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A grammar can be regarded as a device that enumerates the sen- 
tences of a language. We study a sequence of restrictions that limit 
grammars first to Turing machines, then to two types of system from 
which a phrase structure description of the generated language can 
be drawn, and finally to finite state IV[arkov sources (finite auto- 
mata). These restrictions are shown to be increasingly heavy in the 
sense that the languages that can be generated by grammars meeting 
a given restriction constitute a proper subset of those that can be 
generated by grammars meeting the preceding restriction. Various 
formulations of phrase structure description are considered, and the 
source of their excess generative power over finite state sources is 
investigated in greater detail. 

SECTION 1 

A language is a collection of sentences of finite length all constructed 

from a finite alphabet (or, where our concern is limited to syntax, a finite 

vocabulary) of symbols. Since any language L in which we are likely to 

be interested is an infinite set, we can investigate the structure of L only 

through the study of the finite devices (grammars) which are capable of 

enumerating its sentences. A grammar of L can be regarded as a function 

whose range is exactly L. Such devices have been called "sentence-gen- 

erating grammars. ''z A theory of language will contain, then, a specifica- 

* This work was supported in part by the U. S. Army (Signal Corps), the U. S. 
Air Force (Office of Scientific Research, Air Research and Development Com- 
mand), and the U. S. Navy (Office of Naval Research). This work was also sup- 
ported in part by the Transformations Project on Information Retrieval of the 
University of Pennsylvania. I am indebted to George A. Miller for several im- 
portant observations about the systems under consideration here, and to I~. B. 
Lees for material improvements in presentation. 

i Following a familiar technical use of the term "generate," cf. Post (1944). 
This locution has, however, been misleading, since it has erroneously been inter- 
preted as indicating that such sentence-generating grammars consider language 
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t ion of the class F of functions from which grammars  for part icular  lan- 
guages m a y  be drawn. 

The  weakest  condit ion t h a t  can significantly be placed on grammars  is 
t h a t  F be included in the  class of general, unrestr ic ted Tur ing  machines. 
The  strongest,  mos t  l imiting condit ion tha t  has been suggested is t h a t  
each g r ammar  be a finite Markov ian  source (finite automaton) .2  

The  lat ter  condit ion is known to  be too strong;  if F is l imited in this 
way  it will not  contain a g r a m m a r  for English (Chomsky,  1956). The  
former  condition, on the other  hand,  has no interest. We learn noth ing  
about  a natura l  language f rom the fact  tha t  its sentences can be effec- 
t ively displayed, i.e., t h a t  t h e y  const i tute  a reeursively enumerable  set. 
The  reason for this is dear .  Along with a specification of the class F of 
grammars ,  a theory  of language mus t  also indicate how, in general, rele- 
v a n t  s t ructural  informat ion can be obtained for a par t icular  sentence 
generated by  a par t icular  g rammar .  T h a t  is, the  theory  mus t  specify a 
class ~ of "s t ruc tura l  descript ions" and a funct ional  • such t h a t  given 
f 6 F and x in the  range of f, ~(f ,x)  6 Z is a s t ructural  description of x 
(with respect to  the g r a m m a r  f )  giving certain informat ion which will 
facili tate and serve as the basis for an account  of how x is used and un-  
ders tood b y  speakers of the language whose g r ammar  is f ;  i.e., which will 
indicate whether  x is ambiguous,  to  wha t  other  sentences it is s t ructura l ly  
similar, etc. These empirical conditions tha t  lead us to  characterize F 
in one w a y  or another  are of critical importance.  T h e y  will not  be fur ther  
discussed in this paper,  3 bu t  it is clear t ha t  we will not  be able to  de- 

from the point of view of the speaker rather than the hearer. Actually, such gram- 
mars take a completely neutral point of view. Compare Chomsky (1957, p. 48). 
We can consider a grammar of L to be a function mapping the integers onto L, 
order of enumeration being immaterial (and easily specifiable, in many ways) to 
this purely syntactic study, though the question of the particular "inputs" re- 
quired to produce a particular sentence may be of great interest for other inves- 
tigations which can build on syntactic work of this more restricted kind. 

2 Compare Definition 9, See. 5. 
Except briefly in §2. In Chomsky (1956, 1957), an appropriate ~ and ~ (i.e., an 

appropriate method for determining structural information in a uniform man- 
ner from the grammar) are described informally for several types of grammar, 
including those that will be studied here. It  is, incidentally, important to recog- 
nize that a grammar of a language that succeeds in enumerating the sentences 
will (although it is far from easy to obtain even this result) nevertheless be of 
quite limited interest unless the underlying principles of construction are such 
as to provide a useful structural description. 
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velop an adequate formulation of ¢ and % if the elements of F are speci- 
fied only as such "unstructured" devices as general Turing machines. 

Interest in structural properties of natural language thus serves as an 
empirical motivation for investigation of devices with more generative 
power than finite automata, and more special structure than Turing 
machines. This paper is concerned with the effects of a sequence of in- 
creasing heavy restrictions on the class F which limit it first to Turing 
machines and finally to finite automata and, in the intermediate stages, 
to devices which have linguistic significance in that generation of a sen- 
tence automatically provides a meaningful structural description. We 
shall find that these restrictions are increasingly heavy in the sense that 
each limits more severely the set of languages that can be generated. 
The intermediate systems are those that assign a phrase structure de- 
scritption to the resulting sentence. Given such a classification of special 
kinds of Turing machines, the main problem of immediate relevance to 
the theory of language is that of determining where in the hierarchy of 
devices the grammars of natural languages lie. It would, for example, be 
extremely interesting to know whether it is in principle possible to con- 
struct a phrase structure grammar for English (even though there is 
good motivation of other kinds for not doing so). Before we can hope 
to answer this, it will be necessary to discover the structural properties 
that characterize the languages that can be enumerated by grammars of 
these various types. If the classification of generating devices is reason- 
able (from the point of view of the empirical motivation), such purely 
mathematical investigation may provide deeper insight into the formal 
properties that distinguish natural languages, among all sets of finite 
strings in a finite alphabet. Questions of this nature appear to be quite 
difficult in the case of the special classes of Turing machines that have 
the required linguistic significance. 4 This paper is devoted to a prelimi- 
nary study of the properties of such special devices, viewed as grammars. 

