On Certain Formal Properties of Grammars*

Noam Сномsky
Massachusetts Institute of Technology, Cambridge, Massachusetts and The Institute for Advanced Study, Princeton, New Jersey

Abstract

A grammar can be regarded as a device that enumerates the sentences of a language. We study a sequence of restrictions that limit grammars first to Turing machines, then to two types of system from which a phrase structure description of the generated language can be drawn, and finally to finite state Markov sources (finite automata). These restrictions are shown to be increasingly heavy in the sense that the languages that can be generated by grammars meeting a given restriction constitute a proper subset of those that can be generated by grammars meeting the preceding restriction. Various formulations of phrase structure description are considered, and the source of their excess generative power over finite state sources is investigated in greater detail.

SECTION 1

A language is a collection of sentences of finite length all constructed from a finite alphabet (or, where our concern is limited to syntax, a finite vocabulary) of symbols. Since any language L in which we are likely to be interested is an infinite set, we can investigate the structure of L only through the study of the finite devices (grammars) which are capable of enumerating its sentences. A grammar of L can be regarded as a function whose range is exactly L. Such devices have been called "sentence-generating grammars." ${ }^{1}$ A theory of language will contain, then, a specifica-

* This work was supported in part by the U. S. Army (Signal Corps), the U. S. Air Force (Office of Scientific Research, Air Research and Development Command), and the U.S. Navy (Office of Naval Research). This work was also supported in part by the Transformations Project on Information Retrieval of the University of Pennsylvania. I am indebted to George A. Miller for several important observations about the systems under consideration here, and to R. B. Lees for material improvements in presentation.
${ }^{1}$ Following a familiar technical use of the term "generate," cf. Post (1944). This locution has, however, been misleading, since it has erroneously been interpreted as indicating that such sentence-generating grammars consider language
tion of the class F of functions from which grammars for particular languages may be drawn.

The weakest condition that can significantly be placed on grammars is that F be included in the class of general, unrestricted Turing machines. The strongest, most limiting condition that has been suggested is that each grammar be a finite Markovian source (finite automaton). ${ }^{2}$

The latter condition is known to be too strong; if F is limited in this way it will not contain a grammar for English (Chomsky, 1956). The former condition, on the other hand, has no interest. We learn nothing about a natural language from the fact that its sentences can be effectively displayed, i.e., that they constitute a recursively enumerable set. The reason for this is clear. Along with a specification of the class F of grammars, a theory of language must also indicate how, in general, relevant structural information can be obtained for a particular sentence generated by a particular grammar. That is, the theory must specify a class Σ of "structural descriptions" and a functional Φ such that given $f \in F$ and x in the range of $f, \Phi(f, x) \in \Sigma$ is a structural description of x (with respect to the grammar f) giving certain information which will facilitate and serve as the basis for an account of how x is used and understood by speakers of the language whose grammar is f; i.e., which will indicate whether x is ambiguous, to what other sentences it is structurally similar, etc. These empirical conditions that lead us to characterize F in one way or another are of critical importance. They will not be further discussed in this paper, ${ }^{3}$ but it is clear that we will not be able to de-
from the point of view of the speaker rather than the hearer. Actually, such grammars take a completely neutral point of view. Compare Chomsky (1957, p. 48). We can consider a grammar of L to be a function mapping the integers onto L, order of enumeration being immaterial (and easily specifiable, in many ways) to this purely syntactic study, though the question of the particular "inputs" required to produce a particular sentence may be of great interest for other investigations which can build on syntactic work of this more restricted kind.
${ }^{2}$ Compare Definition 9, Sec. 5.
${ }^{3}$ Except briefly in §2. In Chomsky (1956, 1957), an appropriate Φ and Σ (i.e., an appropriate method for determining structural information in a uniform manner from the grammar) are described informally for several types of grammar, including those that will be studied here. It is, incidentally, important to recognize that a grammar of a language that succeeds in enumerating the sentences will (although it is far from easy to obtain even this result) nevertheless be of quite limited interest unless the underlying principles of construction are such as to provide a useful structural description.
velop an adequate formulation of Φ and Σ if the elements of F are specified only as such "unstructured" devices as general Turing machines.

Interest in structural properties of natural language thus serves as an empirical motivation for investigation of devices with more generative power than finite automata, and more special structure than Turing machines. This paper is concerned with the effects of a sequence of increasing heavy restrictions on the class F which limit it first to Turing machines and finally to finite automata and, in the intermediate stages, to devices which have linguistic significance in that generation of a sentence automatically provides a meaningful structural description. We shall find that these restrictions are increasingly heavy in the sense that each limits more severely the set of languages that can be generated. The intermediate systems are those that assign a phrase structure descritption to the resulting sentence. Given such a classification of special kinds of Turing machines, the main problem of immediate relevance to the theory of language is that of determining where in the hierarchy of devices the grammars of natural languages lie. It would, for example, be extremely interesting to know whether it is in principle possible to construct a phrase structure grammar for English (even though there is good motivation of other kinds for not doing so). Before we can hope to answer this, it will be necessary to discover the structural properties that characterize the languages that can be enumerated by grammars of these various types. If the classification of generating devices is reasonable (from the point of view of the empirical motivation), such purely mathematical investigation may provide deeper insight into the formal properties that distinguish natural languages, among all sets of finite strings in a finite alphabet. Questions of this nature appear to be quite difficult in the case of the special classes of Turing machines that have the required linguistic significance. ${ }^{4}$ This paper is devoted to a preliminary study of the properties of such special devices, viewed as grammars.

It should be mentioned that there appears to be good evidence that devices of the kinds studied here are not adequate for formulation of a full grammar for a natural language (see Chomsky, 1956, §4; 1957, Chapter 5). Left out of consideration here are what have elsewhere been

[^0]called "grammatical transformations" (Harris, 1952a, b, 1957; Chomsky, 1956, 1957). These are complex operations that convert sentences with a phrase structure description into other sentences with a phrase structure description. Nevertheless, it appears that devices of the kind studied in the following pages must function as essential components in adequate grammars for natural languages. Hence investigation of these devices is important as a preliminary to the far more difficult study of the generative power of transformational grammars (as well as, negatively, for the information it should provide about what it is in natural language that makes a transformational grammar necessary).

SECTION 2

A phrase structure grammar consists of a finite set of "rewriting rules" of the form $\varphi \rightarrow \psi$, where φ and ψ are strings of symbols. It contains a special "initial" symbol S (standing for "sentence") and a boundary symbol \# indicating the beginning and end of sentences. Some of the symbols of the grammar stand for words and morphemes (grammatically significant parts of words). These constitute the "terminal vocabulary." Other symbols stand for phrases, and constitute the "nonterminal vocabulary" (S is one of these, standing for the "longest" phrase). Given such a grammar, we generate a sentence by writing down the initial string \#S\#, applying one of the rewriting rules to form a new string $\# \varphi_{1} \#$ (that is, we might have applied the rule $\# S \# \rightarrow \# \varphi_{1} \#$ or the rule $S \rightarrow \varphi_{1}$), applying another rule to form a new string \# $\varphi_{2} \#$, and so on, until we reach a string \# $\varphi_{n} \#$ which consists solely of terminal symbols and cannot be further rewritten. The sequence of strings constructed in this way will be called a "derivation" of \# $\varphi_{n} \#$.

Consider, for example, a grammar containing the rules: $S \rightarrow A B$, $A \rightarrow C, C B \rightarrow C b, C \rightarrow a$, and hence providing the derivation $D=$ (\#S\#, \#AB\#, \#CB\#, \#Cb\#, \#ab\#). We can represent D diagrammatically in the form

If appropriate restrictions are placed on the form of the rules $\varphi \rightarrow \psi$ (in particular, the condition that ψ differ from φ by replacement of a single
symbol of φ by a non-null string), it will always be possible to associate with a derivation a labeled tree in the same way. These trees can be taken as the structural descriptions discussed in Sec. 1, and the method of constructing them, given a derivation, will (when stated precisely) be a definition of the functional Φ. A substring x of the terminal string of a given derivation will be called a phrase of type A just in case it can be traced back to a point labeled A in the associated tree (thus, for example, the substring enclosed within the boundaries is a phrase of the type "sentence"). If in the example given above we interpret A as Noun Phrase, B as Verb Phrase, C as Singular Noun, a as John, and b as comes, we can regard D as a derivation of John comes providing the structural description (1), which indicates that John is a Singular Noun and a Noun Phrase, that comes is a Verb Phrase, and that John comes is a Sentence. Grammars containing rules formulated in such a way that trees can be associated with derivations will thus have a certain linguistic significance in that they provide a precise reconstruction of large parts of the traditional notion of "parsing" or, in its more modern version, immediate constituent analysis. (Cf. Chomsky (1956, 1957) for further discussion.)
The basic system of description that we shall consider is a system G of the following form: G is a semi-group under concatenation with strings in a finite set V of symbols as its elements, and I as the identity element. V is called the "vocabulary" of $G . V=V_{T} \cup V_{N}\left(V_{T}, V_{N}\right.$ disjoint), where V_{T} is the "terminal vocabulary" and V_{N} the "nonterminal vocabulary." V_{T} contains I and a "boundary" element \#. V_{N} contains an element S (sentence). A two-place relation \rightarrow is defined on elements of G, read "can be rewritten as." This relation satisfies the following conditions:

Axiom 1. \rightarrow is irreflexive.
Aхıом 2. $A \in V_{N}$ if and only if there are φ, ψ, ω such that $\varphi A \psi \rightarrow \varphi \omega \psi$.
Axiom 3. There are no φ, ψ, ω such that $\varphi \rightarrow \psi \# \omega$.
Axiom 4. There is a finite set of pairs $\left(\chi_{1}, \omega_{1}\right), \cdots,\left(\chi_{n}, \omega_{n}\right)$ such that for all $\varphi, \psi, \varphi \rightarrow \psi$ if and only if there are φ_{1}, φ_{2}, and $j \leqq n$ such that $\varphi=\varphi_{1} \chi_{j} \varphi_{2}$ and $\psi=\varphi_{1} \omega_{j} \varphi_{2}$.

Thus the pairs $\left(\chi_{j}, \omega_{j}\right)$ whose existence is guaranteed by Axiom 4 give a finite specification of the relation \rightarrow. In other words, we may think of the grammar as containing a finite number of rules $\chi_{j} \rightarrow \omega_{j}$ which completely determine all possible derivations.

The presentation will be greatly facilitated by the adoption of the following notational convention (which was in fact followed above).

Convention 1: We shall use capital letters for strings in V_{N}; small Latin letters for strings in V_{T}; Greek letters for arbitrary strings; early letters of all alphabets for single symbols (members of V); late letters of all alphabets for arbitrary strings.
Definition 1. $\left(\varphi_{1}, \cdots, \varphi_{n}\right)(n \geqq 1)$ is a ψ-derivation of ω if $\psi=\varphi_{1}$, $\omega=\varphi_{n}$, and $\varphi_{i} \rightarrow \varphi_{i+1}(1 \leqq i<n)$.

Defintion 2. A φ-derivation is terminated if it is not a proper initial subsequence of any φ-derivation. ${ }^{5}$

Definition 3. The terminal language L_{G} generated by G is the set of strings x such that there is a terminated \#S\#-derivation of x. ${ }^{6}$

Definition 4. G is equivalent to G^{*} if $L_{G}=L_{G^{*}}$.
Definition 5. $\varphi \Rightarrow \psi$ if there is a φ-derivation of ψ.
\Rightarrow (which is the ordinary ancestral of \rightarrow) is thus a partial ordering of strings in G. These notions appear, in slightly different form, in Chomsky (1956, 1957).

This paper will be devoted to a study of the effect of imposing the following additional restrictions on grammars of the type described above.

Restriction 1. If $\varphi \rightarrow \psi$, then there are $A, \varphi_{1}, \varphi_{2}, \omega$ such that $\varphi=$ $\varphi_{1} A \varphi_{2}, \psi=\varphi_{1} \omega \varphi_{2}$, and $\omega \neq I$.

