Why doesn't overloading work for derived classes?

enshot  stion (in many variations) are usually prompted by an example like this:

#include<iostream>
using namespace std;

class B {
public:
int f(int i) { cout << "f(int): "; return i+l; }
/] ...
}i
class D : public B {
public:
double f(double d) { cout << "f(double): "; return d+1.3; }
U ooc
}i

int main()
D* pd = new D;
cout << pd->f(2) << '\n';

cout << pd->f(2.3) << '\n';
}

which will produce:

f (double): 3.3
f (double): 3.6

rather than the

f(int): 3
f (double): 3.6

that some people (wrongly) guessed.

In other words, there is no overload resolution between D and B. The compiler looks into the scope of D, finds the single function "double f(double)" and calls it. It never bothers with the (enclosing)
scope of B. In C++, there is no overloading across scopes - derived class scopes are not an exception to this general rule. (See D&E or TC++PL3 for details).

But what if I want to create an overload set of all my f() functions from my base and derived class? That's easily done using a using-declaration:

class D : public B {

public:
using B::f; // make every f from B available
double f(double d) { cout << "f(double): "; return d+1.3; }
/] ...

}i

Give that modification, the output will be