It should be mentioned that there appears to be good evidence that 
devices of the kinds studied here are not adequate for formulation of a 
full grammar for a natural language (see Chomsky, 1956, §4; 1957, 
Chapter 5). Left out of consideration here are what have elsewhere been 

4 In Chomsky and Miller (1958), a s t ructural  character izat ion theorem is 
s ta ted for languages that  can be enumerated by finite automata,  in terms of the  
cyclical s t ructure  of these automata .  The basic character izat ion theorem for 
finite automata is proven in Kleene (1956). 
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called "grammatical transformations" (Harris, 1952a, b, 1957; Chom- 
sky, 1956, 1957). These are complex operations that convert sentences 
with a phrase structure description into other sentences with a phrase 
structure description. Nevertheless, it appears that devices of the kind 
studied in the following pages must function as essential components in 
adequate grammars for natural languages. Hence investigation of these 
devices is important as a preliminary to the far more difficult study of 
the generative power of transformational grammars (as well as, nega- 
tively, for the information it should provide about what it is in natural 
language that makes a transformational grammar necessary). 

SECTION 2 

A phrase structure grammar consists of a finite set of "rewriting rules" 
of the form ~ --* ¢, where e and ~b are strings of symbols. It contains a 
special "initial" symbol S (standing for "sentence") and a boundary 
symbol # indicating the beginning and end of sentences. Some of the 
symbols of the grammar stand for words and morphemes (grammatically 
significant parts of words). These constitute the "terminal vocabulary." 
Other symbols stand for phrases, and constitute the "nonterminal vo- 
cabulary" (S is one of these, standing for the "longest" phrase). Given 
such a grammar, we generate a sentence by writing down the initial 
string #S#, applying one of the rewriting rules to form a new string 
#~1# (that is, we might have applied the rule #S# --~ #el# or the rule 
S --~ ¢~ ), applying another rule to form a new string #e2#, and so on, until 
we reach a string #~# which consists solely of terminal symbols and 
cannot be further rewritten. The sequence of strings constructed in this 
way will be called a "derivation" of #e~#. 

Consider, for example, a grammar containing the rules: S ~ AB, 
A --~ C, CB ~ Cb, C --> a, and hence providing the derivation D = 
(#S#, #AB#, #CB#, #Cb#, #ab#). We can represent D diagrammatically 
in the form 

S 
/ \  

A B 
I I (1) 

C b 

I f  appropriate restrictions are placed on the form of the rules m --~ ~ (in 
particular, the condition that ~ differ from m by replacement of a single 
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symbol of ~ by  a non-null string), it will always be possible to associate 
with a derivation a labeled tree in the same way. These trees can be 
taken as the structural descriptions discussed in Sec. 1, and the method 
of constructing them, given a derivation, will (when stated precisely) 
be a definition of the functional ~. A substring x of the terminal string of 
a g i v e n  derivation will be called a phrase of type A just in case it can 
be traced back to a point labeled A in the associated tree (thus, for ex- 
ample, the substring enclosed within the boundaries is a phrase of the 
type "sentence") .  If in the example given above we interpret A as Noun 
Phrase, B as Verb Phrase, C as Singular Noun, a as John, and b as comes, 
we can regard D as a derivation of John comes providing the structural 
description (1), which indicates tha t  John is a Singular Noun and a 
Noun Phrase, that  comes is a Verb Phrase, and that  John comes is a 
Sentence. Grammars containing rules formulated in such a way that  trees 
can be associated with derivations will thus have a certain linguistic 
significance in that  they provide a precise reconstruction of large parts 
of the traditional notion of "parsing" or, in its more modern version, 
immediate constituent analysis. (Cf. Chomsky (1956, 1957) for further 
]iseussion.) 

The basic system of description that  we shall consider is a system G 
of the following form: G is a semi-group under concatenation with strings 
in a finite set V of symbols as its elements, and I as the identi ty element. 
V is called the "vocabulary"  of G. V = Vr u VN(Vr, VN disjoint), where 
Vr is the "terminal vocabulary" and VN the "nonterminal  vocabulary." 
Vr contains I and a "boundary"  element #. V~ contains an element S 
(sentence). A two-place relation -~ is defined on elements of G, read 
"can be rewritten as." This relation satisfies the following conditions: 

Axiom 1. --* is irreflexive. 
AXIOM 2. A C VN if and only if there are ~,, ¢, co such that  ~,A¢ --+ ~co¢. 
Axiom 3. There are no ~, ¢, co such that  ~ --+ ¢#co. 
Axlo~  4. There is a finite set of pairs (Xi, col), " '" , (x~, cos) such 

that  for all ~, ¢, ~ --~ ¢ if and only if there are ~1, ~2, and j _= n such 
that  ~ = ~ixj~2 and ¢ = ~coj~2 • 

Thus the pairs (xJ ,  coJ) whose existence is guaranteed by Axiom 4 
give a finite specification of the relation --~. In other words, we may think 
of the grammar as containing a finite number of rules x; --~ coi which 
completely determine all possible derivations. 

The presentation will be greatly facilitated by the adoption of the 
following notational convention (which was in fact followed above).  
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CONVENTION 1: We shall use capital letters for strings in V~ ; small 
Latin letters for strings in Vr ; Greek letters for arbi t rary strings; early 
letters of all alphabets for single symbols (members of V);  late letters 
of all alphabets for arbi trary strings. 

DEFINITION 1. (91, " '"  , 9n)(n > 1) is a ¢J-derivation o f~  if ~b = ~i, 
= 9~, and 9~-+9i+1(1 =< i < n).  
DEFINITION 2. A 9-derivation is terminated if it is not a proper initial 

subsequence of any 9-derivation. ~ 
DEFINITION 3. The terminal language La generated by G is the set of 

strings x such that  there is a terminated #S#-derivation of x. 6 
DEFINITION 4. G is equivalent to G* if La = La , .  
DEFINITION 5. 9 ~ ~b if there is a 9-derivation of ~. 

(which is the ordinary ancestral of --~) is thus a partial ordering of 
strings in G. These notions appear, in slightly different form, in Chomsky 

(1956, 1957). 
This paper will be devoted to a study of the effect of imposing the 

following additional restrictions on grammars of the type described 

above. 
RESTRICTION i. If 9 --* ~b, then there are A, 91,92, ~ such that 9 -- 

91A92, ~b = 91w92, and ~ ~ I. 
RESTRICTION 2. If 9 -~ ~b, then there are A, 9J, 92, ~ such that 9 = 

91A92, ~b -- 91~92, ~0 # I, but A -~ w. 
RESTRICTION 3. If 9 -~ #, then there are A, 91,92, w, a, B such that 

9- 91A92,~b- 91~92,~0 ~I,A--~,but¢o ~- aBor~o = a. 

The nature of these restrictions is clarified by comparison with Axiom 

4, above. Restriction 1 requires that the rules of the grammar [i.e., the 

minimal pairs (x~, w~) of Axiom 4] all of be the form 91A92 --+ 91~q~2, 

where A is a single symbol and w ~ I. Such a rule asserts that A -~ 

in the context 91--~2 (which may be null). Restriction 2 requires that 

the limiting context indeed be null; that is, that the rules all be of the 

form A -+ o~, where A is a single symbol, and that each such rule may be 
applied independently of the context in which A appears. Restriction 3 

5 Note that a terminated derivation need not terminate in a string of Vr (i.e., 
it may be "blocked" at a nonterminal string), and that a derivation ending with 
a string of VT need not be terminated (if, e.g., the grammar contains such rules 
as ab - ~  cd) .  