Restriction 2. If $\varphi \rightarrow \psi$, then there are $A, \varphi_{1}, \varphi_{2}, \omega$ such that $\varphi=$ $\varphi_{1} A \varphi_{2}, \psi=\varphi_{1} \omega \varphi_{2}, \omega \neq I$, but $A \rightarrow \omega$.

Restriction 3. If $\varphi \rightarrow \psi$, then there are $A, \varphi_{1}, \varphi_{2}, \omega, a, B$ such that $\varphi=\varphi_{1} A \varphi_{2}, \psi=\varphi_{1} \omega \varphi_{2}, \omega \neq I, A \rightarrow \omega$, but $\omega=a B$ or $\omega=a$.

The nature of these restrictions is clarified by comparison with Axiom 4, above. Restriction 1 requires that the rules of the grammar [i.e., the minimal pairs $\left(\chi_{j}, \omega_{j}\right)$ of Axiom 4] all of be the form $\varphi_{1} A \varphi_{2} \rightarrow \varphi_{1} \omega \varphi_{2}$, where A is a single symbol and $\omega \neq I$. Such a rule asserts that $A \rightarrow \omega$ in the context $\varphi_{1}-\varphi_{2}$ (which may be null). Restriction 2 requires that the limiting context indeed be null; that is, that the rules all be of the form $A \rightarrow \omega$, where A is a single symbol, and that each such rule may be applied independently of the context in which A appears. Restriction 3

[^1]limits the rules to the form $A \rightarrow a B$ or $A \rightarrow a$ (where A, B are single nonterminal symbols, and a is a single terminal symbol).

Definition 6. For $i=1,2,3$, a type i grammar is one meeting restriction i, and a type i language is one with a type i grammar. A type 0 grammar (language) is one that is unrestricted.

Type 0 grammars are essentially Turing machines; type 3 grammars, finite automata. Type 1 and 2 grammars can be interpreted as systems of phrase structure description.

SECTION 3

Theorem 1 follows immediately from the definitions.
Theorem 1. For both grammars and languages, type $0 \supseteq$ type $1 \supseteq$ type 2 こ type 3 .

The following is, furthermore, well known.
Theorem 2. Every recursively enumerable set of strings is a type 0 language (and conversely). ${ }^{7}$

That is, a grammar of type 0 is a device with the generative power of a Turing machine. The theory of type 0 grammars and type 0 languages is thus part of a rapidly developing branch of mathematics (recursive function theory). Conceptually, at least, the theory of grammar can be viewed as a study of special classes of recursive functions.

Theorem 3. Each type 1 language is a decidable set of strings. ${ }^{7 a}$
That is, given a type 1 grammar G, there is an effective procedure for determining whether an arbitrary string x is in the language enumerated by G. This follows from the fact that if $\varphi_{i}, \varphi_{i+1}$ are successive lines of a derivation produced by a type 1 grammar, then φ_{i+1} cannot contain fewer symbols than φ_{i}, since φ_{i+1} is formed from φ_{i} by replacing a single symbol A of φ_{i} by a non-null string ω. Clearly any string x which has a
${ }^{7}$ See, for example, Davis (1958, Chap. 6, §2). It is easily shown that the further structure in type 0 grammars over the combinatorial systems there described does not affect this result.
${ }^{7 a}$ But not conversely. For suppose we give an effective enumeration of type 1 grammars, thus enumerating type 1 languages as L_{1}, L_{2}, \cdots. Let s_{1}, s_{2}, \cdots be an effective enumeration of all finite strings in what we can assume (without restriction) to be the common, finite alphabet of L_{1}, L_{2}, \cdots. Given the index of a language in the enumeration L_{1}, L_{2}, \cdots, we have immediately a decision procedure for this language. Let M be the "diagonal" language containing just those strings s_{i} such that $s_{i} \nsubseteq L_{i}$. Then M is a decidable language not in the enumeration.

I am indebted to Hilary Putnam for this observation.
\#S\#-derivation, has a \#S\#-derivation in which no line repeats, since lines between repetitions can be deleted. Consequently, given a grammar G of type 1 and a string x, only a finite number of derivations (those with no repetitions and no lines longer than x) need be investigated to determine whether $x \in L_{G}$.

We see, therefore, that Restriction 1 provides an essentially more limited type of grammar than type 0 .

The basic relation \rightarrow of a type 1 grammar is specified completely by a finite set of pairs of the form ($\psi_{1} A \psi_{2}, \psi_{1} \omega \psi_{2}$). Suppose that $\omega=$ $\alpha_{1} \cdots \alpha_{m}$. We can then associate with this pair the element

Corresponding to any derivation D we can construct a tree formed from the elements (2) associated with the transitions between successive lines of D, adding elements to the tree from the appropriate node as the derivation progresses. ${ }^{8}$ We can thus associate a labeled tree with each derivation as a structural description of the generated sentence. The restriction on the rules $\varphi \rightarrow \psi$ which leads to type 1 grammars thus has a certain linguistic significance since, as pointed out in Sec. 1, these grammars provide a precise reconstruction of much of what is traditionally called "parsing" or "immediate constituent analysis." Type 1 grammars are the phrase structure grammars considered in Chomsky (1957, Chap. 4).

SECTION 4

Lemma 1. Suppose that G is a type 1 grammar, and X, B are particular strings of G. Let G^{\prime} be the grammar formed by adding $X B \rightarrow B X$ to G. Then there is a type 1 grammar G^{*} equivalent to G^{\prime}.

Proof. Suppose that $X=A_{1} \cdots A_{n}$. Choose C_{1}, \cdots, C_{n+1} new and distinct. Let Q be the sequence of rules

[^2]\[

$$
\begin{aligned}
A_{1} \cdots A_{n} B & \rightarrow C_{1} A_{2} \cdots A_{n} B \\
& \cdot \\
& \cdot \\
& \cdot \\
& \rightarrow C_{1} \cdots C_{n} B \\
& \rightarrow B C_{2} \cdots C_{n} C_{n+1} \\
& \rightarrow B A_{1} C_{3} \cdots C_{n+1} \\
& \cdot \\
& \cdot \\
& \rightarrow B A_{1} \cdots A_{n}
\end{aligned}
$$
\]

where the left-hand side of each rule is the right-hand side of the immediately preceding rule. Let G^{*} be formed by adding the rules of Q to G. It is obvious that if there is a \#S\#-derivation of x in G^{*} using rules of Q, then there is a \#S\#-derivation of x in G^{*} in which the rules are applied only in the sequence Q, with no other rules interspersed (note that x is a terminal string). Consequently the only effect of adding the rules of Q to G is to permit a string $\varphi X B \psi$ to be rewritten $\varphi B X \psi$, and $L_{\theta^{*}}$ contains only sentences of $L_{G^{\prime}}$. It is clear that $L_{G^{*}}$ contains all the sentences of $L_{\theta^{\prime}}$ and that G^{*} meets Restriction 1.

By a similar argument it can easily be shown that type 1 languages are those whose grammars meet the condition that if $\varphi \rightarrow \psi$, then ψ is at least as long as φ. That is, weakening Restriction 1 to this extent will not increase the class of generated languages.

Lemma 2. Let L be the language containing all and only the sentences of the form $\# a^{n} b^{m} a^{n} b^{m} c c c \#(m, n \geqq 1)$. Then L is a type 1 language.

Proof. Consider the grammar G with $V_{T}=\{a, b, c, I, \#\}$,

$$
V_{N}=\left\{S, S_{1}, S_{2}, A, \bar{A}, B, \bar{B}, C, D, E, F\right\},
$$

and the following rules:
(I) (a) $S \rightarrow C D S_{1} S_{2} F$
(b) $S_{2} \rightarrow S_{2} S_{2}$
(c) $\left\{\begin{array}{l}S_{2} F \rightarrow B F \\ S_{2} B \rightarrow B B\end{array}\right\}$
(d) $S_{1} \rightarrow S_{1} S_{1}$
(e) $\left\{\begin{array}{l}S_{1} B \rightarrow A B \\ S_{1} A \rightarrow A A\end{array}\right\}$
(II)
(a) $\left\{\begin{array}{l}C D A \rightarrow C E \bar{A} A \\ C D B \rightarrow C E \bar{B} B\end{array}\right\}$
(b) $\left\{\begin{array}{l}C E \bar{A} \rightarrow \bar{A} C E \\ C E \bar{B} \rightarrow \bar{B} C E\end{array}\right\}$
(c) $E \alpha \beta \rightarrow \beta E \alpha$
(d) $E \alpha \# \rightarrow D \alpha \#$
(e) $\alpha D \rightarrow D \alpha$
(III) CDF $\alpha \rightarrow \alpha C D F$
(IV)
(a) $\left\{\begin{array}{l}A, \bar{A} \rightarrow a \\ B, \bar{B} \rightarrow b\end{array}\right\}$
(b) $\left\{\begin{array}{l}C D F \# \rightarrow C D c \# \\ C D c \rightarrow C c c \\ C c \rightarrow c c\end{array}\right\}$
where α, β range over $\{A, B, F\}$.
It can now be determined that the only \#S\#-derivations of G that terminate in strings of V_{T} are produced in the following manner:
(1) the rules of (I) are applied as follows: (a) once, (b) $m-1$ times for some $m \geqq 1$, (c) m times, (d) $n-1$ times for some $n \geqq 1$, and (e) n times, giving

$$
\# C D \alpha_{1} \cdots \alpha_{n+m} F \#
$$

where $\alpha_{i}=A$ for $i \leqq n, \alpha_{i}=B$ for $i>n$
(2) the rules of (II) are applied as follows: (a) once and (b) once, giving

$$
\# \bar{\alpha}_{1} C E \alpha_{1} \cdots \alpha_{n+m} F \not \#^{9}
$$

(c) $n+m$ times and (d) once, giving

$$
\# \bar{\alpha}_{1} C \alpha_{2} \cdots \alpha_{n+m} F D \alpha_{1} \#
$$

(e) $n+m$ times, giving

$$
\# \bar{\alpha}_{1} C D \alpha_{2} \cdots \alpha_{n} F \alpha_{1} \#
$$

(3) the rules of (II) are applied, as in (2), $n+m-1$ more times, giving

$$
\# \bar{\alpha}_{1} \cdots \bar{\alpha}_{n+m} C D F \alpha_{1} \cdots \alpha_{n+m} \#
$$

${ }^{9}$ Where here and henceforth, $\bar{\alpha}_{i}=\bar{A}$ if $\alpha_{i}=A, \bar{\alpha}_{i}=\bar{B}$ if $\alpha_{i}=B$. Note that use of rules of the type of (II), (b), (c), (e), and (III) is justified by Lemma 1.
(4) the rule (III) is applied $n+m$ times, giving

$$
\# \bar{\alpha}_{1} \cdots \bar{\alpha}_{n+m} \alpha_{1} \cdots \alpha_{n+m} C D F \#
$$

(5) the rules of (IV) are applied, (a) $2(n+m)$ times, (b) once, giving

$$
\# a^{n} b^{m} a^{n} b^{m} c c c \#
$$

Any other sequence of rules (except for a certain freedom in point of application of [IVa]) will fail to produce a derivation terminating in a string of V_{T}. Notice that the form of the terminal string is completely determined by step (1) above, where n and m are selected. Rules (II) and (III) are nothing but a copying device that carries any string of the from \#CDXF\# (where X is any string of A 's and B 's) to the corresponding string \#XXCDF\#, which is converted by (IV) into terminal form.

By Lemma 1, there is a type 1 grammar G^{*} equivalent to G, as was to be proven.

Theorem 4. There are type 1 languages which are not type 2 languages.

