
SAN FRANCISCO JULY 22-26 Volume 19, Number 3, 1985

T h e U n i v e r s i t y o f A l b e r t a U s e r I n t e r f a c e M a n a g e m e n t S y s t e m

Mark Green
D e p a r t m e n t of Compu t ing Science

Univers i ty of Albe r t a
Edmon ton , Alber ta , C a n a d a

ABSTRACT: In th is paper the design and implemen ta t ion of
the Univers i ty of Alber ta user interface m a n a g e m e n t system
(UIMS) is discussed. This UIMS is based on the Seeheim
model of user interfaces, which divides the user in terface
into th ree separa te components . The Seeheim model of user
interfaces is discussed along wi th its re la t ionship to the
design of UIMSs. The techniques used to design the t h r e e
user in terface componen t s are briefly presented. A mixture
of in terac t ive and wr i t t en no ta t ions are used in the design of
the user interface. Some in te res t ing features of th i s UIMS
are in terac t ive screen and menu layout , suppor t for th ree
dialogue nota t ions , flexible interface to the appl ica t ion pro-
gram, abi l i ty to adap t to different users, and the use of con-
cur ren t processes in user interface imp lemen ta t ion The tech-
niques used in the imp lemen ta t ion of th i s UIMS are dis-
cussed.

KEYWORDS: user interface design, user interface manage-
men t systems, h u m a n - c o m p u t e r in te rac t ion

1. In troduc t ion

The user interface is the componen t of a compute r sys-
tem t h a t s t ands between the user and the res t of the system.
Good software engineer ing pract ice suggests t h a t the user
interface should be a separa te program module. All interac-
t ions be tween the user and the program are handled by the
user in terface module (in th is paper the t e rm user interface
will usually mean the user in terface module t h a t implements
it). A separa te user in terface module na tura l ly leads to the
not ion of a User Interface Managemen t System (UIMS). A
UIMS faci l i ta tes the design, cons t ruc t ion , and ma in tenance
of user interfaces. A good in t roduc t ion to cur ren t research
on UIMSs can be found in the repor ts of the Graphica l Input
In te rac t ion Technique workshop sponsored by SIGGRAPH
[17] and the Seeheim Workshop on User Interface Manage-
men t Systems sponsored by Eurographics and IF1PS [18].

Permission to copy without fee all or part of this material is granted
provided that the copies arc not made or distributed for direct
commcmial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is giyen that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

In th is paper we discuss the design and imp lemen ta t ion
of the Univers i ty of Alber ta UIMS (for lack of a b e t t e r
name). This UIMS is based on the Seeheim model of user
in terfaces t h a t was developed at the Seeheim workshop.
This model is presented in sect ion 2 of this paper . Some of
the user interface design tools provided by the Univers i ty of
A lbe r t a UIMS are briefly described in sect ion 3. The set of
design tools is fair ly extensive and canno t be properly
descr ibed in one paper. The four th sect ion describes the
run- t ime s t ruc tu re of the user interfaces produced by th i s
UIMS. This sect ion presents a general imp lemen ta t ion s tra-
tegy for user in terfaces based on the Seeheim model. The
last sect ion summarizes this work and provides suggest ions
for fu r the r research.

There were a n u m b e r of reasons for developing the
UIMS presented in this paper. First , we wanted to evalua te
the feasibi l i ty of the Seeheim model as the basis for UIMSs.
W h e n th is model was proposed it had not been used as the
basis of a user in terface or a UIMS, so there was no way of
eva lua t ing it. By basing our UIMS on the Seeheim model we
have some evidence for i ts usabi l i ty . Second, we wan ted a
tes t bed for our ideas on user interface design and implemen-
ta t ion . We wan ted a way of t e s t ing our ideas w i thou t build-
ing a complete user in terface or UIMS. Thi rd , we wan ted a
pract ica l tool t h a t can be used in o ther research projects
wi th in our depa r tmen t . The last two goals are to some
degree cont rad ic tory . The last goal implies t h a t the UIMS
should be re la t ively s table so o ther users have a solid foun-
da t ion to bui ld on. On the o the r hand the second goal
requires the UtMS to be re la t ively easy to modify. This
quest ion is discussed fu r the r in sect ion 5.

2. T h e Seehe lm Mode l o f User Interfaces

In th i s sect ion we briefly describe the Seeheim model of
user interfaces, a more deta i led descr ipt ion of th is model is
presented in [6]. Th i s model was developed at the Seeheim
Workshop on User Interface Managemen t Systems by a
working group whose members were: Jan Derksen, Ernes t
Edmonds , Mark Green, Dan Olsen, and Rober t Spence. The
Seeheim model is based on dividing the user interface into
th ree componen ts as shown in fig. 1. The p resen ta t ion com-
ponen t is responsible for the physical appearance of the user
in ter face including all the device in terac t ions . The dialogue
control componen t manages the dialogue between the user
and the program. The appl ica t ion in terface model forms the
interface be tween the user in ter face and the res t of the pro-
gram. It is the user in ter faee ' s view of the appl ica t ion pro-
gram.

© 1985 A C M 0 - 8 9 7 9 1 - 1 6 6 - 0 / 8 5 / 0 0 7 / 0 2 0 5 $ 0 0 . 7 5

205

S I G G R A P H '85

The information flowing between the components is in
the form of tokens. Each token consists of a type field,
which identifies the token, and a number of data fields tha t
depend upon the type of the token. This abstract represen-
ta t ion is independent of the devices used by the user inter-
face. The only component of the user interface that must
deal with the details of devices is the presentat ion com-
ponent. An input token is a token moving from the user
towards the application and an output token is moving from
the application towards the user.