6 Thus the terminal  language LG consists only of those str ings of Vr which are 
derivable from #S# but  which cannot  head a der ivat ion (of >2 lines). 
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limits the rules to  the form A ---> aB or A --+ a (where A,B  are single 
nonterminal  symbols,  and a is a single terminal  symbol) .  

DEFINITION 6. For  i = 1, 2, 3, a type i grammar is one meet ing restric- 
t ion i, and a type i language is one with a type  i g rammar .  A type 0 gram- 
mar (language) is one t h a t  is unrestr icted.  

T y p e  0 g rammars  are essentially Tur ing machines;  type  3 grammars ,  
finite au tomata .  T y p e  1 and 2 g rammars  can be interpreted as systems 
of phrase s t ructure  description. 

SECTION 3 

Theorem 1 follows immedia te ly  f rom the definitions. 
THEOREM 1. For  bo th  g rammars  and  languages, type  0 D type  1 

type  2 ___ type  3. 
The  following is, fur thermore,  well known. 
TtIEOREM 2. E v e r y  recursively enumerable  set of strings is a type  0 

language (and conversely) ,  v 
T h a t  is, a g r a m m a r  of t ype  0 is a device with the generat ive power of a 

Tur ing  machine.  The  theory  of t ype  0 g rammars  and type  0 languages 
is thus  pa r t  of a rapidly  developing branch  of ma themat ics  (recursive 
funct ion theory ) .  Conceptual ly ,  at  least, the theory  of g r a m m a r  can be 
viewed as a s tudy  of special classes of recursive functions. 

THEOREM 3. E a c h  type  1 language is a decidable set of strings. 7~ 
T h a t  is, given a t ype  1 g r a m m a r  G, there is an  effective procedure for 

determining whether  an  a rb i t ra ry  string x is in the language enumera ted  
by  G. This follows f rom the fact  t h a t  if ¢~, ~+1 are successive lines of a 
derivat ion produced by  a type  1 g rammar ,  then  ~+1 cannot  contain  
fewer symbols  t h a n  ~ ,  since ~+1 is formed f rom ~ by  replacing a single 
symbol  A of ~ b y  a non-null  str ing ~. Clearly any  string x which has a 

7 See, for example, Davis (1958, Chap. 6, §2). I t  is easily shown that the further 
structure in type 0 grammars over the combinatorial systems there described does 
not affect this result. 

7~ But not conversely. For suppose we give an effective enumeration of type 1 
grammars, thus enumerating type 1 languages as L1, L~ , - . . .  Let sl,s~ ,..- be 
an effective enumeration of all finite strings in what we can assume (without 
restriction) to be the common, finite alphabet of L1,L2,--- . Given the index oi 
a language in the enumeration L~ ,L2 ,.-. , we have immediately a decision proce- 
dure for this language. Let M be the "diagonal" language containing just those 
strings sl such that si@ Li. Then M is a decidable language not in the enumera- 
tion. 

I am indebted to Hilary Putnam for this observation. 
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#S#-derivation, has a #S#-derivation in which no line repeats, since lines 
between repetitions can be deleted. Consequently, given a grammar G 
of type 1 and a string x, only a finite number of derivations (those with 
no repetitions and no lines longer than x) need be investigated to deter- 
mine whether x C Lo.  

We see, therefore, that  Restriction 1 provides an essentially more 
limited type of grammar than type 0. 

The basic relation -~ of a type 1 grammar is specified completely 
by a finite set of pairs of the form (¢1A@~, @~¢~). Suppose that  ~ = 
ax • • • a~ .  We can then associate with this pair the element 

A 

(T 1 O~2 • • • O / m _  1 0 / m  

(2) 

Corresponding to any derivation D we can construct a tree formed from 
the elements (2) associated with the transitions between successive lines 
of D, adding elements to the tree from the appropriate node as the 
derivation progresses, s We can thus associate a labeled tree with each 
derivation as a structural description of the generated sentence. The re- 
striction on the rules ~ -+ ~ which leads to type 1 grammars thus has a 
certain linguistic significance since, as pointed out in Sec. 1, these gram- 
mars provide a precise reconstruction of much of what is traditionally 
called "parsing" or "immediate constituent analysis." Type 1 grammars 
are the phrase structure grammars considered in Chomsky (1957, 
Chap. 4). 

SECTION 4 

LEMMA 1. Suppose that  G is a type 1 grammar, and X , B  are particu- 
lar strings of G. Let G' be the grammar formed by adding X B  ~ B X  
to G. Then there is a type 1 grammar G* equivalent to G'. 

P~ooF. Suppose that  X = A1 • • • An.  Choose C1, • • • , Cn+l new and 
distinct. Let Q be the sequence of rules 

8 This associated tree might not be unique, if, for example, there were a deriva- 
tion containing the successive lines ,p1AB~,2, ~IACB~2, since this step in the deriva- 
tion might have used either of the rules A --~ A¢ or B --~ CB. It is possible to add 
conditions on G that guarantee uniqueness without affecting the set of generated 
languages. 
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A1 "'" A n B - ~  C1A2 "'" A,~B 
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C1 . . .  C~B 

BC2 . . .  Cn+l 

BA1 " "  A,~ 

where the left-hand side of each rule is the right-hand side of the im- 
mediately preceding rule. Let G* be formed by adding the rules of Q to 
G. It is obvious that if there is a #S#-derivation of x in G* using rules of 
Q, then there is a #S#-derivation of x in G* in which the rules are ap- 
plied only in the sequence Q, with no other rules interspersed (note that 
x is a terminal string). Consequently the only effect of adding the rules 
of Q to G is to permit a string ~,XB~ to be rewritten ~BX¢,  and La.  
contains only sentences of L~,. It is clear that La* contains all the sen- 
tences of Lo, and that G* meets Restriction 1. 

By a similar argument it can easily be shown that type 1 languages 
are those whose grammars meet the condition that if ~ --~ ~b, then ~b is 
at least as long as ~. That is, weakening Restriction 1 to this extent will 
not increase the class of generated languages. 

LEMMA 2. Let L be the language containing all and only the sentences 
of the form #a~bma%'~ccc#(m,n ~ 1). Then L is a type 1 language. 