Proof. We have seen that the language L consisting of all and only the strings $\# a^{n} b^{m} a^{n} b^{m} c c c \#$ is a type 1 language. Suppose that G is a type 2 grammar of L. We can assume for each A in the vocabulary of G that there are infinitely many x 's such that $A \Rightarrow x$ (otherwise A can be eliminated from G in favor of a finite number of rules of the form $B \rightarrow \varphi_{1} \approx \varphi_{2}$ whenever G contains the rule $B \rightarrow \varphi_{1} A \varphi_{2}$ and $A \Rightarrow z$). L contains infinitely many sentences, but G contains only finitely many symbols. Therefore we can find an A such that for infinitely many sentences of L there is an \#S\#-derivation the next-to-last line of which is of the form $x A y$ (i.e., A is its only nonterminal symbol). From among these, select a sentence $s=\# a^{n} b^{m} a^{n} b^{m} c c c \#$ such that $m+n>r$, where $a_{1} \cdots a_{r}$ is the longest string z such that $A \rightarrow z$ (note that there must be a z such that $A \rightarrow z$, since A appears in the next-to-last line of a derivation of a terminal string; and, by Axiom 4, there are only finitely many such z 's). But now it is immediately clear that if ($\varphi_{1}, \cdots, \varphi_{t+1}$) is a \#S\#-derivation of s for which $\varphi_{t}=\# x A y \#$, then no matter what x and y may be,

$$
\left(\varphi_{1}, \cdots, \varphi_{t}\right)
$$

is the initial part of infinitely many derivations of terminal strings not in L. Hence G is not a grammar of L.

We see, therefore, that grammars meeting Restriction 2 are essentially
less powerful than those meeting only Restriction 1 . However, the extra power of grammars that do not meet Restriction 2 appears, from the above results, to be a defect of such grammars, with regard to the intended interpretation. The extra power of type 1 grammars comes (in part, at least) from the fact that even though only a single symbol is rewritten with each addition of a new line to a derivation, it is nevertheless possible in effect to incorporate a permutation such as $A B \rightarrow B A$ (Lemma 1). The purpose of permitting only a single symbol to be rewritten was to permit the construction of a tree (as in Sec. 2) as a structural description which specifies that a certain segment x of the generated sentence is an A (e.g., in the example in Sec. 2, John is a Noun Phrase). The tree associated with a derivation such as that in the proof of Lemma 1 will, where it incorporates a permutation $A B \rightarrow B A$, specify that the segment derived ultimately from the B of $\cdots B A \cdots$ is an A, and the segment derived from the A of $\cdots B A \cdots$ is a B. For example, a type 1 grammar in which both John will come and will John come are derived from an earlier line Noun Phrase-Modal-Verb, where will John come is produced by a permutation, would specify that will in will John come is a Noun Phrase and John a Modal, contrary to intention. Thus the extra power of type 1 grammars is as much a defect as was the still greater power of unrestricted Turing machines (type 0 grammars).

A type 1 grammar may contain minimal rules of the form $\varphi_{1} A \varphi_{2} \rightarrow$ $\varphi_{1} \omega \varphi_{2}$, whereas in a type 2 grammar, φ_{1} and φ_{2} must be null in this case. A rule of the type 1 form asserts, in effect, that $A \rightarrow \omega$ in the context $\varphi_{1}-\varphi_{2}$. Contextual restrictions of this type are often found necessary in construction of phrase structure descriptions for natural languages. Consequently the extra flexibility permitted in type 1 grammars is important. It seems clear, then, that neither Restriction 1 nor Restriction 2 is exactly what is required for the complete reconstruction of immediate constituent analysis. It is not obvious what further qualification would be appropriate.

In type 2 grammars, the anomalies mentioned in footnote 5 are avoided. The final line of each terminated derivation is a string in V_{T}, and no string in V_{T} can head a derivation of more than one line.

SECTION 5

We consider now grammars meeting Restriction 2.
Definition 7. A grammar is self-embedding (s.e.) if it contains an A such that for some $\varphi, \psi(\varphi \neq I \neq \psi), A \Rightarrow \varphi A \psi$.

Definition 8. A grammar G is regular if it contains only rules of the form $A \rightarrow a$ or $A \rightarrow B C$, where $B \neq C$; and if whenever $A \rightarrow \varphi_{1} B \varphi_{2}$ and $A \rightarrow \psi_{1} B \psi_{2}$ are rules of G, then $\varphi_{i}=\psi_{i}(i=1,2)$.

Theorem 5. If G is a type 2 grammar, there is a regular grammar G^{*} which is equivalent to G and which, furthermore, is non-s.e. if G is non-s.e.

Proof. Define $L(\varphi)$ (i.e., length of φ) to be m if $\varphi=\alpha_{1} \cdots \alpha_{m}$, where $\alpha_{i} \neq I$.

Given a type 2 grammar G, consider all derivations $D=\left(\varphi_{1}, \cdots, \varphi_{t}\right)$ meeting the following four conditions:
(a) for some $A, \varphi_{1}=A$
(b) D contains no repeating lines
(c) $L\left(\varphi_{t-1}\right)<4$
(d) $L\left(\varphi_{t}\right) \geqq 4$ or φ_{t} is terminal.

Clearly there is a finite number of such derivations. Let G_{1} be the grammar containing the minimal rule $\varphi \rightarrow \psi$ just in case for some such derivation $D, \varphi=\varphi_{1}$ and $\psi=\varphi_{t}$. Clearly G_{1} is a type 2 grammar equivalent to G, and is non-s.e. if G is non-s.e., since $\varphi \rightarrow \psi$ in G_{1} only if $\varphi \Rightarrow \psi$ in G.

Suppose that G_{1} contains rules R_{1} and R_{2} :

$$
\begin{aligned}
& R_{1}: A \rightarrow \varphi_{1} B \varphi_{2}=\omega_{1} \omega_{2} \omega_{3} \omega_{4}\left(\omega_{i} \neq I\right) \\
& R_{2}: A \rightarrow \psi_{1} B \psi_{2}
\end{aligned}
$$

where $\varphi_{1} \neq \psi_{1}$ or $\varphi_{2} \neq \psi_{2}$. Replace R_{1} by the three rules

$$
\begin{aligned}
& R_{11}: A \rightarrow C D \\
& R_{12}: C \rightarrow \omega_{1} \omega_{2} \\
& R_{13}: D \rightarrow \omega_{3} \omega_{4}
\end{aligned}
$$

where C and D are new and distinct. Continuing in this way, always adding new symbols, form G_{2} equivalent to G_{1}, non-s.e. if G_{1} is non-s.e., and meeting the second of the regularity conditions.

If G_{2} contains a rule $A \rightarrow \alpha_{1} \cdots \alpha_{n}\left(\alpha_{i} \neq I, n>2\right)$, replace it by the rules

$$
\begin{aligned}
& R_{1}: A \rightarrow \alpha_{1} \cdots \alpha_{n-2} B \\
& R_{2}: B \rightarrow \alpha_{n-1} \alpha_{n}
\end{aligned}
$$

where B is new. Continuing in this way, form G_{3}.
If G_{3} contains $A \rightarrow a b(a \neq I \neq b)$, replace it by $A \rightarrow B C, B \rightarrow a$, $C \rightarrow b$, where B and C are new. If G_{3} contains $A \rightarrow a B$, replace it by
$A \rightarrow C B, C \rightarrow a$, where C is new. If it contains $A \rightarrow B a$, replace this by $A \rightarrow B C, C \rightarrow a$, where C is new. Continuing in this way form $G_{4} . G_{4}$ then is the grammar G^{*} required for the theorem.

Theorem 5 asserts in particular that all type 2 languages can be generated by grammars which yield only trees with no more than two branches from each node. That is, from the point of view of generative power, we do not restrict grammars by requiring that each phrase have at most two immediate constituents (note that in a regular grammar, a "phrase" has one immediate constituent just in case it is interpreted as a word or morpheme class, i.e., a lowest level phrase; an immediate constituent in this case is a member of the class).

Definition 9. Suppose that Σ is a finite state Markov source with a symbol emitted at each inter-state transition; with a designated initial state S_{0} and a designated final state S_{f}; with \# emitted on transition from S_{0} and from S_{f} to S_{0}, and nowhere else; and with no transition from S_{f} except to S_{0}. Define a sentence as a string of symbols emitted as the system moves from S_{0} to a first recurrence of S_{0}. Then the set of sentences that can be emitted by Σ is a finite state language. ${ }^{10}$

Since Restriction 3 limits the rules to the form $A \rightarrow a B$ or $A \rightarrow a$, we immediately conclude the following.

Theorem 6. The type 3 languages are the finite state languages.
Proof. Suppose that G is a type 3 grammar. We interpret the symbols of V_{N} as designations of states and the symbols of V_{T} as transition symbols. Then a rule of the form $A \rightarrow a B$ is interpreted as meaning that a is emitted on transition from A to B. An \#S\#-derivation of G can involve only one application of a rule of the form $A \rightarrow a$. This can be interpreted as indicating transition from A to a final state with a emitted. The fact that \# bounds each sentence of L_{θ} can be understood as indicating the presence of an initial state S_{0} with \# emitted on transition from S_{0} to S, and as a requirement that the only transition from the final state is to S_{0}, with \# emitted. Thus G can be interpreted as a system of the type described in Definition 9. Similarly, each such system can be described as a type 3 grammar.

[^3]Restriction 3 limits the rules to the form $A \rightarrow a B$ or $A \rightarrow a$. From Theorem 5 we see that Restriction 2 amounts to a limitation of the rules to the form $A \rightarrow a B, A \rightarrow a$, or $A \rightarrow B C$ (with the first type dispensable). Hence the fundamental feature distinguishing type 2 grammars (systems of phrase structure) from type 3 grammars (finite automata) is the possibility of rules of the form $A \rightarrow B C$ in the former. This leads to an important difference in generative power.

Theorem 7. There exist type 2 languages that are not type 3 languages. (Cf. Chomsky, 1956, 1957.)

In Chomsky (1956), three examples of non-type 3 languages were presented. Let L_{1} be the language containing just the strings $a^{n} b^{n} ; L_{2}$, the language containing just the strings $x y$, where x is a string of a 's and b 's and y is the mirror image of $x ; L_{3}$, the language consisting of all strings $x x$ where x is a string of a 's and b 's. Then L_{1}, L_{2}, and L_{3} are not type 3 languages. L_{1} and L_{2} are type 2 languages (cf. Chomsky, 1956). L_{3} is a type 1 language but not a type 2 language, as can be shown by proofs similar to those of Lemma 2 and Theorem 4. ${ }^{11}$

Suppose that we extend the power of a finite automaton by equipping it with a finite number of counters, each of which can assume infinitely many positions. We permit each counter to shift position in a fixed way with each inter-state transition, and we permit the next transition to be determined by the present state and the present readings of the counters. A language generated (as in Definition 9) by a system of this sort (where each counter begins in a fixed position) will be called a counter language. Clearly L_{1}, though not a finite state (type 3) language, is a counter language. Several different systems of this general type are studied by Schützenberger, (1957), where the following, in particular, is proven.

Theorem 8. L_{2} is not a counter language.
Thus there are type 2 languages that are not counter languages. ${ }^{12} \mathrm{~T}_{0}$ summarize, L_{1} is a counter language and a type 2 language, but not a type 3 (finite state) language; L_{2} is a type 2 language but not a counter language (hence not a type 3 language); and L_{3} is a type 1 language but not a type 2 language.
${ }^{11}$ In Chomsky (1956, p. 119) and Chomsky (1957, p. 34), it was erroneously stated that L_{3} cannot be generated by a phrase structure system. This is true for a type 2, but not a type 1 phrase structure system.
${ }^{12}$ The further question whether all counter languages are type 2 languages (i.e., whether counter languages constitute a step between types 2 and 3 in the hierarchy being considered here) has not been investigated.

From Theorems 2, 3, 4 and 7, we conclude:
Theorem 9. Restrictions 1, 2 and 3 are increasingly heavy. That is, the inclusion in Theorem 1 is proper inclusion, both for grammars (trivially) and for languages.

The fact that L_{2} is a type 2 language but neither a type 3 nor a counter language is important, since English has the essential properties of L_{2} (Chomsky, 1956, 1957). We can conclude from this that finite automata (even with a finite number of infinite counters) that produce sentences from "left to right" in the manner of Definition 9 cannot constitute the class F (cf. Sec. 1) from which grammars are drawn; i.e., the devices that generate language cannot be of this character.