2.1. P r e a e n t a t l o n C o m p o n e n t

The presentat ion component can be viewed as the lexi-
cal level of the user interface. It is responsible for screen
management , information display, input devices, interact ion
techniques and lexical feedback. The menus in an applica-
t ion are part of the presentat ion component. When the user
selects an i tem from a menu the presentat ion component
generates an input token that is sent to the dialogue control
component. If multiple menus are used dialogue control
sends output tokens to the presentat ion component indieat--
ing when the menus should be active. The presentat ion
component guarantees tha t the user can always select from
any of ~he active menus, but beyond this dialogue control
has no control over menu appearance.

There are a number of advantages to having a separate
presentat ion component. First, all the device interactions
are isolated in this component. This increases the portabili-
ty of the user interface since only the presentat ion com-
ponent needs to be changed when the user interface is moved
to a different display device. The presentat ion component
can be designed to support a range of display devices and
automatical ly adapt to the one being used. This is easier to
do when the device interactions are isolated in one com-
ponent. Second, a separate presentat ion component pro-
vides a convenient means of tai loring the lexical level of the
user interface to individual users. The screen layout can be
changed to accommodate both left and right handed users,
default command options can be changed, and the user can
select his favorite interact ion or display technique for a par-
t icular type of data. Third, a separate presentation com-
ponent encourages the development and use of a s tandard
library of interact ion techniques. This will reduce the cost
of user interfaces and improve their quality.

2.2. Dia logue Contro l C o m p o n e n t

The dialogue control component manages the dialogue
between the user and the application. This component con-
verts the stream of input tokens originating in the presenta-
tion component into a s t ructure representing the commands
and operands intended by the user. This s t ructure is then
converted into a sequence of input tokens sent to the appli-
cation interface model in order to execute the command.
Similarly the ou tput tokens sent by the application interface
model are interpreted by dialogue control and a sequence of
ou tput tokens for the presentat ion component is generated.

Most existing UtMS~ have concentrated on the dialogue
control component , therefore, we have more experience with
it than the other components. There ' are three main nota-
tions for the dialogue between the user and computer.
These notat ions are reeursive t ransi t ion networks, BNF
grammars, and events.

2.2.1. R e c u r s l v e T r a n s i t i o n N e t w o r k s

A recursive transi t ion network (RTN) is a collection of
directed graphs. Each directed graph has a set of nodes
representing the state of the dialogue, and a set of arcs
representing the actions the user can perform. An arc con-
nects two nodes in the directed graph. The user interface
moves from the state at the end of the arc to the state at its
head if the user performs the action labeling the arc. In a
given state the user must perform one of the actions tha t
labels an are leaving the node representing tha t state. The
arc labels are either the name of an input token generated
by the presentat ion component or the name of another
directed graph. In the lat ter case the named directed graph
must be t raversed before the state at the end of the arc is
reached. In the case of recursive transi t ion networks a
directed graph can reference itself:

The tokens to be sent to the application interface
model or presentat ion component can be a t tached to either
the arcs or the nodes (in some systems they can be a t tached
to both). If a token is a t tached to an arc the token is sent
when the are is traversed. If a token is a t tached to a node it
is sent when the node is entered.

The use of multiple directed graphs facili tates the
description of large user interfaces and increases the descrip-
t ive power of the technique. The use of a t ransi t ion network
to describe the Iogin sequence for a t ime sharing system is
shown in fig. 2.

<userjd> ~ < p a s s w o r d ~

A c t i o n s :

1) p r i n t ' l og in : '

2) p r i n t ' p a s s w o r d : '

3) p r i n t ' log in j u n k '

Fig. 2 Transi t ion diagram for Iogin sequence

Transi t ion diagrams have been used extensively in
UIMSs. One of the earliest uses of transi t ion diagrams is the
work of Newman [15]. Another example of their use is the

USER (t Presentat ion t Dialogue

Component Control

Applicat ion
Interface
Model

Fig. 1 The components of a user interface

206

SAN FRANCISCO JULY 22"26 Volume 19, Number 3, 1985

SYNICS system developed by Edmonds [4]. An extension of
RTNs called augmen ted t r ans i t ion networks (ATN) have
been used for pars ing na tu ra l languages [21]. In an ATN
arb i t ra ry funct ions can be a t t a ched to the arcs. These func- '
t ions can store values in registers and use the register values
to de te rmine whe the r an arc should be t raversed. This
extension great ly increases the computa t iona l power of t ran-
s i t ion ne tworks (ATNs are equivalent to Tur ing machines) .

2.2.2. C o n t e x t F r e e G r a m m a r s

The second no ta t ion for the dialogue control com-
ponen t is contex t free g rammars or BNF. The te rmina ls in
these g rammars are the inpu t tokens produced by the
p resen ta t ion component . The non- te rmina ls and produc-
t ions are used to s t ruc tu re the dialogue. For example, the re
could be a non- te rmina l for each of the commands in the
user interface. The product ions wi th these non- te rmina ls on
the left side define the s t ruc tu re or syntax of the commands .
A BNF g r a m m a r for the Iogin example is shown in fig. 3.

Iogin - > user_id password
u s e r _ i d - > <character . . .~str ing>
p a s s w o r d - > < c h a r a c t e r _ s t r i n g >

Fig. 3 BNF g r a m m a r for the Iogin sequence

The g r a m m a r in fig. 3 only describes the act ions per-
formed by the user, i t does not cover the o u t p u t produced
by the program. In order to do th i s some way of associat ing
tokens wi th the product ions is required. W h e n e v e r a pro-
duct ion is used in the parse of the user 's input these tokens
are sent to the p resen ta t ion componen t or appl ica t ion inter-
face model.

An unresolved issue wi th th is approach to dialogue con-
trol is how to handle the o u t p u t tokens passed from the
,application interface model to dialogue control . In some
types of dialogues (mixed or system in i t ia ted) th i s flow of
tokens may be jus t as i m p o r t a n t as the one or ig ina t ing in
the p resen ta t ion component .