PRoof. Consider the grammar G with Vr  = la,b,c,I,#}, 

VN = {S, $1 , $2, A, .4, B,/~, C, D, E, F}, 

and the following rules: 
(I) (a) S ~ CDS~S2F 

(b) S~ -+ S:S~ 

(c) [S2B ---> B B J  

(d) $1 "-+ S1S~ 
~Sl u =---+ AB~ 

( e )  [ S I A  ---+ A A /  
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{CDA --+ CE~A 
( I I )  (a)  ICDB --+ C E B B  S 

(b) [CE~ ~ ~CE J 
(c) E ~  -~ ~Ea 
(d)  E a #  --+ D a #  
(e) ~ --~ D a  

( I I I )  CDFa ~ a C D F  

(IV) (a) ~B, 3 -~ bJ 

~CDF#---+ CDc#] 
(b)  ~CDc ~ Ccc 

LCc -~ cc J 
where a, f~ range over {A, B, F}. 

I t  can now be determined tha t  the only #S#-derivat ions of G t h a t  
te rminate  in strings of VT are produced in the following manner :  

(1) the rules of ( I )  are applied as follows: (a) once, (b) m - 1 t imes 
for some m = 1, (c) m times, (d) n --  1 t imes for some n => 1, and (e) 
n times, giving 

#CDo~, . . .  ,~,,+,,F# 

w h e r e a t  = A f o r i ~ n , a ~ =  B f o r i > n  
(2) the rules of ( I I )  are applied as follows: (a)  once and (b)  once, 

giving 

#alCEal . . .  ,~,~+mF# 9 

(c) n + m times and (d)  once, giving 

#alCa~ . . .  o~n+~FDal# 

(e) n + m times, giving 

#alCDa~ . . .  ol~Fal# 

(3) the rules of ( I I )  are applied, as in (2),  n + m - 1 more  times, 
giving 

#al "'" a,~+~CDFal . . .  a,~+,~# 

9 Where here and henceforth, a~ = fi~ if a~ = A, ~ = /~ if a~ = B. Note thut 
use of rules of the type of (II), (b), (c), (e), and (III) is justified by Lemma 1. 
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(4) the rule ( I I I )  is applied n + m times, giving 

#~ "'" ~,~+,~1 "'" a,~+,~CDF# 

(5) the rules of (IV) are applied, (a) 2 (n + m) times, (b) once, 
giving 

#anb ma % '%cc# 

Any other sequence of rules (except for a certain freedom in point of 
application of [IVa]) will fail to produce a derivation terminating in a 
string of Vr.  Notice that  the form of the terminal string is completely 
determined by  step (1) above, where n and m are selected. Rules ( I I )  
and (III)  are nothing but  a copying device that  carries any string of the 
from #CDXF# (where X is any string of A's and B's) to the correspond- 
ing string #XXCDF#, which is converted by  (IV) into terminal form. 

By  Lemma 1, there is a type 1 grammar G* equivalent to G, as was 
to be proven. 

TI~EOREM 4. There are type 1 languages which are not type 2 lan- 
guages. 

PRooF. We have seen that  the language L consisting of all and only 
the strings #a%'~a%%cc# is a type 1 language. Suppose tha t  G is a type 
2 grammar of L. We can assume for each A in the vocabulary of G that  
there are infinitely many x's such that  A ~ x (otherwise A can be elimi- 
nated from G in favor of a finite number of rules of the form B -+ ~lz~ 
whenever G contains the rule B --~ ~1A~2 and A ~ z). L contains intl- 
nitely many sentences, but  G contains only finitely many  symbols. There- 
fore we can find an A such that  for infinitely many sentences of L there 
is an #S#-derivation the next-to-last line of which is of the form xAy 
(i.e., A is its only nonterminal symbol). From among these, select a 
sentence s = #a~b'~a'b'%cc# such that  m -t- n > r, where al . . .  an is 
the longest string z such that  A --+ z (note tha t  there must  be a z such 
tha t  A -+ z, since A appears in the next-to-last line of a derivation of a 
terminal string; and, by Axiom 4, there are only finitely many such z's). 
But  now it is immediately clear that  ff ( ~ ,  • -. , ~t+~) is a #S#-derivation 
of s for which ~t = #xAy#, then no mat ter  what x and y may be, 

( ~ 1 ,  " '"  , ~ t )  

is the initial part  of infinitely many derivations of terminal strings not 
in L. Hence G is not a grammar of L. 

We see, therefore, tha t  grammars meeting Restriction 2 are essentially 
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less powerful than  those meeting only Restriction 1. However, the extra 
power of grammars  tha t  do not meet Restriction 2 appears, from the 
above results, to be a defect of such grammars,  with regard to the in- 
tended interpretation. The extra power of type 1 grammars  comes (in 
part ,  at  least) from the fact tha t  even though only a single symbol is 
rewritten with each addition of a new line to a derivation, it is never- 
theless possible in effect to incorporate a permutat ion such as A B  ~ B A  

(Lemma 1). The purpose of permitt ing only a single symbol to be re- 
written was to permit  the construction of a tree (as in Sec. 2) as a 
structural  description which specifies tha t  a certain segment x of the 
generated sentence is an A (e.g., in the example in Sec. 2, John is a 
Noun  Phrase). The tree associated with a derivation such as tha t  in the 
proof of Lemma 1 will, where it incorporates a permutat ion A B  --~ B A ,  

specify tha t  the segment derived ul t imately from the B of • • - B A  • • • is 
an A, and the segment derived from the A of . . -  B A  . . .  is a B. For 
example, a type 1 g rammar  in which both John will come and will John  

come are derived from an earlier line Noun  Phrase-Modal-Verb,  where 
will John come is produced by  a permutation,  would specify tha t  will 

in will John come is a N o u n  Phrase and John a Modal, contrary to in- 
tention. Thus the extra power of type 1 grammars  is as much a defect 
as was the still greater power of unrestricted Turing machines ( type 0 
grammars) .  

A type 1 g rammar  may  contain minimal rules of the form ~IA~ 
~1~2,  whereas in a type  2 grammar,  ~ and ~2 must  be null in this case. 
A rule of the type 1 form asserts, in effect, tha t  A --~ o~ in the context 
~ - - ~ .  Contextual  restrictions of this type are often found necessary 
in construction of phrase structure descriptions for natural  languages. 
Consequently the extra flexibility permit ted in type 1 grammars  is im- 
portant .  I t  seems clear, then, tha t  neither Restriction 1 nor Restriction 2 
is exactly what  is required for the complete reconstruction of immediate 
constituent analysis. I t  is not obvious what  further qualification would 
be appropriate.  

In  type 2 grammars,  the anomalies mentioned in footnote 5 are 
avoided. The final line of each terminated derivation is a string in V r ,  
and no string in Vr  can head a derivation of more than  one line. 