SECTION 6

The importance of gaining a better understanding of the difference in generative power between phrase structure grammars and finite state sources is clear from the considerations reviewed in Sec. 5. We shall now show that the source of the excess of power of type 2 grammars over type 3 grammars lies in the fact that the former may be self-embedding (Definition 7). Because of Theorem 5 we can restrict our attention to regular grammars.

Construction: Let G be a non-s.e. regular (type 2) grammar. Let

$$
\begin{aligned}
& K=\left\{\left(A_{1}, \cdots, A_{m}\right) \mid m=1\right. \text { or, } \\
& \left.\quad \text { for } 1 \leqq i<j \leqq m, A_{i} \rightarrow \varphi A_{i+1 \psi} \text { and } A_{i} \neq A_{j}\right\} .
\end{aligned}
$$

We construct the grammar G^{\prime} with each nonterminal symbol represented in the form $\left[B_{1} \cdots B_{n}\right]_{i}(i=1,2)$, where the B_{j} 's are in turn nonterminal symbols of G, as follows: ${ }^{13}$

Suppose that $\left(B_{1}, \cdots, B_{n}\right) \in K$.
(i) If $B_{n} \rightarrow a$ in G, then $\left[B_{1} \cdots B_{n}\right]_{1} \rightarrow a\left[B_{1} \cdots B_{n}\right]_{2}$.
(ii) If $B_{n} \rightarrow C D$ where $C \neq B_{i} \neq D(i \leqq n)$, then
(a) $\left[B_{1} \cdots B_{n}\right]_{1} \rightarrow\left[B_{1} \cdots B_{n} C\right]_{1}$
(b) $\left[B_{1} \cdots B_{n} C\right]_{2} \rightarrow\left[B_{1} \cdots B_{n} D\right]_{1}$
(c) $\left[B_{1} \cdots B_{n} D\right]_{2} \rightarrow\left[B_{1} \cdots B_{n}\right]_{2}$.

[^4](iii) If $B_{n} \rightarrow C D$ where $B_{i}=D$ for some $i \leqq n$, then
(a) $\left[B_{1} \cdots B_{n}\right]_{1} \rightarrow\left[B_{1} \cdots B_{n} C\right]_{1}$
(b) $\left[B_{1} \cdots B_{n} C\right]_{2} \rightarrow\left[B_{1} \cdots B_{i}\right]_{1}$.
(iv) If $B_{n} \rightarrow C D$ where $B_{i}=C$ for some $i \leqq n$, then
(a) $\left[B_{1} \cdots B_{i}\right]_{2} \rightarrow\left[B_{1} \cdots B_{n} D\right]_{1}$
(b) $\left[B_{1} \cdots B_{n} D\right]_{2} \rightarrow\left[B_{1} \cdots B_{n}\right]_{2}$.

We shall prove that G^{\prime} is equivalent to G (when slightly modified).
The character of this construction can be clarified by consideration of the trees generated by a grammar (cf. Sec. 3). Since G is regular and non-s.e., we have to consider only the following configurations:

where at most two of the branches proceeding from a given node are non-null; in case (b), no node dominated by B_{n} is labeled $B_{i}(i \leqq n)$; and in each case, $B_{1}=S$.
(i) of the construction corresponds to case (3a), (ii) to (3b), (iii) to (3c), and (iv) to (3d). (3c) and (3d) are the only possible kinds of recursion. If we have a configuration of the type (3c), we can have substrings of the form $\left(x_{1} \cdots x_{n-i} y\right)^{k}$ (where $E_{j} \Rightarrow x_{j}, C \Rightarrow y$) in the resulting terminal strings. In the case of (3d) we can have substrings of the form ($\left.y x_{n-i} \cdots x_{1}\right)^{k}$ (where $D \Rightarrow y, E_{j} \Rightarrow x_{j}$). (iii) and (iv) accommodate these possibilities by permitting the appropriate cycles in G^{\prime}. To the earliest (highest) occurrence of a particular nonterminal symbol
B_{n} in a particular branch of a tree, the construction associates two nonterminal symbols $\left[B_{1} \cdots B_{n}\right]_{1}$ and $\left[B_{1} \cdots B_{n}\right]_{2}$, where B_{1}, \cdots, B_{n-1} are the labels of the nodes dominating this occurrence of B_{n}. The derivation in G^{\prime} corresponding to the given tree will contain a subsequence $\left(z\left[B_{1} \cdots B_{n}\right]_{1}, \cdots z x\left[B_{1} \cdots B_{n}\right]_{2}\right)$, where $B_{n} \Rightarrow x$ and z is the string preceding this occurrence of x in the given derivation in G. For example, corresponding to a tree of the form

generated by a grammar G, the corresponding G^{\prime} will generate the derivation (5) with the accompanying tree:

where the step of the construction permitting each line is indicated at the right.

We now proceed to establish that the grammar G^{\prime} given by this construction is actually equivalent (with slight modification) to the given grammar G. This result, which requires a long sequence of introductory lemmas, is stated in a following paragraph as Theorem 10. From this we will conclude that given any non-s.e. type 2 grammar, we can construct an equivalent type 3 grammar (with many vacuous transitions which are, however, eliminable; cf. Chomsky and Miller, 1958). From this follows the main result of the paper (Theorem 11), namely, that the extra power of phrase structure grammars over finite automata as language generators lies in the fact that phrase structure grammars may be self-embedding.

Lemma 3. If $\left(A_{1}, \cdots, A_{m}\right) \in K$, where K is as in the construction, then $A_{j} \Rightarrow \varphi A_{k} \psi$, for $1 \leqq j \leqq k \leqq m$.

Lemma 4. If $\left[B_{1} \cdots B_{n}\right]_{i} \rightarrow x\left[B_{1} \cdots B_{m}\right]_{j}, C \neq B_{k}(k \leqq m, n)$, and $C \rightarrow \alpha B_{1} \beta$, then $\left[C B_{1} \cdots B_{n}\right]_{i} \rightarrow x\left[C B_{1} \cdots B_{m}\right]_{j}$.

Proofs are immediate.
Lemma 5. If $\left(B_{1}, \cdots, B_{n}\right) \in K$ and $1<m \leqq n$, then
(a) if $B_{m} \Rightarrow \varphi B_{1}$, it is not the case that $B_{i} \Rightarrow B_{m} \psi(i \leqq n ; i \neq m)$
(b) if $B_{m} \Rightarrow B_{1 \varphi}$, it is not the case that $B_{i} \Rightarrow \psi B_{m}(i \leqq n ; i \neq m)$
(c) if $B_{m} \Rightarrow \varphi B_{1} \psi$, it is not the case that $B_{i} \Rightarrow \omega_{1} B_{m} \omega_{2} B_{m} \omega_{3}(i \leqq n)$

Proof. Suppose that $B_{m} \Rightarrow \varphi B_{1}$ and for some $i \neq m, B_{i} \Rightarrow B_{m} \psi$.
$\therefore \varphi \neq I \neq \psi$. By lemma $3, B_{1} \Rightarrow \omega_{1} B_{i} \omega_{2} . \therefore B_{m} \Rightarrow \varphi \omega_{1} B_{i} \omega_{2} \Rightarrow \varphi \omega_{1} B_{m} \psi \omega_{2}$. Contra., since now B_{m} is self-embedded. Similarly, case (b). Suppose $B_{m} \Rightarrow \varphi B_{1} \psi$ and for some $i, B_{i} \Rightarrow \omega_{1} B_{m} \omega_{2} B_{m} \omega_{3} . \therefore B_{1} \Rightarrow \chi_{1} B_{i} \chi_{2} \Rightarrow$ $\chi_{1} \omega_{1} B_{m} \omega_{2} B_{m} \omega_{3} \chi_{2} \Rightarrow \omega_{4} B_{1} \omega_{5} B_{1} \omega_{6} \Rightarrow \omega_{7} B_{1} \omega_{8} B_{1} \omega_{9} B_{1} \omega_{6}$. Contra. (s.e.).

To facilitate proofs, we adopt the following notational convention:
Convention 2. Suppose that ($\varphi_{1}, \cdots, \varphi_{r}$) is a derivation in G^{\prime} formed by construction. Then $\varphi_{i}=a_{1} \cdots a_{i} Q_{i}$ (where Q_{i} is the unique nonterminal symbol that can appear in a derivation ${ }^{14}$), $Q_{i} \rightarrow a_{i+1} Q_{i+1} .{ }^{15}$ $z_{n}{ }^{m}=a_{m} \cdots a_{n} . z_{n}=z_{n}{ }^{1}$.

Lemma 6. Suppose that $D=\left(\varphi_{1}, \cdots, \varphi_{r}\right)$ is a derivation in G^{\prime} where $Q_{r}=\left[B_{1}\right]_{2}$. Then:
(I) if $\varphi_{1}=\left[B_{1}\right]_{1},\left(C_{1}, \cdots, C_{m+1}\right) \in K, C_{i} \rightarrow A_{i+1} C_{i+1}($ for $1 \leqq i \leqq m)$, and $C_{m+1}=B_{1}$, then there is a derivation

$$
\left(\left[C_{1} \cdots C_{m} B_{1}\right]_{1}, \cdots, z_{r}\left[C_{1}\right]_{2}\right) \quad \text { in } G^{\prime} .
$$

(II) if $\varphi_{1}=\left[B_{1} \cdots B_{n}\right]_{1}$ and $B_{n} \Rightarrow x B_{1}$, then there is a derivation

$$
\left(\left[B_{n}\right]_{1}, \cdots, z_{r}\left[B_{n}\right]_{2}\right) \quad \text { in } G^{\prime} .
$$

Proof. Proof is by simultaneous induction on the length of z_{r}, i.e., the number of non-mull symbols among a_{1}, \cdots, a_{r}.

Suppose that the length of z_{r} is $1 . \therefore$ there is one and only one i s.t. $Q_{i}=[\cdots]_{1}$ and $Q_{i+1}=[\cdots]_{2}$.
(a) Suppose that $i>1$. Then $\varphi_{i}=Q_{i}$ is formed from Q_{i-1} by a rule whose source is (iia) or (iiia), and $\varphi_{i+2}=a_{i+1} Q_{i+2}$ is formed from $\varphi_{i+1}=a_{i+1} Q_{i+1}$ by a rule whose source is (iic) or (ivb). But for some
${ }^{14}$ Unless the initial line contained more than one nonterminal symbol, a case which will never arise below.
${ }^{15}$ Note that a_{i+1} will always be I unless the step of the construction justifying $\varphi_{i} \rightarrow \varphi_{i+1}$ is (i). a_{1} will generally be I in this sequence of theorems.
$k, Q_{i-1}=\left[B_{1} \cdots B_{k}\right]_{1}, Q_{i}=\left[B_{1} \cdots B_{k+1}\right]_{1}, Q_{i+1}=\left[B_{1} \cdots B_{k+1}\right]_{2}$, $Q_{i+2}=\left[B_{1} \cdots B_{k}\right]_{2} . \therefore B_{k} \rightarrow B_{k+1} D$ for some $D, B_{k} \rightarrow E B_{k+1}$, for some E, which contradicts the assumption that G is regular. $\therefore i=1$.
(b) Consider now (I). Since $i=1, r=2 . \therefore B_{1} \rightarrow z_{2}$. By assumption about the C_{i} 's and m applications of Lemma 4 , and (i) of the construction, $\left[C_{1} \cdots C_{m} B_{1}\right]_{1} \rightarrow z_{2}\left[C_{1} \cdots C_{m} B_{1}\right]_{2}$. Since $C_{i} \rightarrow A_{i+1} C_{i+1}\left(C_{i} \neq C_{j}\right.$ for $1 \leqq i<j \leqq m+1$, since $\left(C_{1}, \cdots, C_{m+1}\right) \in K$ by assumption), it follows that $\left[C_{1} \cdots C_{m} B_{1}\right]_{2} \rightarrow\left[C_{1} \cdots C_{m}\right]_{2} \rightarrow\left[C_{1} \cdots C_{m-1}\right]_{2} \cdots \rightarrow\left[C_{1}\right]_{2}$. $\therefore\left(\left[C_{1} \cdots C_{m} B_{1}\right]_{1}, z_{2}\left[C_{1} \cdots C_{m} B_{1}\right]_{2}, z_{2}\left[C_{1} \cdots C_{m}\right]_{2}, \cdots, z_{2}\left[C_{1}\right]_{2}\right)$ is the required derivation.
(c) Consider now (II). Since $i=1, B_{n} \rightarrow z_{2}$ and $\left[B_{n}\right]_{1} \rightarrow z_{2}\left[B_{n}\right]_{2}$, by (i) of construction. $\therefore\left(\left[B_{n}\right]_{1}, z_{2}\left[B_{n}\right]_{2}\right)$ is the required derivation.