Two examples of the use of g rammars in the construc-
t ion of user in terfaces are the SYNGRAPH system of Otsen
and Dempsey [14] and the work of Hanau and Lenorovi tz
[111.

2.2.3. E v e n t s

The th i rd main no ta t ion for the dialogue control com-
ponen t is events . This no ta t ion is loosely based on the
object or iented approach to user interface design used in
Smal t ta lk [5] and re la ted languages. In th is no ta t ion the
input tokens from the p resen ta t ion componen t and the out-
pu t tokens f rom the appl ica t ion interface model are viewed
as events . These events are processed by event handlers .
Each event handler has i ts own collection of local var iables
and a collection of procedures for processing events. When
an event hand le r receives an event the associated procedure
is executed. These procedures can perform calculat ions,
send events to o ther even t handlers , and send tokens to the
p resen ta t ion componen t and appl ica t ion interface model.
The dialogue control componen t consists of a collection of
event handlers t h a t can change dynamical ly .

There are several i m p o r t a n t differences be tween the
event no t a t i on and Small ta lk. The even t handlers perform
the same func t ion as the objects and classes in Small ta lk.
The ma in difference is t h a t there is no explicit inher i tance
mechanism for event handlers . The main difference between
messages and events is t h a t messages are synchronous and
events are asynchronous . W h e n a Sinai] talk object sends a

message it suspends its execut ion and t ransfers control to
the receiving object . W h e n the receiving object completes
its compu ta t i on control r e tu rns to the sending objec t wi th a
value for the message. In the case of events there is no h a n d
shaking between the sending and receiving event handlers .
An event has no value in the sending event hand le r and the
receiving even t hand le r may receive the event any t ime af te r
it is genera ted (the sending event hand le r may not suspend
its execut ion when it genera tes an event) .

An event hand le r for the login sequence example is
shown in fig. 4. This event hand le r responds to two types of
events . The Ini t event is sent when the event hand le r is
created. In response to th is event the Iogin message is pr in t -
ed. The o ther event is received whenever the user types a
charac te r s tr ing. The "s ta te" var iable is used to de te rmine
whe ther the cha rac te r s t r ing is a user id or a password. In
pract ice the p r in t and process_login s t a t emen t s would be
tokens sent to the p resen ta t ion componen t and appl ica t ion
in terface model.

E v e n t h a n d l e r Iogin Is

Token
keyboards t r ing s;

Var
in t s t a t e = 0;
s t r ing user_jd, password;

Even t Ini t {
p r in t "login:";

}

Even t s : s t r ing {
i f (s tate ffi = 0) {

user_.jd = s;
s ta te ~ 1;
p r in t ~password:";

} else {
password affi s;
s t a te = 0;
process_Jogin(user_jd,password);

};
}

End Iogin;

Fig. 4 Even t handler for the login sequence

The obvious d i sadvan tage to the event no ta t ion is t h a t
i t looks more like a program t h a n the o the r two no ta t ions
(depending upon personal biases this may be an advantage) .
This d i sadvan tage is offset by a n u m b e r of advantages .
First , the expressive power of events is grea ter t h a n t h a t of
reeursive t r ans i t ion networks or g rammars (the event nota-
t ions is equiva lent to Tur ing machines while reeursive t r an -
si t ion networks and BNF grammars are equivalent to push-
down a u t o m a t a [8]). This implies t h a t there are user inter-
faces t h a t can be described by events t h a t canno t be
described by recnrsive t r ans i t ion ne tworks or BNF gram-
mars. The dialogues in these user interfaces typica l ly
depend upon the contex t of the in te rac t ion (the next s tep in
the dialogue depends upon the values of previously en tered
operands , no t jus t the i r syntax) . The ATN no ta t ions men-
t ioned in sect ion 2.2.1 are also capable of descr ibing these
dialogues and have the same descr ipt ive power as the even t
nota t ions . It is i m p o r t a n t to note t h a t the addi t iona l
descr ipt ive power of the even t no ta t ion may no t be useful or
desirable. The main poin t of th i s observa t ion is t h a t dialo-

207

~o~ S I G G R A P H '85
III

gues describe~ in the o ther no ta t ions can always be t r ans la t -
ed in to the event no ta t ion . Th i s observa t ion forms the basis
of our imp lemen ta t ion of the dialogue control component .
Second, events suppor t mu l t i - t h readed dialogues. Since
each even t hand le r has its own local s ta te and mul t ip le
event handlers can be act ive at any one t ime, the user is free
to move from any spot in the dialogue to ano the r w i thou t
comple t ing the cu r ren t com m and or explicit ly saving the
s ta te of the dialogue. In th is way event handlers can be
developed for help, cancel and o the r special commands t h a t
mus t always be available. The event handlers processing
these commands will always be avai lable whenever the user
enters them, it does not require special programming.

2.3. A p p l i c a t i o n Interface Mode l

The appl ica t ion interface model is the user in ter face ' s
view of the appl icat ion. It con ta ins descr ipt ions of all the
appl ica t ion ' s d a t a s t ruc tu res and rout ines t h a t are accessible
to the user interface. The descr ip t ion of th is componen t can
be divided into two sections. The first section conta ins the
descr ipt ions of the appl ica t ion rout ines and d a t a s t ruc tures .
These descr ipt ions are a t an abs t r ac t or logical level, they
are not concerned wi th how the da t a s t ruc tures or rout ines
are implemented .

The descr ip t ion of the appl ica t ion ' s d a t a s t ruc tu res
include the type of in format ion s tored and how it is s t ruc-
tured . This descr ip t ion might also include the rout ines t h a t
can be used to access and modify the d a t a s t ruc tures . The
descr ip t ion of the appl ica t ion ' s rout ines include the name of
the rout ine and the n u m b e r and types or i ts parameters .
The rout ine descr ip t ions might also include pre- and post-
condit ions. The pre-condi t ions s ta te the condi t ions t h a t
mus t hold before the rout ine can successfully be used. They
can be used to de tec t semant ic errors, such as man ipu la t i ng
a da t abase before it is opened or p r in t ing a b inary file. The
pos t -condi t ions describe the effect of the rout ine . They can
be used to genera te help in fo rmat ion or aid in undo process-
ing.