SECTION 5 

We consider now grammars  meeting Restriction 2. 
DEFINITION 7. A g rammar  is self-embedding (s.e.) if it contains an A 

such tha t  for some ~,~b(~ ~ I ~ ¢),  A ~ ~A~b. 
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DEFINITION 8. A g rammar  G is regular  i f  it contains only rules of the 
form A --+ a or A ---+ B C ,  where B ~ C; and if whenever A -+ ~1B~2 and 
A --+ ~blB¢~2 are rules of G, then ~o~ = ~b~(i = 1, 2). 

THEOREM 5. If  G is a type 2 grammar,  there is a regular g rammar  G* 
which is equivalent to G and which, furthermore,  is non-s.c, if G is 
n o n - s . c .  

PROOF. Define L(~)  (i.e., length of ~) to be m if ~ = al • • • am, where 
a~ 7 I .  

Given a type 2 g rammar  G, consider all derivations D = (91, • "- , 9t) 
meeting the following four conditions: 

(a) for some A, 91 = A 
(b) D contains no repeating lines 
(c) L(~ot_~) < 4 

(d) L(¢t)  _-__ 4 or ~ot is terminal.  
Clearly there is a finite number  of such derivations. Let  G1 be the gram- 
mar  containing the minimal rule ~ -+ ~b just in case for some such deriva- 
tion D, ~ = ~ and ~ = c t .  Clearly G~ is a type 2 g rammar  equivalent 
to G, and is non-s.c, if G is non-s.c., since ~o -+ ~b in G1 only if ~o ~ ¢ in G. 

Suppose tha t  G1 contains rules R~ and R2 : 

R1 : A -+ ~iB~o~ = o01c02~a~(~ ~ I )  

R~ : A --~ ~B¢~ 

where 9~ ~ ~bl or 92 # ~2 • Replace R~ by  the three rules 

RI~ : A ---+ C D  

R ~  : C --+ ~ 

where C and D are new and distinct. Continuing in this way, always 
adding new symbols, form G2 equivalent to G~ , non-s.e, if G~ is non-s.e., 
and meeting the second of the regularity conditions. 

If  G~ contains a rule A --+ a~ • • • oe,~(a~ ~ I ,  n > 2), replace it b y t h e  
rules 

R~ : A ---+ a l  . . .  a,~_~B 

where B is new. Continuing in this way, form Ga. 
If  Ga contains A --+ a b ( a  ~ I ~ b) ,  replace it by  A ~ B C ,  B ---+ a, 

C -+ b, where B and C are new. I f  Ga contains A ---+ a B ,  replace it by  
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A -+ CB, C --> a, where C is new. If it contains A --+ Ba, replace this by 
A ~ BC, C --+ a, where C is new. Continuing in this way form G4. G4 
then is the grammar G* required for the theorem. 

Theorem 5 asserts in particular tha t  all type 2 languages can be gen- 
erated by  grammars which yield only trees with no more than two 
branches from each node. That  is, from the point of view of generative 
power, we do not restrict grammars by  requiring that  each phrase have 
at  most two immediate constituents (note that  in a regular grammar, a 
"phrase" has one immediate constituent just in ease it is interpreted as 
a word or morpheme class, i.e., a lowest level phrase; an immediate 
constituent in this case is a member of the class). 

DEFINITION 9. Suppose that 2~ is a finite state Markov source with a 
symbol emitted at each inter-state transition; with a designated initial 
state So and a designated final state Sy ; with # emitted on transition 
from So and from Sf to So, and nowhere else; and with no transition 
from Sf except to So. Define a sentence as a string of symbols emitted 
as the system moves from So to a first recurrence of So. Then the set 
of sentences that can be emitted by Z is a finite state language, z° 

Since Restriction 3 limits the rules to the form A --+ aB or A -~ a, 
we immediately conclude the following. 

THEOREM 6. The type 3 languages are the finite state languages. 
PROOF. Suppose that G is a type 3 grammar. We interpret the symbols 

of V~ as designations of states and the symbols of Vr as transition sym- 
bols. Then a rule of the form A --~ aB is interpreted as meaning that a 
is emitted on transition from A to B. An #S#-derivation of G can in- 
volve only one application of a rule of the form A --+ a. This can be in- 
terpreted as indicating transition from A to a final state with a emitted. 
The fact tha t  # bounds each sentence of L~ can be understood as indicat- 
ing the presence of an initial state So with # emitted on transition from 
So to S, and as a requirement that  the only transition from the final 
state is to So, with # emitted. Thus G can be interpreted as a system 
of the type described in Definition 9. Similarly, each such system can 
be described as a type 3 grammar. 

lO Alternatively, ~ can be considered as a finite automaton, and the generated 
finite state language, as the set of input sequences that carry it from So to a first 
recurrence of S0 . Cf. Chomsky and Miller (1958) for a discussion of properties of 
finite state languages and systems that generate them from a point of view re- 
lated to that of this paper. A finite state language is essentially what is called in 
Kleene (1956) a "regular event." 
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Restriction 3 limits the rules to the form A ~ aB or A --~ a. From 
Theorem 5 we see that Restriction 2 amounts to a limitation of the rules 
to the form A ~ aB, A --~ a, or A --~ B C  (with the first type dispensable). 
Hence the fundamental feature distinguishing type 2 grammars (sys- 
tems of phrase structure) from type 3 grammars (finite automata) is 
the possibility of rules of the form A ~ B C  in the former. This leads to 
an important difference in generative power. 

THEORE~ 7. There exist type 2 languages that are not type 3 lan- 
guages. (Cf. Chomsky, 1956, 1957.) 

In Chomsky (1956), three examples of non-type 3 languages were 
presented. Let L1 be the language containing just the strings a'b~; L~,  
the language containing just the strings xy,  where x is a string of a's 
and b's and y is the mirror image of x; L~, the language consisting of all 
strings x x  where x is a string of a's and b's. Then L1, L2, and L3 are 
not type 3 languages. LI and L2 are type 2 languages (cf. Chomsky, 
1956). L3 is a type 1 language but not a type 2 language, as can be shown 
by proofs similar to those of Lemma 2 and Theorem 4.1~ 

Suppose that we extend the power of a finite automaton by equipping 
it with a finite number of counters, each of which can assume infinitely 
many positions. We permit each counter to shift position in a fixed way 
with each inter-state transition, and we permit the next transition to be 
determined by the present state and the present readings of the counters. 
A language generated (as in Definition 9) by a system of this sort (where 
each counter begins in a fixed position) will be called a counter language. 

Clearly L1, though not a finite state (type 3) language, is a counter 
language. Several different systems of this general type are studied by 
Schiitzenberger, (1957), where the following, in particular, is proven. 