This proves the lemma for the case of z_{r} of length 1 .
Suppose it is true in all cases where z_{r} is of length $<t$.
Consider (I). Let D be such that z_{r} is of length t. If none of C_{1}, \cdots, C_{m} appears in any of the $Q_{i}{ }^{\prime} s$ in D, then the proof is just like (a), above. Suppose that φ_{j} is the earliest line in which one of C_{1}, \cdots, C_{m}, say C_{k}, appears in $Q_{j} . j>1$, since $C_{1}, \cdots, C_{m} \neq B_{1}$. By assumption of nons.e., the rule $Q_{j-1} \rightarrow a_{j} Q_{j}$ used to form φ_{j} can only have been introduced by (iib). ${ }^{16} \therefore Q_{j-1}=\left[B_{1} \cdots B_{n} E\right]_{2}, Q_{j}=\left[B_{1} \cdots B_{n} C_{k}\right]_{1}, B_{n}$ $\rightarrow E C_{k}$.

But C_{1}, \cdots, C_{m} do not occur in Q_{1}, \cdots, Q_{j-1} and

$$
\left(C_{1}, \cdots, C_{m}, B_{1}\right) \in K
$$

\therefore, by Lemma 4 ,

$$
\begin{equation*}
\left(\left[C_{1} \cdots C_{m} B_{1}\right]_{1}, \cdots, z_{j-1}\left[C_{1} \cdots C_{m} B_{1} \cdots B_{n} E\right]_{2}\right) \tag{6}
\end{equation*}
$$

is a derivation. Furthermore z_{j-1} is not null, since there is at least one transition from $[\cdots]_{1}$ to $[\cdots]_{2}$ in (6), which must therefore have been introduced by (i) of the construction. But $B_{n} \rightarrow E C_{\%} . \therefore$

$$
\begin{equation*}
\left[C_{1} \cdots C_{m} B_{1} \cdots B_{n} E\right]_{2} \rightarrow\left[C_{1} \cdots C_{k}\right]_{1} \tag{7}
\end{equation*}
$$

[by (iiib)]. Furthermore we know that

$$
\begin{equation*}
\left(\left[B_{1} \cdots B_{n} C_{k}\right]_{1}, \cdots, z_{r}^{j+1}\left[B_{1}\right]_{2}\right) \tag{8}
\end{equation*}
$$

${ }^{16}$ It can only have been introduced by (iia), (iib), (iiia), (iva), or C_{k} will appear in Q_{j-1}. Suppose (iia). $\therefore Q_{j-1}=\left[B_{1} \cdots B_{q}\right]_{1}, Q_{i}=\left[B_{1} \cdots B_{q} C_{k}\right]_{1}$, and $B_{q} \rightarrow C_{k} D$. But $C_{k} \Rightarrow \psi B_{1}$. Contra. by Lemma 5 (a). Suppose (iiia). Same. Suppose (iva). $\therefore Q_{j-1}=\left[B_{1} \cdots B_{i}\right]_{2}, Q_{j}=\left[B_{1} \cdots B_{i+q}\right]_{1}(q \geqq 1), B_{i+q-1} \rightarrow B_{i} B_{i+q}$, where $C_{k}=B_{i+s}(1 \leqq s \leqq q)$. But $C_{k} \Rightarrow \psi B_{1}, \psi \neq I . \therefore C_{k} \Longrightarrow \psi \omega_{1} B_{i+q-1} \omega_{2} \rightarrow \psi \omega_{1} B_{i} B_{i+q} \omega_{2}$ $\Rightarrow \psi \omega_{3} C_{k} \omega_{1} B_{i+q} \omega_{2}$, contra. \therefore introduced by (iib).
must be a derivation, since $\left[B_{1} \cdots B_{n} C_{k}\right]_{1}=Q_{j}$; i.e., (8) is just the tail end $\left(\varphi_{j}, \cdots, \varphi_{r}\right)$ of D, with the initial segment z_{j} deleted from each of $\varphi_{j}, \cdots, \varphi_{r}$. Since z_{j-1} is not null, z_{r}^{j+1} is shorter than z_{r}, hence is of length $<t$. Also, $C_{k} \Rightarrow x B_{1}$, by assumption. \therefore by inductive hypothesis (II), there is a derivation

$$
\begin{equation*}
\left(\left[C_{k}\right]_{1}, \cdots, z_{r}^{j+1}\left[C_{k}\right]_{2}\right) \tag{9}
\end{equation*}
$$

\therefore by inductive hypothesis (I), there is a derivation

$$
\begin{equation*}
\left(\left[C_{1} \cdots C_{k}\right]_{1}, \cdots, z_{r}^{j+1}\left[C_{1}\right]_{2}\right) \tag{10}
\end{equation*}
$$

Combining (6), (7), (10), we have the required derivation.
Consider now (II). If $n=1$ or there is no such derivation of length t, the proof is trivial. Assume $n>1$.

Let φ_{j} contain the first Q of the form $\left[B_{1} \cdots B_{m}\right]_{1}(j>1, m \leqq n)$. Since $B_{n} \Rightarrow x B_{1}$, it follows from Lemmas 3,5 that $B_{m} \Rightarrow y B_{1}$. Since $m \leqq n$, we see by checking through the possibilities in the construction that not all of Q_{1}, \cdots, Q_{j-1} are of the form $[\cdots]_{1} . \therefore$ there was at least one application of (i) in forming ($\varphi_{1}, \cdots, \varphi_{j-1}$). $\therefore z_{j-1}$ is not null. But

$$
\begin{equation*}
\left(\left[B_{1} \cdots B_{m}\right]_{1}, \cdots, z_{r}^{j+1}\left[B_{1}\right]_{2}\right) \tag{11}
\end{equation*}
$$

is, like (8), a derivation. \therefore by inductive hypothesis (II), there is a derivation

$$
\begin{equation*}
\left(\left[B_{m}\right]_{1}, \cdots, z_{r}^{j+1}\left[B_{m}\right]_{2}\right) \tag{12}
\end{equation*}
$$

where z_{r}^{j+1} is shorter than z_{r}.
Let φ_{k} contain the first Q of the form $\left[B_{1} \cdots B_{m}\right]_{2}(m \leqq n)$. As above, $B_{m} \Rightarrow y B_{1}$. From Lemma 5 it follows that the rule used to form φ_{k+1} must be justified by (iic) or (ivb) of the construction. In either case, $Q_{k+1}=\left[B_{1} \cdots B_{m-1}\right]_{2}$. Similarly, we show that

$$
\begin{equation*}
\left(\left[B_{1} \cdots B_{m}\right]_{2}, \cdots,\left[B_{1}\right]_{2}\right) \tag{13}
\end{equation*}
$$

is a derivation. $\therefore z_{r}=z_{k}$.
Let $q=\min (j, k)$. Then all of Q_{2}, \cdots, Q_{q-1} are of the form

$$
\left[B_{1} \cdots B_{a+s}\right]_{i}
$$

It is clear that we can construct $\psi_{1}, \cdots, \psi_{q-1}$ s.t. for $p<q, \psi_{p}=z_{p} Q_{p}{ }^{\prime}$, where $Q_{p}{ }^{\prime}=\left[B_{n} \cdots B_{n+v}\right]_{i}$ when $Q_{p}=\left[B_{1} \cdots B_{n+0}\right]_{i}$. Consequently

$$
\begin{equation*}
\left(\left[B_{n}\right]_{1}, \cdots, z_{q-1} Q_{q-1}^{\prime}\right) \tag{14}
\end{equation*}
$$

is a derivation.

Suppose $q=j . \therefore Q_{q-1}=\left[B_{1} \cdots B_{n+v}\right]_{i} \rightarrow a_{j}\left[B_{1} \cdots B_{m}\right]_{1}=Q_{j}$, where $m \leqq n<n+v . \therefore$ this rule can only have been introduced by (iiib) of the construction. $\therefore i=2$ and $B_{n+v-1} \rightarrow B_{n+v} B_{m}$.

Case 1. Suppose $m=n . \therefore$

$$
\begin{equation*}
\left[B_{n} \cdots B_{n+v}\right]_{2} \rightarrow\left[B_{n}\right]_{1}=\left[B_{m}\right]_{1} \tag{15}
\end{equation*}
$$

Combining (14), (15), (12), We have the required derivation.
Case 2. Suppose $m<n . \therefore B_{m} \neq B_{n}, \cdots, B_{n+v} . \therefore$

$$
\begin{equation*}
\left[B_{n} \cdots B_{n+v}\right]_{2} \rightarrow\left[B_{n} \cdots B_{n+v-1} B_{m}\right]_{1} \tag{16}
\end{equation*}
$$

by (iib). We have seen that $B_{m} \Rightarrow y B_{1} . \therefore B_{n+v-1} w \Rightarrow B_{1} . \therefore$ for $s<v-1, B_{n+s} \rightarrow E_{s} B_{n+s+1}$, by Lemma 5 .

But (12) is a derivation where z_{r}^{j+1} is of length $<t . \therefore$ by inductive hypothesis (I) there is a derivation

$$
\begin{equation*}
\left(\left[B_{n} \cdots B_{n+v-1} B_{m}\right]_{1}, \cdots, z_{r}^{j+1}\left[B_{n}\right]_{2}\right) \tag{17}
\end{equation*}
$$

Combining (14), (16), (17), we have the required derivation.
Suppose, finally, that $q=k$. We have seen that in this case $z_{r}=z_{k}$. But $Q_{q-1}=\left[B_{1} \cdots B_{n+v}\right]_{i} \rightarrow a_{k}\left[B_{1} \cdots B_{m}\right]_{2}$, where $m \leqq n<n+v . \therefore$ this rule can only have been introduced by (iic) or (ivb). In either case, $i=2, m=n, v=1$, and $Q_{q-1}^{\prime}=\left[B_{n} B_{n+v}\right]_{2} \rightarrow a_{k}\left[B_{n}\right]_{2}$. Combining this with (14) we have the required derivation.

We have thus shown that the lemma is true in case z_{r} is of length 1 , and that it is true for z_{r} of length t on the assumption that it holds for z_{r} of length $<t$. Therefore it holds for every derivation D.

Lemma 7. Suppose that $D=\left(\varphi_{1}, \cdots, \varphi_{r}\right)$ is a derivation in G^{\prime} where $Q_{1}=\left[B_{1}\right]_{1}$. Then
(I) if $\varphi_{r}=\left[B_{1}\right]_{2},\left(C_{1}, \cdots, C_{m+1}\right) \in K, C_{i} \rightarrow C_{i+1} A_{i+1}(1 \leqq i \leqq m)$, and $C_{m+1}=B_{1}$, then there is a derivation

$$
\left(\left[C_{1}\right]_{1}, \cdots, z_{r}\left[C_{1} \cdots C_{m} B_{1}\right]_{2}\right) \quad \text { in } G^{\prime} .
$$

(II) if $\varphi_{r}=\left[B_{1} \cdots B_{n}\right]_{2}$ and $B_{n} \Rightarrow B_{1} x$, then there is a derivation

$$
\left(\left[B_{n}\right]_{1}, \cdots, z_{r}\left[B_{n}\right]_{2}\right) \quad \text { in } G^{\prime} .
$$

The proof is analogous to that of Lemma 6. In the inductive step, case (I), we take Q_{j} as the last of the Q 's in which one of C_{1}, \cdots, C_{m}
appears, and instead of (iiib) in (7), we form

$$
\left[C_{1} \cdots C_{k}\right]_{2} \rightarrow\left[C_{1} \cdots C_{m} B_{1} \cdots B_{n} E\right]_{1}
$$

by (iva). The proof goes through as above, with similar modifications throughout. In case (II) of the inductive step we let Q_{j} be the last Q of the form $\left[B_{1} \cdots B_{m}\right]_{2}(j<r, m \leqq n)$, and Q_{k} the last Q of the form $\left[B_{1} \cdots B_{m}\right]_{1}(m \leqq n)$. Taking $q=\max (j, k)$ [instead of $\left.\min (j, k)\right]$, the proof is analogous throughout, with (iva) taking the place of (iiib).