The second sect ion of the descr ipt ion of the appl ica t ion
in terface model covers how the user in terface communica tes
wi th the appl icat ion. There are three possible modes of
communica t ion called in te rac t ion modes. In the first
in te rac t ion mode, the user in i t i a ted mode, the user interface
calls rout ines in the appl icat ion. This is similar to the exter-
nal control model presented at the Seat t le workshop [17|. In
the sys tem in i t i a t ed mode the appl ica t ion calls rout ines in
the user interface. This is s imilar to the in te rna l control
model. The t h i rd in te rac t ion mode, mixed ini t ia t ive, is
based on two communica t ing processes, one for the user
interface and one for the appl icat ion. In this case ne i the r
the user in ter face nor the appl ica t ion has control over the
other . In the mixed in i t i a t ive mode some mechanism for
in te r leaving the execut ion of the user interface and the
appl ica t ion mus t be used. This could take the form of mul-
t iple processes or corout ines . The user interface designer
specifies the in te rac t ion mode and the UIMS establ ishes the
procedures to implement it. The descr ipt ions of the presen-
t a t i on componen t and dialogue control are independen t of
the in te rac t ion mode.

3. D e s i g n i n g the User Interface

The Univers i ty of Albe r t a UIMS is d ivided into two
main par ts , which are: user interface design and run- t ime
suppor t . The design pa r t of the UIMS suppor ts the user
interface designer. It provides tools for descr ib ing screen
layout , device ass ignments , dialogue s t ruc ture , and the
in te rac t ion wi th the appl ica t ion program. The resul t of the
design pa r t of the U1MS is a deta i led specification of the

208

dow systems including over lapping windows t h a t can be
moved and resized. Some of the n o n s t a n d a r d features of
th is package are device independence and a set of two and
th ree d imensional graphics pr imit ives . Three features of
WINDLIB are used extensively in the p resen ta t ion com-
ponent . These features are events , even t handlers , and con-
t en t s s t ructures .

All the inpu t in WINDLIB is in the form of events . An
event has a name, a posi t ion, and possibly some event
specific da ta . The event name indicates the device t h a t gen-
e ra ted the event . In the case of keyboards and o the r devices
t h a t d o n ' t generate coordinate in fo rmat ion the posi t ion of
the display 's po in t ing device is used as the posi t ion of the
event . A window can have an even t hand le r associated wi th
it. An event hand le r is a procedure t h a t processes the events
that. are di rected at the window. The body of an even t
hand le r is usually a case s t a t e m e n t on the name of the
event . The even t handlers can generate events to be sent to
o the r windows. The window t h a t receives a pa r t i cu la r event
is de t e rmined by examining t he windows in pr ior i ty order
(from highest to lowest). The first window wi th an even t
hand le r cover ing the posi t ion of the even t receives t he event .

Con ten t s s t ruc tu res arc a hierarchical model ing scheme
used for grouping t6ge ther re la ted pieces of graphical infor-
mat ion . A con ten t s s t ruc tu re can be displayed in any win-
dow t h a t is cu r ren t ly on the screen. WINDLIB provides con-
t en t s s t ruc tu res for its two and th ree d imensional graphics
pr imit ives . The p rog rammer can define his own type of con-
t e n t s s t ruc ture . P r o g r a m m e r defined con ten t s s t ruc tu res are
used to represen t graphical in fo rmat ion in a form t h a t is
more conven ien t to the appl icat ion. For example, in a
cha r t ing appl ica t ion the p rogrammer could define con ten t s
s t ruc tu res for line graphs, pie char ts , bar char t s , and histo-
grams. The appl ica t ion only needs to provide the da t a
required for each type of char t , i t does not need to produce
the graphics pr imi t ives t h a t draw the char t . W h e n the pro-
g r ammer defines a con ten t s s t ruc tu re he mus t provide a rou-
t ine t h a t t raverses the con ten t s s t ruc tu re conver t ing it in to
graphics pr imit ives . In this way the graphics p rogrammer
can provide the appl ica t ions p rogrammers wi th a set of rou-
t ines and da t a s t ruc tu res t h a t are t uned to the i r appl icat ion.
user in ter face t h a t can au tomat ica l ly be conver ted into the
code required to implement it. The run - t ime pa r t of the
UIMS suppor t s the execut ion of the user interface. It uses
the resul ts of the design pa r t to form a complete executable
user interface. This division of the UIMS into design and
run- t ime suppor t is fairly s t a n d a r d and is discussed fu r the r
in [2o1.

In th is sect ion the design tools provided by the Univer-
s i ty of Albe r t a UIMS are briefly described. This discussion
serves as the background for the descr ip t ion of the imple-
m e n t a t i o n techniques presen ted in the next section.

3.1. D e s i g n i n g the P r e s e n t a t i o n C o m p o n e n t

The p resen ta t ion componen t is concerned wi th the lexi-
cal level of the user interface, including screen layout , menu
design, in te rac t ion techniques , and icon design. This sug-
gests an in terac t ive approach to the design of this com-
ponen t (th is approach has been successfully used in the
Univers i ty of Toron to UIMS [2]). In the Univers i ty of Alber-
t a UIMS an in te rac t ive layout program is used to design the
p resen ta t ion componen t and a window based graphics pack-
age, called WINDLIB [9], is used as the basis of its imple-
men ta t ion .