THEOREM 8. L2 is not a counter language. 
Thus there are type 2 languages that are not counter languages. TM To 

summarize, L~ is a counter language and a type 2 language, but not a 
type 3 (finite state) language; L2 is a type 2 language but not a counter 
language (hence not a type 3 language) ; and L3 is a type 1 language but 
not a type 2 language. 

11 In  Chomsky  (1956, p. 119) and  Chomsky  (1957, p. 34), i t  was er roneously  
s t a t ed  t h a t  La canno t  be genera ted  by  a phrase  s t ruc tu re  system. This  is t rue  for 
a type  2, bu t  no t  a type  1 phrase  s t ruc tu re  system. 

12 The  fu r the r  quest ion whe ther  all counter  languages are type  2 languages  (i.e., 
whe the r  counter  languages cons t i tu t e  a s tep between types  2 and  3 in the  hier-  
a rchy  being considered here) has not been investigated. 
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From Theorems 2, 3, 4 and 7, we conclude: 
THEOREM 9. Restrictions 1, 2 and 3 are increasingly heavy. That  is, 

the inclusion in Theorem 1 is proper inclusion, both for grammars (triv- 
ially) and for languages. 

The fact that  L~ is a type 2 language but  neither a type 3 nor a counter 
language is important,  since English has the essential properties of L~ 
(Chomsky, 1956, 1957). We can conclude from this tha t  finite auto- 
mata  (even with a finite number of infinite counters) tha t  produce sen- 
tences from "left to r ight" in the manner of Definition 9 cannot consti- 
tute  the class F (cf. Sec. 1) from which grammars are drawn; i.e., the 
devices tha t  generate language cannot be of this character. 

SECTION 6 

The importance of gaining a better  understanding of the difference in 
generative power between phrase structure grammars and finite state 
sources is clear from the considerations reviewed in Sec. 5. We shall 
now show that  the source of the excess of power of type 2 grammars over 
type 3 grammars lies in the fact tha t  the former may be self-embedding 
(Definition 7). Because of Theorem 5 we can restrict our at tention to 
regular grammars. 

Construction: Let G be a non-s.e, regular ( type 2) grammar. Let  

K = { ( A 1 , . . . , A ~ )  [m = 1 or, 

for 1 <= i < j < m, Ai--->~Ai+l¢~ and A ~ # A ~ } .  

We construct the grammar G' with each nonterminal symbol represented 
in the form [B1 . . "  B~]~(i = 1, 2), where the B / s  are in turn nontermi- 
hal symbols of G, as follows: 13 

Suppose that  (BI ,  . . . ,  Bn) C K. 
(i) If Bn --+ a in G, then [B1 . ."  B~]~ -+ a[B1 . . .  B~]2. 

(ii) If B~ ---+ CD where C # B~ ~ D ( i  <= n) ,  then 
( a )  [B~ . . .  B~]~ ~ [B~ . - .  B.C]I  

(b) [B1 . . .  B,C]2 --+ [B1 . ."  B,D]~ 

(c) [B~ . . .  B,~D]~ -+ [B~ . . .  B=]2. 

13 Since the nonterminal symbols of G and G' are represented in different forms, 
we can use the symbols --~ and ~ for both G and G' without ambiguity. 
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(iii) If B ,  ~ C D  where B~ = D for some i < n, then 
(a) [B1 . . .  B~h-+ [B~ . . .  B,~C]I 

(b) [B1 . . .  B.C]2 --~ [B~ . . .  B,]I . 

(iv) If B~ ---> C D  where B~ -- C for some i ~ n, then 
(a)  [B~ . . .  B~]~ ~ [BI . . .  B,D]~ 

(b) [B~ . . .  B,~D]2 ~ [BI . . .  B~]2. 
We shall prove that G' is equivalent to G (when sfightly modified). 
The character of this construction can be clarified by consideration 

of the trees generated by a grammar (cf. Sec. 3). Since G is regular and 
non-s.e., we have to consider only the following configurations: 

(a) (b) (c) (d) 

B1 B1 B1 B1 
/ 1 \  / 1 \  / ! \  / 1 \  

B2 B2 B~ B2 
/ 1 \  / 1 \  / 1 \  / 1 \  

: : : 

B~ B~ B~ B~ 
i / \  / \  
a C D E1 B~+I B~+I E1 

E~ Bi+~ B~+~ E2 

(3) 

Bn Bn 
/\ /\ 

C B~ B i  D 

where at most two of the branches proceeding from a given node are 
non-null; in case (b), no node dominated by B~ is labeled B i ( i  <= n); 
and in each case, B1 = S. 

(i) of the construction corresponds to case (3a), (ii) to (3b), (iii) to 
(3c), and (iv) to (3d). (3e) and (3d) are the only possible kinds of re- 
cursion. If we have a configuration of the type (3c), we can have sub- 
strings of the form (xl • . .  x,~_~y) k (where Ej ~ x~-, C ~ y )  in the result- 
ing terminal strings. In the case of (3d) we can have substrings of the 
form (yXn--i " '" Xl) ~ (where D ~ y, Ej ~ xj). (iii) and (iv) accommo- 
date these possibilities by permitting the appropriate cycles in G t. To 
the earliest (highest) occurrence of a particular nonterminal symbol 
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B~ in a particular branch of a tree, the construction associates two non- 
terminal symbols [B1 . . .  B~]I and [B1 . "  B~]2, where B1 , , . .  , B~-I are 
the  labels of the nodes dominating this occurrence of B~. The deriva- 
tion in G' corresponding to the given tree will contain a subsequence 
(z[B1 . . .  Bn]~, . . .  zx[B~ . . .  B~]2), where B~ ~ x and z is the string 
preceding this occurrence of x in the given derivation in G. For example, 
corresponding to a tree of the form 

S 

A B (4) 

I J 
a b 

generated by a grammar G, the corresponding G' will generate the deriva- 
tion (5) with the accompanying tree: 

1. [S]1 [S]1 
I 

2. [SA]t (iia) [SAh 
/ \  

3. a[SA]2 (i) a [SA]2 
] (5)  

4. a[SB]I (lib) [SB]I 

5. ab[SB]2 (i) b [SB]2 
I 

6. ab[S]2 (iic) [S]2 

where the step of the construction permitting each line is indicated at 
the right. 

We now proceed to establish that  the grammar G' given by this con- 
struction is actually equivalent (with slight modification) to the given 
grammar G. This result, which requires a long sequence of introductory 
lemmas, is stated in a following paragraph as Theorem 10. From this 
we will conclude that  given any non-s.c, type 2 grammar, we can con- 
struct an equivalent type 3 grammar (with many vacuous transitions 
which are, however, eliminable; cf. Chomsky and Miller, 1958). From 
this follows the main result of the paper (Theorem 11), namely, that  
the extra power of phrase structure grammars over finite automata as 
language generators lies in the fact that  phrase structure grammars may  
be self-embedding. 
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LEMMA 3. I f  (A1 ,  " • • , Am)  ~ K ,  where K is as in the construct ion,  
t h e n A j  ~ A k ~ b ,  for 1 =< j <= k =< m. 