In general, because of the symmetries in case (iii), (iv) of the construction [reflecting the parallel possibilities (3c), (3d) for recursion], most of the results obtained come in symmetrical pairs, as above, where the proof of the second is analogous to the proof of the first. Only one of the pair of proofs will actually be presented.

We will require below only the following special case of (I) of Lemmas 6,7 (which, however, could not be proved without the general case).

Lemma 8. Suppose that $D=\left([B]_{1}, \cdots, z[B]_{2}\right)$ is a derivation in G^{\prime} and that $C \neq B$. Then
(a) if $C \rightarrow \mathrm{AB}$, there is a derivation

$$
\left([C B]_{1}, \cdots, z[C]_{2}\right) \quad \text { in } G^{\prime}
$$

(b) if $C \rightarrow B A$, there is a derivation

$$
\left(\left[C_{]_{1}}, \cdots, z[C B]_{2}\right) \quad \text { in } G^{\prime} .\right.
$$

Definition 10. Suppose that G^{\prime} is formed from G by the construction and D is an α-derivation of x in G. D will be said to be represented in G^{\prime} if and only if $\alpha=a$ or $\alpha=A$ and there is a derivation ($[A]_{I}, \cdots, x[A]_{2}$) in G^{\prime}.

What we are now trying to prove is that every S-derivation of G is represented in G^{\prime}.

Definition 11. Let $D_{1}=\left(\varphi_{1}, \cdots, \varphi_{m}\right)$ and $D_{2}=\left(\psi_{1}, \cdots, \psi_{n}\right)$ be derivations in G. Then $D_{1}{ }^{*} D_{2}$ is the derivation

$$
\left(\varphi_{1} \psi_{1}, \varphi_{2} \psi_{1}, \cdots, \varphi_{m} \psi_{1}, \varphi_{m} \psi_{2}, \cdots, \varphi_{m} \psi_{n}\right) .
$$

Lemma 9. Let D_{1} be an A-derivation of x and D_{2} a B-derivation of y in G. If D_{1} and D_{2} are represented in G^{\prime} and $C \rightarrow A B$, then

$$
D_{3}=\left(C \varphi_{1} \cdots \varphi_{m}\right)
$$

is represented in G^{\prime}, where $\left(\varphi_{1}, \cdots, \varphi_{m}\right)=D_{1}{ }^{*} D_{2} .\left(D_{3}\right.$ is thus a C-derivation of $x y$.)

Proof. By hypothesis, there are derivations

$$
\begin{align*}
& \left([A]_{1}, \cdots, x[A]_{2}\right) \tag{18}\\
& \left([B]_{1}, \cdots, y[B]_{2}\right) \tag{19}
\end{align*}
$$

in G^{\prime}.
Case 1. Suppose $A \neq C \neq B$. Then by Lemma 8, there are derivations

$$
\begin{align*}
& \left([C]_{1}, \cdots, x[C A]_{2}\right) \tag{20}\\
& \left([C B]_{1}, \cdots, y[C]_{2}\right) \tag{21}
\end{align*}
$$

in G^{\prime}. By (iib) of the construction,

$$
\begin{equation*}
[C A]_{2} \rightarrow[C B]_{1} \tag{22}
\end{equation*}
$$

Combining (20), (22), and (21), we have the required derivation.
Case 2. $C=A . \therefore C \neq B$ by assumption of regularity of G. By Lemma 8 , case (a), we have again the derivation (21). By (iva) of the construction,

$$
\begin{equation*}
[A]_{2}=[C]_{2} \rightarrow[C B]_{1} \tag{23}
\end{equation*}
$$

Combining (18), (23), (21) we have the required derivation.
Case 3. $C=B . \therefore C \neq A$. By Lemma 8, case (b), we have (20). By (iiib),

$$
\begin{equation*}
[C A]_{2} \rightarrow[C]_{1}=[B]_{1} \tag{24}
\end{equation*}
$$

Combining (20), (24), (19), we have the required derivation.
Since $C \rightarrow C C$ is ruled out by assumption of regularity, these are the only possible cases.

Lemma 10. If $D_{1}=\left(\varphi_{1}, \cdots, \varphi_{r}\right)$ is a $\chi_{1} \omega_{1}$-derivation, where $\chi_{1} \neq$ $I \neq \omega_{1}$, then there is a derivation $D_{2}=D_{3}{ }^{*} D_{4}=\left(\psi_{1}, \cdots, \psi_{r}\right)$ such that $\psi_{r}=\varphi_{r}, D_{3}$ is a χ_{1}-derivation and D_{4} is an ω_{1}-derivation.

Proof. Since for $i>1, \varphi_{i}$ is formed from φ_{i-1} by replacement of a single symbol of $\varphi_{i-1},{ }^{17}$ we can clearly find χ_{i}, ω_{i} s.t. $\varphi_{i}=\chi_{i} \omega_{i}$ where either (a) $\chi_{i}=\chi_{i-1}$ and $\omega_{i-1} \rightarrow \omega_{i}$ or (b) $\chi_{i-1} \rightarrow \chi_{i}$ and $\omega_{i}=\omega_{i-1}$ $\left(\chi_{i-1} \omega_{i-1}=\varphi_{i-1}\right)$. Then D_{3} is the subsequence of $\left(\chi_{1}, \cdots, \chi_{r}\right)$ formed by dropping repetitions and D_{4} is the subsequence of $\left(\omega_{1}, \cdots, \omega_{r}\right)$ formed by dropping repetitions.

Lemma 11. If G^{\prime} is formed from G by the construction, then every α-derivation D in G is represented in G^{\prime}.
${ }^{17}$ Which, however, may not be uniquely determined. Compare footnote 8 .

Proof. Obvious, in case D contains 2 lines. Suppose true for all derivations of fewer than r lines $(r>2)$. Let $D=\left(\varphi_{1}, \cdots, \varphi_{r}\right)$, where $\varphi_{1}=\alpha$. Since $r>2, \alpha=A, \varphi_{2}=B C . \therefore\left(\varphi_{2}, \cdots, \varphi_{r}\right)$ is a $B C$-derivation. By Lemma 10, there is a $D_{2}=D_{3}{ }^{*} D_{4}=\left(\psi_{2}, \cdots, \psi_{r}\right)$ s.t. D_{3} is a B-derivation, D_{4} a C-derivation, and $\psi_{r}=\varphi_{r}$. By inductive hypothesis, both D_{3} and D_{4} are represented in G^{\prime}. By Lemma 9, D is represented in G^{\prime}.

It remains to show that if $\left([A]_{1}, \cdots, x[A]_{2}\right)$ is a derivation in G^{\prime}, then there is a derivation (A, \cdots, x) in G.

Lemma $12 .^{18}$ Suppose that G^{\prime} is formed by the construction from G, regular and non-s.e., and that
(a) $D=\left(\varphi_{1}, \cdots, \varphi_{m_{1}}, \cdots, \varphi_{q}, \cdots, \varphi_{m_{2}}, \cdots, \varphi_{r}\right)$ is a derivation in G^{\prime}, where $Q_{1}=\left[A_{1}\right], Q_{m_{1}}=Q_{m_{2}}=\left[A_{1} \cdots A_{k}\right]_{n}, Q_{q}=\left[A_{1} \cdots A_{j}\right]_{v}$, $Q_{r}=\left[A_{1}\right]_{2}$
(b) there is no u, v s.t. $u \neq v, Q_{u}=Q_{v}=\left[B_{1} \cdots B_{s}\right]_{t}$, and $s<k^{19}$
(c) for $m_{1}<u<m_{2}$, if $Q_{u}=\left[A_{1} \cdots A_{s}\right]_{t}$, then $s \geqq j^{20}$

Then it follows that
(A) if $n=2$, there is an $m_{0}<m_{1}$ such that $Q_{m_{0}}=\left[A_{1} \cdots A_{k}\right]_{1}$
(B) if $n=1$, there is an $m_{3}>m_{2}$ such that $Q_{m_{3}}=\left[A_{1} \cdots A_{k}\right]_{2}$
(C) $j \geqq k^{21}$

Proof. (A) Suppose $n=2$. Assume $\varphi_{m_{1}}$ to be the earliest line to contain $\left[A_{1} \cdots A_{k}\right]_{2}$. Clearly there is an $\bar{m} \leqq m_{1}$ s.t. $Q_{\bar{m}}=\left[A_{1} \cdots A_{k+t}\right]_{2}$, $Q_{\bar{m}-1}=\left[A_{1} \cdots A_{k+1}\right]_{1}(t \geqq 0)$. If there is no $m_{0}<\bar{m}$ s.t.

$$
Q_{m_{0}}=\left[A_{1} \cdots A_{k}\right]_{1},
$$

then there must be a $u<\bar{m}$ s.t. $Q_{u}=\left[A_{1} \cdots A_{\varepsilon}\right]_{2}$,

$$
Q_{u+1}=\left[A_{0} \cdots A_{k-1} B_{0} \cdots B_{m}\right]_{1},
$$

where φ_{u+1} is formed by (iva) of the construction, $A_{0}=I, B_{0}=A_{k}$, $m \geqq 1$, and $s<k$ (since (iva) gives the only possibility for increasing the length of Q by more than 1). $\therefore B_{m-1} \rightarrow A_{s} B_{m} . \therefore A_{s} \Rightarrow \varphi A_{s} B_{m} \psi$.

But $Q_{u}=\left[A_{1} \cdots A_{3}\right]_{2}$ cannot recur in any line following $\varphi_{m_{2}}$ [this would contradict assumption (b)]. Therefore, just as above, there must be a $v>m_{2}$ s.t. $Q_{v-1}=\left[A_{0} \cdots A_{\varepsilon-1} C_{0} \cdots C_{m^{\prime}}\right]_{2}, Q_{v}=\left[A_{1} \cdots A_{p}\right]_{1}$, where φ_{v} is formed by (iiib) of the construction, $A_{0}=I, C_{0}=A_{s}$, $m^{\prime} \geqq 1, p<s$ (since (iiib) gives the only possibility for decreasing the

[^5]length of Q by more than 1). $\therefore C_{m^{\prime}-1} \rightarrow C_{m^{\prime}} A_{p}$. But $A_{s} \Rightarrow \omega_{1} C_{m^{\prime}-1} \omega_{2}$ (Lemma 3). $\therefore A_{s} \Rightarrow \omega_{1} C_{m^{\prime}} A_{p} \omega_{2} \Rightarrow \omega_{1} C_{m^{\prime}} \omega_{3} A_{s} \omega_{4} \Rightarrow \omega_{1} C_{m^{\prime}} \omega_{3} \varphi A_{s} B_{m} \psi \omega_{4}$. Contra., since G is assumed to be non-s.e.
\therefore there is an $m_{0}<\bar{m} \leqq m_{1}$ s.t. $Q_{m_{0}}=\left[A_{1} \cdots A_{k}\right]_{1}$
(B) Suppose $n=1$. Proof is analogous.
(C) (I). Suppose $n=2$. Suppose $j<k$. Suppose i (in Q_{q}) is 2 . Clearly there must be a $v>m_{2}$ s.t. either $Q_{v}=\left[A_{1} \cdots A_{j}\right]_{2}[$ which contradicts assumption (b)] or $Q_{v-1}=\left[A_{0} \cdots A_{j-1} C_{0} \cdots C_{m}\right]_{2}, Q_{v}=\left[A_{1} \cdots A_{p}\right]_{1}$, where φ_{v} is formed by (iiib) of the construction, $A_{0}=I, C_{0}=A_{j}$, $m \geqq 1, p<j$ [as in the second paragraph of the proof of (A)]. Suppose the latter. $\therefore C_{m-1} \rightarrow C_{m} A_{p} . \therefore A_{j} \Rightarrow \varphi C_{m} A_{p} \psi$. Furthermore, since $p<j, A_{j} \Rightarrow \varphi C_{m} \omega_{1} A_{j} \omega_{2}$.