WINDLtB is a window based graphics package s imilar
to the GiGo package developed by Rosentha l [16].
WINDLIB has all the features normal ly associated wi th win-

SAN FRANCISCO JULY 22-26 Volume 19, Number 3, 1985

The appl ica t ion p rogrammers do not need to be experts in
graphics or be concerned wi th how the da t a is displayed.

The design of the p resen ta t ion componen t can be divid-
ed into th ree activi t ies, screen layout , in te rac t ion tech-
niques, and display techniques. These act ivi t ies are suppor t -
ed by an in terac t ive layout program, called ipcs (in te rac t ive
p resen ta t ion componen t specification), developed by G.
Singh [19].

Ipcs allows the designer to divide the screen into a
n u m b e r of over lapping windows. The designer specifies the
size and posit ion of a window by poin t ing a t two opposing
corners. The designer can t hen specify the background
eolour of the window, its coordinate system, a name for the
window, and an o u t p u t token. The o u t p u t token associated
wi th a window is used to indicate when the window is to be
displayed. W h e n the presen ta t ion componen t receives th is
token the window is d isplayed on the screen. A menu can be
associated wi th each of the windows. A menu can e i ther be
s ta t ic (always displayed in the same posit ion) or pop-up (the
cur ren t cursor posi t ion is the upper left corner of the menu).
Each menu is viewed as a collection of menu items. A menu
i tem consists of an input token, and a tex t s t r ing or icon.
When the menu i tem is selected its inpu t token is sent to the
dialogue control component .

A window can have an in te rac t ion technique associated
wi th it. This in te rac t ion technique becomes the event
handler for the window when it is displayed. The user inter-
face designer specifies the in te rac t ion technique by en te r ing
the name of a C procedure. This C procedure performs the
in i t ia l iza t ion required by the in te rac t ion technique and
es tabl ishes its event handler . W h e n the window associated
with the event hand le r is removed from the screen a special
finish event is sent to the event hand le r allowing it to deallo-
cate any resources it has acquired. The user interface
designer can select in terac t ion techniques from a l ibrary or
he can wri te his own.

Ipcs allows the designer to associate display procedures
wi th each of the o u t p u t tokens t h a t can be processed by the
p resen ta t ion component . For each o u t p u t token the
designer specifies the name of a display procedure and a win-
dow where the in format ion is to be displayed. The display
procedure is e i the r chosen from a l ibrary of s t anda rd display
procedures or wr i t t en by the designer. One of the s t anda rd
display procedures calls WlNDLIB to display the conten ts
s t ruc tu re s tored in the o u t p u t token.

The descr ipt ion of the p re sen ta t ion componen t is s tored
in an FDB da tabase [10]. This da t abase stores the s ta te of
the design between ipcs sessions and is used to generate the
p resen ta t ion componen t at run t ime.

3.2. D e s i g n i n g t h e D i a l o g u e C o n t r o l C o m p o n e n t

The Univers i ty of Alber ta UIMS suppor ts all three
no ta t ions for the dialogue control component . This gives
the user interface designer considerable flexibility in his
approach to the design of this component . In order to pro-
vide this flexibility the UIMS must have a common fo rmat
t h a t all three no ta t ions can be t r ans l a t ed into. This com-
mon format forms the basis for the run- t ime suppor t of the
dialogue control component . Since the event no ta t ion has
more descr ipt ive power t h a n the o ther two no ta t ions the
common format , EBIF (Even t Based In te rna l Form) is based
on the even t no ta t ion . EBIF is described in section 4.1.

3.2.1. E v e n t L a n g u a g e

The event language used in the Univers i ty of Alber ta
UIMS is based on the C p rogramming language [12]. Since C
is the main p rogramming language used in our research
group this s ignif icantly reduces the t ime required to learn
the language. A program in the event language consists of a
n u m b e r of even t handlers . The t ex t of the program conta ins
one or more even t handler definitions. W h e n the program is
executed ins tances of these event handlers are created. It is
the ins tances t h a t perform computa t ions , not the event
handlers themselves. There may be several ins tances of the
same event handler , pa ramete r s can be used to es tabl ish the
s ta te of an ins tance when it is created.

E v e n t h a n d l e r even t_hand le r_uame Is

Token
token, name event, name ;

Vat
type variable__name = ini t ia l_value ;

Even t even t_name : type {
s t a t e m e n t s

}

Even t event . .name : type {
s t a t e m e n t s

}

end even t_hand le r_name;

Fig..5 S t ruc tu re of even t handler declara t ions

The s t ruc tu re of an event handler dec lara t ion is shown
in fig. 5. An event hand le r dec lara t ion is divided into three
sections. The first sect ion lists the tokens (e i ther input or
ou tpu t) t h a t the event hand le r can process. This informa-
t ion is used by the assembler (see section 4.2) to map tokens
into events for event handlers . The event language compiler
places the token informat ion in a tab le separate from the
event handlers• In this way the the ass ignment of token
names, and the mapp ing between tokens and events can be
changed (in the assembly process) wi thou t effecting the
event handlers themselves.

The second section of an event hand le r dec lara t ion con-
ta ins the declara t ions of the event handler ' s local variables.
Each ins tance of the event hand le r has its own set of local
variables, there is no shar ing of s torage between instances.
A var iable dec la ra t ion consists of a type, a var iable name,
and an opt ional init ial value. The type can be any val id C
type t h a t occupies the same a m o u n t of space as a pointer .
This includes characters , integers, f loating points numbers
(single precision only) and pointers to any C type. This res-
t r i c t ion simplifies the imp lemen ta t i on of the language and
may be lifted in the future•

The th i rd sect ion consists of event declarat ions• An
event dec la ra t ion s ta r t s wi th the keyword Even t followed by
,the name of the event and its type. The body of the event
dec la ra t ion consists of one or more C s ta tements • These

209

@ S I G G R A P H '85

s t a t emen t s are executed when a n ins tance of the even t
handler receives this event . The s t a t emen t s can reference
the ins tance ' s local var iables and the global var iables in the
program. The da t a associated wi th the event is assigned to
the event name before the execut ion of the s t a t emen t s in the
even t declara t ion.