LEMM~ 4. If  [B1 " ' "  B~]~ -+  x[B1 " "  B,~]j, C ~ B k ( k  <= re, n ) ,  and  
C ---> aBl~,  then  [CBI . . .  B~]i ---+ x[CB1 . . .  B,~]j. 

Proofs  are immediate.  
LEMMA 5. If  (B1, " ' "  , B~) C K and 1 < m < n, then  
(a)  if B~  ~ ~B1, it is no t  the  case t h a t  B~ ~ Bm~( i  <= n; i ~ m )  

(b)  if Bm ~ BI~, it is no t  the  case t h a t  B~ ~ ~Bm( i  <= n; i ~ m )  

(c) if Bm ~ ~B~b, it is no t  the  case t h a t  B~ ~ ~lB,~2Bmo~3(i <= n)  

PROOF. Suppose t h a t  B~ ~ ~B1 and for some i ~ m, B~ ~ B~¢.  
.'. ~ ~ I ~ ~b. B y  lemma 3, B~ ~ ~ 1 B ~ 2 . . ' .  Bm ~ ~ 1 B ~ 2  ~ ~lBm~b~2. 
Contra. ,  since now B~ is self-embedded. Similarly, case (b) .  Suppose 
Bm ~ ~B~b and for some i, B~ ~ ~1B,~o~2B~3. .'. B1 ~ x~B~x2 
Xlo~iB~2Bmo~3X2 ~ ~Blo~Bl¢o~ ~ o~TBlo~sBl~DB~o~6. Contra .  (s.e.). 

To  facili tate proofs, we adopt  the  following nota t ional  convent ion:  
CONVENTmN 2. Suppose t h a t  ( ~ ,  • • • , ~ )  is a der ivat ion in G' fo rmed 

by  construct ion.  Then  ~ = a~ . . .  a~Q~ (where Q~ is the  unique non-  
a ~ 15 te rminal  symbol  t h a t  can appear  in a derivat ion~),  Q~ -+  ~+l~z~+~. 

m 1 
zn --- a m " "  a,~.zn = zn.  

LEMMA 6. Suppose t h a t  D = (~1, • • • , ~ )  is a derivat ion in G' where 
Q~ = [B~]2. Then :  

( I )  i f~l  = [B~]I, (C1, . . . ,  Cm+l) ~ K ,  C~---+A~+~C~+I (for 1 < i < m) ,  
and  Cm+l = B1, then  there  is a derivat ion 

([C~ . . .  C,~B~h, . "  , z~[C~]~) in G'. 

( I I )  if ~ = [B1 . - .  B~]I and B~ ~ xB1 ,  then  there is a derivat ion 

([B~h, " "  , z~[B~]~) in G'. 

PROOF. Proof  is b y  s imultaneous induct ion on the  length of z~, i.e., 
the number  of non-null  symbols  among  a l ,  - - -  , a~. 

Suppose t h a t  the length of z~ is 1 . . ' .  there is one and only one i s.t. 
q~ = [ " ' ] 1  and q~+~ = [ . - - ] 2 .  

(a)  Suppose t h a t  i > 1. T h e n  ~ = Q~ is formed f rom Q~-I b y  a rule 
whose source is (iia) or (iiia), and  ~+~ = a~+lQ~+~ is formed f rom 
~+1 = a~+~Q~+~ b y  a rule whose source is (iic) or ( ivb).  B u t  for  some 

~ Unless the initial line contained more than one nonterminal symbol, a case 
which will never arise below. 

~ Note that a~+~ will always be I unless the step of the construction justifying 
~ --~ ~+~ is (i). a~ will generally be I in this sequence of theorems. 
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,t~, Qi--1 = [ B 1  " ' "  Bk]l, Qi = [ B 1  " ' "  B k + i l a ,  Q¢+I = [B1 . . -  B k + l ] 2 ,  

.Qi+~ = [B1 • • • Bk]2. .'. Bk --~ Bk+ID for some D,  Bk --+ EBk+a , for some 
E ,  which contradicts  the assumpt ion  t h a t  G is r egu la r . . ' ,  i = 1. 

(b) Consider now ( I ) .  Since i = 1, r = 2 . . ' . B ,  --+ z2. B y  assumpt ion  
abou t  the C?s and m applications of L e m m a  4, and (i) of the construc- 
tion, [Ca " ' "  C,~B1]a --* z2[C~ " "  CraB1]2. Since Ci --~ Ai+aCi+l(Ci  ~ C j  

for 1 _-< i < j _< m + 1, since (Ca, - . -  , C~+~) C K by  assumption) ,  it 
follows tha t  [Ca - . .  C,~Ba]2 ~ [Ca . . .  C,,]~ --~ [CI . . .  Cm-~]2 . . .  ---* [Ca]2. 
.'. ([C~ . . .  CmBa]a, z2 [Ca""  CraBs]2, z 2 [ C ~ . "  C m ] 2 , " ' ,  z_~[Ca]2) is the 
required derivation. 

(e) Consider now ( I I ) .  Since i = 1, B~ --~ z2 and [Bn]a --~ z2[Bn]~, by  
(i) of cons t ruc t ion . . ' .  ([Bn]~ , z2[Bn]2) is the required derivation. 

This proves the lemma for the ease of z~ of length 1. 
Suppose it is t rue in all cases where z~ is of length < t. 
Consider ( I ) .  Let  D be such tha t  z~ is of length t. I f  none of Ca, • • • , 

C~ appears  in any  of the  Q¢'s in D, then the proof is just  like (a) ,  above. 
Suppose t h a t  ~j is the earliest line in which one of Ca, • • • , C~ ,  say Ck, 
appears  in Qj .  j > 1, since C1, . - ' ,  C~ ~ Ba.  B y  assumpt ion  of non- 
s.c., the rule Q~'-I --+ a j Q j  used to  form ~- can only have been intro- 
duced by  (lib). ~6 .'. Q~--j = [Ba " "  BnE]2,  Qj  = [ B a ' . .  B,~C~]a, Bn 

"-" E C k .  
But  Ca, " ' "  , C~ do not  occur in Q1, " ' "  , Q~-a and 

( C a , - ' - ,  C~,B~) ~ K.  