From assumption (c) and assumption of regularity of G, it follows that φ_{q+1} can only have been formed by (iva) of the construction. $\therefore Q_{q+1}=$ $\left[A_{0} \cdots A_{j-1} D_{0} \cdots D_{t}\right]_{1}$, where $A_{0}=I, D_{0}=A_{j}, t \geqq 1 . \therefore D_{t-1} \rightarrow A_{j} D_{t}$. $\therefore A_{j} \Rightarrow \omega_{3} A_{j} D_{i} \omega_{4} . \therefore A_{j} \Rightarrow \omega_{3} \varphi C_{m} \omega_{j} A_{j} \omega_{2} D_{i} \omega_{4}$, and A_{j} is self-embedded, contrary to assumption.

Suppose that i (in Q_{q}) is 1 . By (A), there is an $m_{0}<m_{1}$ s.t. $Q_{m_{0}}=$ $\left[A_{1} \cdots A_{k}\right]_{1} . \therefore$ there is a $u<m_{0}$ s.t. either $Q_{u}=\left[A_{1} \cdots A_{j}\right]_{1}[$ which contradicts assumption (b) $]$ or $Q_{u}=\left[A_{1} \cdots A_{3}\right]_{2}$,

$$
Q_{u+1}=\left[A_{0} \cdots A_{j-1} B_{0} \cdots B_{m}\right]_{1},
$$

where φ_{u+1} is formed by (iva), $A_{0}=I, B_{0}=A_{j}, m \geqq 1, s<j$. Assuming the latter, we conclude that $A_{j} \Rightarrow \omega_{1} A_{j} \omega_{2} B_{m} \psi$, as above.

From assumption (c) and assumption of regularity of G, it follows that φ_{q} can only have been formed by (iiib). Contradiction follows as above.
(II) Suppose $n=1$. Proof is analogous.

This completes the proof. From Lemma 12 it follows readily by the same kind of reasoning as above that

Corollary. Under the assumptions of Lemma 12,
(A) if $n=2, \varphi_{m_{1}+1}$ is formed by (iva) of the construction
(B) if $n=1, \varphi_{m_{2}}$ is formed by (iiib) of the construction
(C) Q_{u} is of the form $\left[A_{1} \cdots A_{k} B_{0} \cdots B_{s}\right]_{t}\left(s \geqq 0, B_{0}=I\right)$, for u such that: (a) where $n=2$ and m_{0} is as in (A), Lemma 12, then $m_{0}<u<m_{2}$; (b) where $n=1$ and m_{3} is as in (B), Lemma 12, then $m_{1}<u<m_{3}$. Furthermore, for $m_{1}<u<m_{2}, s>0$ if $t \neq n$.
Definition 12. Let $D=\left(\varphi_{1}, \cdots, \varphi_{r}\right)$ be a derivation in G^{\prime} formed
by the construction from G. Then D^{\prime} corresponds to D if D^{\prime} is a derivation of z_{r}^{22} in G and for each $i, j, k(i<j)$ such that
(a) φ_{i} is the earliest line containing $\left[A_{1} \cdots A_{k}\right]_{1}$
(b) φ_{j} is the latest line containing $\left[A_{1} \cdots A_{k}\right]_{2}$
(c) there is no p, q s.t. $i<p<j, q<k$, and $Q_{p}=\left[A_{1} \cdots A_{q}\right]_{n}$, there is a subsequence $\left(z_{i} A_{k} \psi, \cdots, z_{j} \psi\right)$ in D^{\prime}.

Lemma 13. Let $D=\left(\varphi_{1}, \cdots, \varphi_{r}\right)$ be a derivation in G^{\prime} formed by the construction from a regular, non-s.e. G. Suppose that $Q_{1}=\left[A_{1} \cdots A_{s}\right]_{1}$, $Q_{r}=\left[A_{1} \cdots A_{s}\right]_{2}$, and there is no p, q such that $1<p<r, q<s$, $Q_{p}=\left[A_{1} \cdots A_{q}\right]_{n}$.

Then there is a derivation $D^{\prime}=\left(\varphi_{1}^{\prime}, \cdots, \varphi_{r^{\prime}}^{\prime}\right)$ corresponding to D.
Proof. Proof is by induction on the number of recurrences of symbols Q_{i} in D (i.e., the number of cycles in the derivation).
Suppose that there are no recurrences of any Q_{i} in D. It follows that there can have been no applications of (iva) in the construction of D, i.e., no pairs $Q_{i}=\left[A_{1} \cdots A_{j}\right]_{2}, Q_{i+1}=\left[A_{1} \cdots A_{k}\right]_{1}$ where $j<k$. For suppose there were such a pair. $\therefore A_{k-1} \rightarrow A_{j} A_{k}$. Also, $j>s$, or Q_{i} is repeated as Q_{r}. Clearly there is an $m>i+1$ s.t. $Q_{m}=\left[A_{1} \cdots A_{k+n}\right]_{2}$ ($n \geqq 0$). \therefore there is a $t>m$ s.t. either $Q_{t}=\left[A_{1} \cdots A_{j}\right]_{2}$ (contrary to assumption of no repetitions) or

$$
Q_{t}=\left[A_{1} \cdots A_{j+u]_{2}}, \quad Q_{t+1}=\left[A_{1} \cdots A_{j-v}\right]_{1} \quad(u, v \geqq 1),\right.
$$

where φ_{t+1} is formed by (iiib). \therefore

$$
\begin{aligned}
& A_{j+u-1} \rightarrow A_{j+u} A_{j-v} \Rightarrow A_{j+u \omega_{1} A_{k-1} \omega_{2} \rightarrow} \\
& \qquad A_{j+u \omega_{1} A_{j} A_{k} \omega_{2} \Rightarrow A_{j+u \omega_{3}} A_{j+u-1} \omega_{1} A_{k} \omega_{2},},
\end{aligned}
$$

contrary to the assumption that G is non-s.e. Similarly, there can be no applications of (iiib) in the construction of D. But now the proof for this case follows immediately by induction on the length of D.

Suppose now that the lemma is true for every derivation containing $<n$ occurrences of repeating Q 's. Suppose that D contains n such occurrences.
I.

1. Suppose that the shortest recurring Q in D is $\left[A_{1} \cdots A_{k}\right]_{2}$.
2. Select m_{1}, m_{2} s.t. $m_{1}<m_{2} ; Q_{m_{1}}=\left[A_{1} \cdots A_{k}\right]_{2}=Q_{m_{2}}$; there is no $i, m_{1}<i<m_{2}$, s.t. $Q_{i}=\left[A_{1} \cdots A_{k}\right]_{2}$; there is no $j>m_{2}$ s.t. $Q_{j}=\left[A_{1} \cdots A_{k}\right]_{2}$.
${ }^{22}$ Compare Convention 2.
3. By Lemma 12 (A), we know that there is an $m_{0}<m_{1}$ s.t. $Q_{m_{0}}=$ $\left[A_{1} \cdots A_{k}\right]_{1}$. Select m_{0} as the earliest such (there is in fact only one). By the Corollary to Lemma 12, (C), and the inductive hypothesis, there is a derivation $D_{1}=\left(z_{m_{0}} A_{k}, \cdots, z_{m_{1}}\right)^{23}$ corresponding to $\left(\varphi_{m_{0}}, \cdots, \varphi_{m_{1}}\right)$.
4. By Corollary (A), we know that

$$
\varphi_{m_{1}+1}=z_{m_{1}}\left[A_{0} \cdots A_{k-1} B_{0} \cdots B_{m}\right]_{1},
$$

where $A_{0}=I, B_{0}=A_{k}, m \geqq 1, B_{m-1} \rightarrow A_{k} B_{m}$. Obviously, there is a $v\left(m_{1}<v<m_{2}\right)$ s.t. either $Q_{v}=\left[A_{0} \cdots A_{k-1} B_{0} \cdots B_{m}\right]_{2}$ or

$$
Q_{v}=\left[A_{0} \cdots A_{k-1} B_{0} \cdots B_{m+t}\right]_{2}, Q_{v+1}=\left[A_{0} \cdots A_{k-1} B_{0} \cdots B_{m-u}\right]_{1},
$$

where $u, t>1$ and φ_{v+1} is formed by (iiib) [note Corollary (C)]. From the latter assumption we can deduce self-embedding, as above. \therefore we can select v as the largest integer $<m_{2}$ s.t. $Q_{v}=\left[A_{0} \cdots A_{k-1} B_{0} \cdots B_{m}\right]_{2}$.
5. Let t be the largest integer $\left(m_{1}+1<t<v\right)$ s.t.

$$
Q_{t}=\left[A_{0} \cdots A_{k-1} B_{0} \cdots B_{m-u}\right]_{i}, \quad u>0 .
$$

Suppose that $i=1$. But φ_{t+1} must be formed by (iia) or (iiia) of the construction. $\therefore u=1$ and $B_{m-1} \rightarrow B_{m} C$, contrary to assumption of regularity, since $B_{m-1} \rightarrow A_{k} B_{m}$.
$\therefore i=2$, and $Q_{t+1}=\left[A_{0} \cdots A_{k-1} B_{0} \cdots B_{m+n}\right]_{1}(n \geqq 0)$, where φ_{t+1} is formed by (iva) of the construction. \therefore

$$
B_{m+n-1} \rightarrow B_{m-u} B_{m+n} \Rightarrow \omega_{1} B_{m-1} \omega_{2} B_{m+n} \rightarrow \omega_{1} A_{k} B_{m} \omega_{2} B_{m+n}
$$

Suppose $n=0$. Then $B_{m-1} \rightarrow B_{m-u} B_{m}$, so that, by regularity, $B_{m-u}=$ $A_{k} . \therefore Q_{l}=\left[A_{1} \cdots A_{k}\right]_{2}$, contrary to assumption in step 2.
$\therefore n>0 . \therefore B_{m} \Rightarrow \omega_{3} B_{m+n-1} \omega_{4} . \therefore B_{m} \Rightarrow \omega_{3} \omega_{1} A_{k} B_{m} \omega_{2} B_{m+n} \omega_{4}$, contra. (s.e.).
6. \therefore there is no t such as that postulated in step 5. Consequently ($\varphi_{m_{1}+1}, \cdots, \varphi_{v}$) meets the assumption of the inductive hypothesis ${ }^{24}$ and there is a derivation $D_{2}=\left(z_{m_{1}+1} B_{m}, \cdots, z_{m_{v}}\right)^{25}$ corresponding to $\left(\varphi_{m_{1}+1}, \cdots, \varphi_{v}\right)$.
7. Since v was selected in step 4 to be maximal, it follows that φ_{v+1} cannot be formed by (iva), by reasoning similar to that involved in
${ }^{23}$ Recall that $z_{m_{1}}=z_{m_{0}} z_{m_{1}}^{m_{0}+1}$; i.e., there is a derivation $\left(A_{k}, \cdots, z_{m_{1}}^{m 0+1}\right)$.
${ }^{24}$ From nonexistence of such a t it follows at once that for u such that $m_{i}<$ $u<v, Q_{u}=\left[A_{0} \cdots A_{k-1} B_{0} \cdots B_{m} C_{0} \cdots C_{\bar{m}}\right]_{i}\left(\bar{m} \geqq 0, C_{0}=I\right)$.
${ }^{25}$ That is, there is a derivation ($B_{m}, \cdots, z_{m_{v}}^{m_{1}+2}$).
step 4. By regularity assumption, it cannot have been formed by (iib) or (iiib) of the construction, since $B_{m-1} \rightarrow A_{k} B_{m} . \therefore$

$$
Q_{v+1}=\left[A_{0} \cdots A_{k-1} B_{0} \cdots B_{m-1}\right]_{2} .
$$

8. Suppose $m=1$, so that $Q_{v+1}=\left[A_{1} \cdots A_{k}\right]_{2} . \therefore v+1=m_{2}$, by assumption of step 2 , and $A_{k} \rightarrow A_{k} B_{1}$. Let $D_{2}{ }^{\prime}$ be the derivation formed from D_{2} (cf. step 6) by deleting initial $z_{m_{1}+1}$ from each line. Let

$$
\left(\psi_{1}, \cdots, \psi_{p}\right)=D_{1}{ }^{*} D_{2}^{\prime}
$$

(cf. Definition $11 ; D_{1}$ as in step 3). Clearly $D_{3}=\left(z_{m_{0}} A_{k}, \psi_{1}, \cdots, \psi_{p}\right)$ is a derivation corresponding to ($\varphi_{m_{0}}, \cdots, \varphi_{m_{2}}$).

