULY 22-26

Volume 19, Number 3, 1985

(6]

7]

(8]

9

(10]

[11]

12]

(13]

(t4]

(18]

[16]

[17]

(18]

(19]

(20]

(21]

1983.

Green M., "Report on Dialogue Specification Tools”,
Computer Graphics Forum, vol.3, p.305-313, 1984.

Green M., "The University of Alberta User Interface
Management System: Design Principles”, Human-
Computer Interaction Project Report #1, Department
of Computing Science, University of Alberta, 1984.

Green M., "User Interface Models”", Human-Computer
Interaction Project Report #2, Department of Com-
puting Science, University of Alberta, 1985.

Green M., N. Bridgeman, "WINDLIB Programmer’s
Manual”, Department of Computing Science, Universi-
ty of Alberta, 1985.

Green M., M. Burnell, H. Vrenjak, M. Vrenjak,
"Experiences With a Graphical Data Base System",
Proceedings of Graphics Interface’83, p.257, 1983.

Hanau P.R., D.R. Lenorovitz, "Prototyping and Simula-
tion Tools for User/Computer Dialogue Design", Sig-
graph’'80 Proceedings, p.271-278, 1980.

Kernighan B.W., D.M. Ritchie, The C Programming
Language, Prentice-Hall, Englewood Cliffs NJ, 1978.

Lau S.C., The Use of Recuraive Tranaition Networks for
Dialogue Design in User Interfaces, MSc Thesis,
Department of Computing Science, University of
Alberta, 1985 (expected).

Olsen D.R., E.P. Dempsey, "SYNGRAPH: A Graphic
User Interface Generator”, Siggraph’83 Proceedings,
p.43-50, 1983.

Newman W.M., "A System for Interactive Graphical
Programming, SJCC 1968, Thompson Books, 1968.

Rosenthal D.S.H, "Managing Graphical Resources”,
Computer Graphics, vol.17, no.1, p.38-45, 1983.

Graphical Input Interaction Technique Workskop Sum-
mary, Computer Graphics, vol.17, no.1, p.5-66, 1983.

Pfaff G., P.J.W. ten Hagan, Seeheim Workshop on User
Interface Management Systems, Springer-Verlag, Ber-
lin, 1985.

Singh G., Automatic Generation of Presentation Com-
ponent for University of Alberta UIMS, MSc Thesis,
Department of Computing Science, University of
Alberta, 1985 (expected).

Tanner P.P., W.A.S. Buxton, "Some Issues in Future
User Interface Management System Development”, in
G. Pfaff and P.J.W. ten Hagen (ed), Seehesm Workshop
on User Interface Management Systems, Springer-
Verlag, Berlin, 1985.

Woods W.A., "Tramsition Network Grammars for
Natural Language Analysis", CACM vol.13, no.10,
p.591-608, 1970.

213

A tirirnbeccmnmcitive tahlat (fai1imh tahlot fAar chart) 5o o