There are a n u m b e r of special procedures t h a t are used
in event handlers . The fo rma t of these procedures is shown
in fig. 6. The c rea te_ ins tance procedure is used to create a
new event hand le r instance. The paramete r s to th is pro-
¢edure are the name of the event handler , the n u m b e r of.
local var iables to be ini t ia l ized and the i r init ial values. The
local var iables are ini t ial ized in the order they are l isted in
the var iable dec la ra t ion section. The value r e tu rned by t h i s
procedure is the name of the new instance. W h e n an
ins tance is c rea ted an Ini t event is au tomat ica l ly sent to it.
The send_event procedure is used to send an event to an
event hand le r instance. The pa ramete r s to th is procedure
are the name of the ins tance , the name of the event , and the
da ta associated wi th the event . The send. token procedure
is used to send a token to ano the r componen t of the user
interface. The pa ramete r s to this procedure are the com-
ponen t to receive the token, the di rect ion of the token
(inpu t or ou tput) , the name of the token, and its value. The
des t roy_ins tance procedure is used to destroy the ins tance
t h a t is given as i ts parameter . Before des t roy_ins tance deal-
locates the ins tance a Finish event is sent to it. This event
allows the ins tance to free any resources i t has accumula ted
in its execution.

1) create_.instanee(event_J~andler, n, Vl, v 2 vn)

2) send_event(ins tance , name, even t_name, value)

3) send_ token(des t ina t ion , direction, name, value)

4) des t roy_ ins tance(ins tance_name)

the t r ans i t ion d iagrams to EBIF. More detai ls on the t rans i -
t ion d iagram edi tor and convers ion to EBIF can be found in
[131.

3.2.3. G r a m m a r s

At the present t ime a g r a m m a r based no ta t ion has not
been implemented . A n u m b e r of g r a m m a r based no ta t ions
exist (for example [14]). The ma jo r ac t iv i ty in implement ing
this type of no ta t ion is developing the a lgor i thms required to
conver t p roduct ions into event handlers or EBIF. We in tend
to do th i s somet ime in the future .

3.3. Des igning the Appl i ca t ion Interface M o d e l

At the present t ime suppor t for the appl ica t ion inter-
face model is under development . Cur ren t ly only one
in te rac t ion mode (user in i t ia ted) is suppor ted and the main
use of th is componen t is to map between tokens and the rou-
t ines in the appl icat ion.

The mapp ing be tween tokens and appl ica t ion rou t ines
may not be one-to-one. A token may cause several applica-
t ion rou t ines to be executed, or i t may con ta in d a t a used in
a subsequen t call of an appl ica t ion rout ine . In order to sup-
por t th is behav ior the appl ica t ion in terface model mus t pro-
vide s torage for sav ing token values and a means of associat-
ing a sequence of act ions wi th a token.

Var
type var iab le_name;

Token token_jaame : token_ type {
s t a t e m e n t s

}

Fig. 6 Even t language suppor t procedures

More detai ls on the event language and its implementa-
t ion can be found in [3].

3.2.2. R e e u r s l v e T r a n s i t i o n N e t w o r k s

In the Univers i ty of Albe r t a UIMS an in te rac t ive
approach is t aken to the design of recurslve t r ans i t ion net-
works. There is a na tu ra l graphical r ep resen ta t ion for recur-
s i re t r ans i t ion networks , th is suggests t h a t an in te rac t ive
graphical approach is appropr ia te for them.

The in te rac t ive t r ans i t ion d iagram edi tor produced by
S.C. Lau [13] is used to en te r and edi t RTNs. This edi tor is
based on a graphical display of the t r ans i t ion network. The
designer can use a t ab l e t or mouse to enter and edit the
nodes and arcs in a d iagram. Each arc in the d iagram has an
input token, and opt ional o u t p u t tokens to be sent to the
p resen ta t ion componen t and appl ica t ion interface model
when the arc is t raversed . One in teres t ing fea ture of th is
edi tor is the abi l i ty to select and save a group of nodes and
arcs. This group can then be added to ano the r d iagram in
the user interface.

The t r ans i t ion d iagrams are s tored in an FDB da tabase .
This da t abase is used to store the d iagrams between edi t ing
sessions and is used to genera te the EBIF for the dialogue
control componen t . A separa te program is used to conver t

Fig. 7 S t ruc tu re of the appl ica t ion in terface model

In the Univers i ty of Alber ta UIMS a wr i t t en no ta t ion is
usecl for descr ib ing the appl ica t ion in terface model. This
no ta t ion is conver ted into C code and tab les which become
pa r t of the user in terface at run- t lme. The s t ruc tu re of the
appl ica t ion interface is shown in fig. 7. The first par t of th is
descr ip t ion defines the s torage locations used by the applica-
t ion interface model. The var iable dec lara t ions in this sec-
t ion have the same syn tax as C var iable declara t ions . The
values of these var iable are preserved from one token to the
next. The second sect ion of the descr ip t ion conta ins one
en t ry for each token processed by the appl ica t ion in ter face
model. This en t ry conta ins the name of the token, its type,
and the s t a t e m e n t s to be executed when it is received. The
s t a t e m e n t s are s t a n d a r d C s t a t e m e n t s t h a t can call applica-
t ion rout ines and save the value of the token. Note the simi-
la r i ty be tween the appl ica t ion interface model and the event
language discussed in sect ion 3.2.1.

4. I m p l e m e n t a t l o n

In th i s sect ion an overview of the imp lemen ta t ion of the
Univers i ty of A lbe r t a UIMS is presented. Th i s discussion
centers a round the s t ruc tu re of the even t based in te rna l
form and how it is i n t e rp re t ed by the run- t ime rout ines .