9 . Suppose $m \geqq 2$. By assumption that G is non-s.e., and that v is maximal (in step 4) we can show that φ_{v+2} must be formed by (iib) of the construction (all other cases lead to contradiction). \therefore

$$
Q_{v+2}=\left[A_{0} \cdots A_{k-1} B_{0} \cdots B_{m-2} C\right]_{1}, \quad B_{m-2} \rightarrow B_{m-1} C .
$$

As above, we can find a v_{1} which is the largest integer $<m_{2}$ s.t. $Q_{v_{1}}=$ $\left[A_{0} \cdots A_{k-1} B_{0} \cdots B_{m-2} C\right]_{2}$ and s.t. $\left(\varphi_{v+2}, \cdots, \varphi_{v_{1}}\right)$ meets the inductive hypothesis. \therefore there is a derivation $D_{4}=\left(z_{v+2} C, \cdots, z_{v_{1}}\right)$ corresponding to ($\varphi_{v+2}, \cdots, \varphi_{v_{1}}$).
10. Suppose $m=2 . \therefore$

$$
B_{m-2} \rightarrow B_{1} C, \quad v_{1}+1=m_{2}, \quad Q_{v_{1}+1}=\left[A_{1} \cdots A_{k}\right]_{2}
$$

(as above). Let $D_{4}{ }^{\prime}$ be the derivation formed from D_{4} by deleting initial z_{v+2} from each line. Let $\left(\psi_{1}, \cdots, \psi_{p}\right)$ be as in step 8 . Let ($\left.\chi_{1}, \cdots, \chi_{q}\right)=$ $\left(z_{m_{0}} B_{1}, \psi_{1}, \cdots, \psi_{p}\right)^{*} D_{4}^{\prime}$. Clearly $D_{5}=\left(z_{m_{0}} A_{k}, \chi_{1}, \cdots, \chi_{q}\right)$ is a derivation corresponding to ($\varphi_{m_{0}}, \cdots, \varphi_{m_{2}}$).
11. Similarly, whatever m is, we can find a derivation

$$
\Delta=\left(z_{m_{0}} A_{k}, \cdots, z_{m_{2}}\right)
$$

corresponding to ($\varphi_{m_{0}}, \cdots, \varphi_{m_{2}}$).
12. Consider now the derivation D_{6} formed by deleting from the original D the lines $\varphi_{m_{1}+1}, \cdots, \varphi_{m_{2}}$ and the medial segment $z_{m_{2}}^{m_{1}+1}$ from each later line. That is, $D_{6}=\left(\psi_{1}, \cdots, \psi_{t}\right)\left(t=r-\left(m_{2}-m_{1}\right)\right)$, where for $i \leqq m_{1}, \psi_{i}=\varphi_{i}$, and for $i>m_{1}, \psi_{i}=z_{m_{1}} z_{m_{2}-m_{1}+i}^{m_{2}+1} Q_{m_{2}-m_{1}+i}$. By inductive hypothesis, there is a derivation D_{7} corresponding to D_{6}.

In steps 2 and $3, m_{0}, m_{1}, m_{2}$ were chosen so that $\varphi_{m_{0}}$ contains the earliest occurrence of $Q_{m_{0}}=\left[A_{1} \cdots A_{k}\right]_{1}$, and $\varphi_{m_{2}}$ the latest occurrence of $Q_{m_{2}}=Q_{m_{1}}=\left[A_{1} \cdots A_{k}\right]_{2}$, and so that no occurrences of $Q_{m_{1}}$ occur
between $\varphi_{m_{1}}$ and $\varphi_{m_{2}} . \therefore$ in $D_{6}, \psi_{m_{0}}$ contains the earliest occurrence of $Q_{m_{0}}$ and $\psi_{m_{1}}$ the latest occurrence of $Q_{m_{1}}$. Furthermore, by Corollary (C), there is no Q shorter than $Q_{m_{0}}$ between $\varphi_{m_{0}}$ and $\varphi_{m_{1}} . \therefore$ by inductive hypothesis and the definition of correspondence, it follows that D_{7} contains a subsequence $\bar{D}_{7}=\left(z_{m_{0}} A_{k} \bar{\psi}, \cdots, z_{m_{1}} \bar{\psi}\right)$. But step 11 guarantees us a derivation $\Delta=\left(z_{m_{0}} A_{k}, \cdots, z_{m_{2}}\right)$ corresponding to ($\varphi_{m_{0}}, \cdots, \varphi_{m_{2}}$). We now construct D_{8} by replacing \bar{D}_{7} in D_{7} by $\bar{\Delta}=\left(z_{m_{0}} A_{k} \bar{\psi}, \cdots, z_{m_{2}} \bar{\psi}\right)$, formed by suffixing $\bar{\psi}$ to each line of Δ, and inserting $z_{m_{2}}^{m_{0}+1}$ after $z_{m_{0}}$ in all lines of D_{7} following the subsequence \bar{D}_{7}.

Clearly D_{8} corresponds to D, which is the required result in case the shortest recurring Q is of the form $[\cdots]_{2}$.
II.

An analogous proof can be given for the case in which the shortest recurring Q is of the form $[\cdots]_{1}$.

We have shown that the lemma holds for derivations with no recursions, and that it holds of a derivation with n occurrences of recurring Q 's on the assumption that it holds for all derivations with $<n$ such occurrences. \therefore it is true of all derivations.

A corollary follows immediately.
Corollary. If G^{\prime} is formed from G by the construction and $D^{\prime}=$ $\left([A]_{1}, \cdots, x[A]_{2}\right)$ is a derivation in G^{\prime}, then there is a derivation $D=$ (A, \cdots, x) in G.
From this result and Lemma 11, we draw the following conclusion.
Theorem 10. If G^{\prime} is formed from G by the construction, then there is a derivation (S, \cdots, z) in G if and only if there is a derivation ($[S]_{1}$, $\left.\cdots, z[S]_{2}\right)$ in G^{\prime}.
That is, if $[S]_{1}$ in G^{\prime} plays the role of S in G, then G and G^{\prime} are equivalent if we emend the construction by adding the rule $Q_{1} \rightarrow a$ wherever there are $Q_{2}, \cdots, Q_{n}(n \geqq 2)$ such that $Q_{1} \rightarrow a Q_{2}$ and $Q_{2} \rightarrow Q_{3} \rightarrow \cdots \rightarrow$ Q_{n}, where $Q_{n}=[S]_{2}, Q_{i}$ is of the form $[\cdots]_{2}$ for $1<i \leqq n$, and Q_{1} is of the form $[\cdots]_{1}$.

But in the grammar thus formed all rules are of the form $A \rightarrow a B$ (where a is I unless the rule was formed by step (i) of the construction) or $A \rightarrow a$. It is thus a type 3 grammar, and the language L_{G} generated by G could have been generated by a finite state Markov source (cf. Theorem 6) with many vacuous transitions. But for every such source, there is an equivalent source with no identity transitions (cf. Chomsky and Miller, 1958). Therefore L_{G} could have been generated by a finite Markov source of the usual type. Obviously, every type 3 grammar is
non-s.e. (the lines of its A-derivations are all of the form $x B$). Consequently:

Theorem 11. If L is a type 2 language, then it is not a type 3 (finite state) language if and only if all of its grammars are self-embedding.

Among the many open questions in this area, it seems particularly important to try to arrive at some characterization of the languages of these ${ }^{26}$ various types ${ }^{27}$ and of the languages that belong to one type but not the next lower type in the classification. In particular, it would be interesting to determine a necessary and sufficient structural property that marks languages as being of type 2 but not type 3 . Even given Theorem 11, it does not appear easy to arrive at such a structural characterization theorem for those type 2 languages that are beyond the bounds of type 3 description.

Received: October 28, 1958.

References

Сномsky, N. (1956). Three models for the description of language. IRE Trans. on Inform. Theory IT-2, No. 3, 113-124.
Сhomsky, N. (1957). "Syntactic Structures." Mouton and Co., The Hague.
Chomsky, N., and Miller, G. A. (1958). Finite state languages. Inform. and Control 1, 91-112.
Davis, M. (1958). "Computability and Unsolvability." McGraw-Hill, New York.
Harris, Z. S. (1952a). Discourse analysis. Language 28, 1-30. $^{\text {a }}$
Harris, Z. S. (1952b). Discourse analysis: A sample text. Language 28, 474-494.
Harris, Z. S. (1957). Cooccurrence and transformation in linguistic structure. Language 33, 283-340.
Kleene, S. C. (1956). Representation of events in nerve nets. In "Automata Studies" (C. E. Shannon and J. MeCarthy, eds.), pp. 3-40. Princeton Univ. Press, Princeton, New Jersey.
Post, E. L. (1944). Recursively enumerable sets of positive integers and their decision problems. Bull. Am. Math. Soc. 50, 284-316.
Schützenberger, M. P. (1957). Unpublished paper.
${ }^{26}$ And several other types. In particular, investigations of this kind will be of limited significance for natural languages until the results are extended to transformational grammars. This is a task of considerable difficulty for which investigations of the type presented here are a necessary prerequisite.
${ }^{27}$ As, for example, the results cited in footnote 4 characterize finite state languages.

[^0]: ${ }^{4}$ In Chomsky and Miller (1958), a structural characterization theorem is stated for languages that can be enumerated by finite automata, in terms of the cyclical structure of these automata. The basic characterization theorem for finite automata is proven in Kleene (1956).

[^1]: ${ }^{5}$ Note that a terminated derivation need not terminate in a string of V_{T} (i.e., it may be "blocked" at a nonterminal string), and that a derivation ending with a string of V_{T} need not be terminated (if, e.g., the grammar contains such rules as $a b \rightarrow c d)$.
 ${ }^{6}$ Thus the terminal language L_{G} consists only of those strings of V_{T} which are derivable from \#S\# but which cannot head a derivation (of $\geqq 2$ lines).

[^2]: ${ }^{8}$ This associated tree might not be unique, if, for example, there were a derivation containing the successive lines $\varphi_{1} A B \varphi_{2}, \varphi_{1} A \psi B \varphi_{2}$, since this step in the derivation might have used either of the rules $A \rightarrow A \psi$ or $B \rightarrow \psi B$. It is possible to add conditions on G that guarantee uniqueness without affecting the set of generated languages.

[^3]: ${ }^{10}$ Alternatively, Σ can be considered as a finite automaton, and the generated finite state language, as the set of input sequences that carry it from S_{0} to a first recurrence of S_{0}. Cf. Chomsky and Miller (1958) for a discussion of properties of finite state languages and systems that generate them from a point of view related to that of this paper. A finite state language is essentially what is called in Kleene (1956) a "regular event."

[^4]: ${ }^{13}$ Since the nonterminal symbols of G and G^{\prime} are represented in different forms, we can use the symbols \rightarrow and \Rightarrow for both G and G^{\prime} without ambiguity.

[^5]: ${ }^{18}$ We continue to employ Convention 2, above.
 ${ }^{19}$ That is, $Q_{m_{1}}=Q_{m_{2}}$ is the shortest Q of D that repeats.
 ${ }^{20}$ That is, Q_{q} is the shortest Q of this form between $\varphi_{m_{1}}$ and $\varphi_{m_{2}}$.
 ${ }^{21}$ That is, Q_{q} is not shorter than $Q_{m_{1}}=Q_{m_{2}}$.