210

SAN FRANCISCO JULY 22-26 Volume 19, Number 3,1985

4.1. E B I F

All the program used to design the dialogue control
componen t produce EBIF as ou tpu t . An EBIF file consists
of a n u m b e r of even t handler definitions. Each event
handler definit ion is divided into two par ts . The first par t
conta ins informat ion used by the run- t ime rout ines to create
instances of event handlers and route tokens between these
instances. '~his in format ion is placed in the three main
tables t h a t drive the run- t ime rout ines (see fig. 8).

The second pa r t of the event handler definit ion is a C
procedure conta in ing all the executable s t a t emen t s in the
event handler . This procedure is called each t ime an event
mus t be executed. The body of th is procedure is a case
s t a t e m e n t on the name of the event . This procedure has
four parameters , which are: the name of the instance, the
name of the event to be processed, the value of the event ,
and an array conta in ing the values of the ins tanee ' s local
variables.

The three tables used by the run- t ime rout ines are
shown in fig. 8. The event table has one ent ry for each event
handler . This en t ry conta ins a po in te r to the corresponding

C procedure, and the n u m b e r of local var iables for each
instance. There is one en t ry in the ins tance tab le for each
act ive instance. This en t ry points to the array conta in ing
the ins tance ' s var iable values, and the index in the event
tab le of the corresponding event handler . The token table is
used to map between tokens and the event handlers t h a t
process them. Each en t ry in th is table conta ins the name of
a token, the name of the event i t is conver ted to, and the
event hand le r t h a t can process it.

4.2. U s e r I n t e r f a c e A s s e m b l y

The assembly of the user interface is performed by a
program called the assembler. The input to th is program is
the EBIF files produced by the dialogue control programs, a
file of the input and ou tpu t tokens associated wi th the
p resen ta t ion componen t (produced by ipcs), the o u t p u t file
from the design of the appl ica t ion interface model, and a
token definit ion file. The o u t p u t from the assembler is a file
of C rout ines , which mus t be compiled, and the tables used
by the run- t ime suppor t rout ines . The process of conver t ing
a program in the event language into an executable user
interface is shown in fig. 9.

Ins tance Table

var iables EH

Even t Table

o f v a r . C p r o c

Token Table

T n a m e Ename EH

x(a, b, c, d) {

3 4 , - -

Fig. 8 Run- t ime tables

e v e n t
language
program

EBIF

schedulin5
routines

I r - = - q obje0t
Assemblhr ~ ¢ ~ _ G ~.. code for ~LoaderL~ user

[[~ump,mr] dialogue [] - interface
I I I control

other
software
modules

Fig. 9 Conver t ing an event program into a user interface

211

@ S I G G R A P H '85
I I I

4.3. R u n - t l m e R o u t i n e s

In the design of the user interface i t has been assumed
t h a t each of the components is a separate process. The only
way of exchanging in format ion between components is
t h rough tokens, which is an asynchronous communica t ions
mechanism. This illusion of concurrency mus t be main-
t a ined by the run- t ime suppor t rout ines. The approach t h a t
we have used is to view the run- t ime rout ines as a scheduler
t h a t al locates processing t ime to the individual components .
The un i t of schedul ing at the componen t level is the token.

W h e n one componen t sends a token to ano the r com-
ponen t t h a t token is placed on a schedul ing queue associated
wi th the receiving component . The scheduler examines the
schedul ing queue associated wi th each of the components
and selects one of the tokens for execution. Highest pr ior i ty
is placed on the presen ta t ion component , and lowest pr ior i ty
on the appl ica t ion interface model queue, wi th the restric-
t ion t h a t a token will not be blocked for an a rb i t ra ry long
t ime. The scheduler then calls the appropr ia te rout ine in
the receiving componen t to process the token. This rout ine
can be de te rmined from the tables produced by the assem-
bler.

1) If an input device has input ready call the
p resen ta t ion component to process it.

2) If the re are pending events in dialogue con-
trol execute several of them

3) Select a token from one of the schedul ing
queues and execute it.

4) Goto step (1)

Fig. 10 Steps in the schedul ing process

Both the p resen ta t ion componen t and dialogue control
have a lower level of scheduling. Before the higher level
scheduler can process a token the p resen ta t ion componen t
de termines if any of its inpu t devices has a value ready. If
th is is the case the value is conver ted in to a WINDLIB event
and processed by the p resen ta t ion component . Similarly if
there are events wai t ing in the dialogue control componen t a
small number of t hem are processed before the next token is
processed. The steps in this two level schedul ing process are
shown in fig. 10.

This two level schedul ing process has th ree main
advantages . Firs t , it gives pr ior i ty to the componen ts closer
to the user, thus he will have fas t feedback to lexical opera-
t ions, and slower feedback to semant ic operat ions. Second,
it suppor t s the view of the three componen ts as separate
processes allowing them to be designed separately . Thi rd , it
leaves the door open for the imp lemen ta t i on of the user
interface as three separa te processes on three closely coupled
processors, which may be feasible in the near future .

5. S u m m a r y

In this paper we have presented the design of the
Univers i ty of Albe r t a UIMS. The goals of this UIMS have
been out l ined along wi th discussions of its main components
and implementa t ion . The implementa t ion has reached the
point where we have bui l t several small appl icat ions wi th
the system. We are now working on rewri t ing all the
in terac t ive design programs so they use the UIMS.

One of our original aims was to produce a system archi-
t ec ture t h a t allows for growth and exper imenta t ion , and at

the same t ime suppor ts product ion applicat ions. We believe
we have at least par t ia l ly reached th is goal by separa t ing the
design of the user interface from its run- t ime suppor t . The
run- t ime suppor t is fairly s table and the users of the UIMS
are largely not aware of the internal fo rmats it uses. By tak-
ing this approach we hope to be able to incorpora te com-
ments from designers and users into fu ture versions of the
UIMS.

There are a n u m b e r of enhancemen t s and extensions to
the Univers i ty of Alber ta UIMS t h a t we would like to inves-
t igate . One of the most obvious extensions is adding a
g r a m m a r based no ta t ion for the dialogue control component .
This would give the user interface designer the full spec t rum
of design no ta t ions for th is component . Ano the r useful
extension would be providing an in te rac t ive assembly pro-
gram. This would be more convenien t t h a n the cur ren t
ba tch approach to user interface assembly. It might also
faci l i ta te the m a n a g e m e n t of different versions of the user
in terface in tended for different works ta t ions and user
groups.

There are th ree extensions t h a t have a significant
research component . The first is developing a more flexible
approach to screen layout . The cu r ren t approach is based
on a re la t ively s ta t ic screen layout , the only var iab i l i ty is in
pop-up menus. We would like to be able to au tomat ica l ly
ad jus t the screen layout based on the type and amoun t of
in format ion displayed. For example, au tomat ica l ly changing-
the size of a window depending upon the a m o u n t of informa-
t ion stored in it, or au tomat i c select ion of display techniques
based on the type of da t a and the amoun t of detai l required.
The second extension is au tomat i c undo processing. This
would be an extension to the appl ica t ion in terface model
t h a t would allow the user to undo any recent action, or
replay recent commands with different operands . This undo
mechanism should be au tomat ica l ly provided by the UIMS.
The th i rd ma jo r extension involves the in te rac t ion be tween
the UIMS and da t abase systems. The schemas used by mos t
da t abase systems are a good first order approximat ion to the
appl ica t ion interface model. Given a schema we would like
to au tomat ica l ly produce the corresponding appl ica t ion
in terface model. The schema migh t also suggest commands
and opera t ions t h a t should appear in the user interface. It
might be possible to produce an augmented schema t h a t can
be used to produce bo th the da tabase and the user interface.
This issue is explored in [1].

R e f e r e n c e s

[1] A r m s t r o n g W.W., M. Green, P. S r i rangap tna , "A Data-
base M a n a g e m e n t System and Associated Tools for a
General Design Env i ronment" , Proceedings of the 1984
Canad ian Conference on Very Large Scale In tegra t ion ,
p.183-187, 1984.

[2] Buxton W., M.R. Lamb, D. Sherman, K.C. Smith ,
"Towards a Comprehensive User Interface Manage-
men t Sys t em ' , Siggraph '83 Proceedings, p.35-42, 1983.

[3] Chia M.S., An Event Based Dialogue Specification for
Automatic Generation of User Inter/aces, MSe Thesis,
D e p a r t m e n t of Compu t ing Science, Univers i ty of
Alber ta , 1985 (expected).

[4] Edmonds E.A., "Adapt ive M a n - C o m p u t e r Interfaces", in
M.J. Coombs and J.L AIty, Computing Skills and the
User Interface, Academic Press, London, 1981.

[5] Goldberg A., D. Robson, Smalltalk-80: The Language and
its Implementation, Addison-Wesley, Reading Mass.,

212

SAN FRANCISCO JULY 22-26 Volume 19, Number 3, 1985

1983.

[6] Green M., "Report on Dialogue Specification Tools",
Computer Graphics Forum, vol.3, p.305-313, 1984.

[7] Green M., "The University of Alberta User Interface
Management System: Design Principles", Human-
Computer Interaction Project Report #1, Department
of Computing Science, University of Alberta, 1984.

[8] Green M., "User Interface Models", Human-Computer
Interaction Project Report ~2, Department of Com-
puting Science, University of Alberta, 1985.

[9] Green M., N. Bridgeman, "WINDLIB Programmer's
Manual", Department of Computing Science, Universi-
ty of Alberta, 1985.

[10[Green M., M. Burnell, H. Vrenjak, M. Vrenjak,
"Experiences With a Graphical Data Base System",
Proceedings of Graphics Interface'83, p.257, 1983.

[11] Hanau P.R., D.R. Lenorovitz, "Prototyping and Simula-
tion Tools for User/Computer Dialogue Design", Sig-
graph'80 Proceedings, p.271-278, 1980.

[12] Kernighan B.W., D.M. Ritchie, The C Programming
Language, Prentice-Hall, Englewood Cliffs N J, 1978.

[13] Lau S.C., The Use of Recursive TranMtion Network8 for
Dialogue Design ,n User Interfaces, MSc Thesis,
Department of Computing Science, University of
Alberta, 1985 (expected).

[14] Olsen D.R., E.P. Dempsey, "SYNGRAPH: A Graphic
User Interface Generator", Siggraph'83 Proceedings,
p.43-50, 1983.

[15] Newman W.M., "A System for Interactive Graphical
Programming, SJCC 1968, Thompson Books, 1968.

[16] Rosenthal D.S.H, "Managing Graphical Resources",
Computer Graphics, vol.17, no.l, p.38-45, 1983.

[17] Graphical Input Interaction Technique Workshop Sum-
mary, Computer Graphics, vol.17, no.l, p.5-66, 1983.

[18] Pfaff G., P.J.W. ten Hagan, Seeheim Workshop on User
Interface Management Systems, Springer-Verlag, Ber-
lin, 1985.

[19] Singh G., Automatic Generation of Presentation Com-
ponent for University of Alberta UIMS, MSe Thesis,
Department of Computing Science, University of
Alberta, 1985 (expected).

[201 Tanner P.P., W.A.S. Buxton, "Some Issues in Future
User Interface Management System Development', in
G. Pfaff and P.J.W. ten Hagen (ed), Seeheim Workshop
on User Interface Management Systems, Springer-
Verlag, Berlin, 1985.

[21] Woods W.A., "Transition Network Grammars for
Natural Language Analysis', CACM vo1.13, no.10,
p.591-606, 1970.

213