.'., by  L e m m a  4, 

([C~ . - .  C~Ba]~ , . . . ,  zj_~[C~ . . .  C r a B s . . .  B,~E]~) (6) 

is a derivation. Fur the rmore  z j_l is not  null, since there is at  least one 
t ransi t ion f rom [ . . . ]1  to  [ .- .]2 in (6), which must  therefore have been 
in t roduced by  (i) of the construction.  Bu t  B,~ ---+ E C ~ . . ' .  

[C~ . . .  C r a B s . . .  B,E]~----> [ C a ' . .  C~]~ (7) 

[by (iiib)]. Fur the rmore  we know tha t  

([B~ . . -  B~C~]I, . . . ,  g+a[B, ]2)  (S)  

~ I t  can only have been introduced by (iia), (lib), (ilia), (iva), or C~ will ap- 
pear in Q~._, . Suppose (iia).. '. Qi-* = [B~ . . .  Bq], , Qi = [B~ . . .  BqC~], , and 
Bq ~ C~D. But C~ ~ ebb. Contra. by Lemma 5 (a). Suppose (ilia). Same. Suppose 
(iva)..'. Qi-* = [B~ . . .  Bd= , Qi = [B~... Bi+q]~ (q >= 1), B~+q_t ~ B~B~+q, where 
C~ = B ~  (1 < s =< q). But C~ ~ ¢B~ , ¢ # I . . ' .  C~ ~ ~colBi+q_lW2 --> ¢o~lBiBi+qCO2 

:=~ ~bwaCte.o~Bi+q¢o~ , contra.. ' ,  introduced by (lib). 
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m u s t  be a de r iva t ion ,  since [B1 . . .  B~C~]I = Qj ; i.e., (8) is j u s t  t he  t a i l  
end  (¢5,  " • " , Cr) of D, wi th  the  in i t i a l  segment  zj de le ted  f rom each of 

¢~., • • • , Cr.  Since z j_l is no t  null ,  z~ +~ is shor t e r  t h a n  z~, hence is of 
l ength  < t .  Also,  Ck ~ xB1, b y  a s s u m p t i o n . . ' ,  b y  induc t ive  hypo thes i s  
( I I ) ,  t he re  is a de r iva t ion  

([ck]l, . . - ,  d+'[c&) (9) 

.'. b y  induc t ive  hypo thes i s  ( I ) ,  t he re  is a de r iva t i on  

(IV1 ' ' '  C k ] l ,  . ' .  , z~-t-1[C112) ( 1 0 )  

Combin ing  (6),  (7) ,  (10) ,  we have  the  requ i red  der iva t ion .  
Cons ider  now ( I I ) .  I f  n - 1 or the re  is no such de r iva t i on  of l eng th  

l, the  proof  is t r iv ia l .  Assume  n > 1. 
L e t  ~ j  con ta in  t he  first  Q of t he  form [B, . . -  Bm],(j > 1, m <= n). 

Since B,  ~ xB~, i t  follows f rom L e m m a s  3, 5 t h a t  Bm ~ yB1. Since 
m <= n, we see b y  checking t h r o u g h  the  possibi l i t ies  in the  cons t ruc t ion  

t h a t  no t  all  of Q1, • • • , Qj-1 are  of t he  form [. • "]2 • .'. t he re  was  a t  l eas t  
one app l i ca t i on  of ( i)  in fo rming  (~1, • • • , ~ j - , ) . . ' .  zj_l is no t  null .  B u t  

z~ +1 B " ([B,  . . .  B A 1 , . . - ,  [ ~12) (J1)  

is, l ike (8) ,  a d e r i v a t i o n . . ' ,  b y  induc t ive  hypo thes i s  ( I I ) ,  t he re  is a 
de r iva t i on  

([B~]I, - . . ,  z~+~[BmD (12) 

where  z~ +1 is shor te r  t h a n  z~. 

Le t  ek con ta in  the  first Q of the  form [B~ . .  - B,~]2(m <= n). As above  , 
Bm ~ yB~. F r o m  L e m m a  5 i t  follows t h a t  the  rule used to  fo rm ~k+~ 
m u s t  be jus t i f ied b y  (iic) or ( ivb)  of the  cons t ruc t ion .  I n  e i ther  case, 
QI~+~ = [BI " -  B~-112 • S imi lar ly ,  we show t h a t  

([Bi . . .  B~]2, . . .  , [B,]~) (13)  

is a d e r i v a t i o n . . ' ,  z~ = zk. 
Le t  q = m i n ( j , k ) .  T h e n  all  of Q2, " ' "  , Qq-1 are of the  fo rm 

[BI " ' "  B~+~]i . 

I t  is clear  t h a t  we can cons t ruc t  ¢1,  • • • , Cq-~ s.t. for  p < q, ~p = z~Qp', 
where  Q~' = [B~ . . .  B~+~]i when  Q,  = [B1 . - .  B,~+v]~. C o n s e q u e n t l y  

( [Bd~ ,  . - .  , Zq_~Q'q_~) (14) 

is a der iva t ion .  
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Suppose q = j .  .'. Qq-1 = [B1 . - .  B.+,]~--~ a~[B1 . . .  B,~]z = Qj , where 
m < n < n + v . . ' .  this rule can only have been in t roduced by  (iiib) 
of the cons t ruc t ion . . ' ,  i = 2 and B~+~-I - ~  B~+~B~.  

Case 1. Suppose m = n . . ' .  

[B,~ . . .  B,+~]~ --~ [B,]I = [B,]~ (15) 

Combining (14),  (15),  (12),  We have the required derivation.  
Case 2. Suppose m < n . . ' .  B ,  ~ Bn ,  - . .  , Bn+~ . . ' .  

[ B ,  . . .  B,+~]2 ~ [ B ,  . . .  B,+~_~B,]I (16) 

b y  (iib). We have seen t h a t  B ,  ~ y B ~ .  .'. B,+~_~ w ~ B ~ .  .'. for 
s < v - 1, B , + ,  --~ E~B,+,+~,  by  L e m m a  5. 

Bu t  (12) is a derivat ion where _s+~ z, is of length < t . . ' .  by  induct ive 
hypothesis  ( I )  there is a derivat ion 

( l B ,  . . .  B~+~_IB~]~ , . . .  , z~+*[Bn]2) (17) 

Combining (14),  (16),  (17),  we have the required derivation.  
Suppose, finally, t h a t  q = k. We have seen t h a t  in this case z~ = zk. 

Bu t  Qq-1 = [BI . . .  B~+~]¢ --~ ak[Bi . . .  Bm]~ , where m =< n < n + v . . ' .  
this rule can only have been in t roduced by  (iic) or ( ivb) .  I n  ei ther  ease, 
i = 2, m = n, v = 1, and O~_, = [B~B,+~]2 --~ ak[B,]2. Combining this 
with (14) we have the  required derivation.  

We have thus  shown t h a t  the  l emma is t rue in case z~ is of length 1, 
and  tha t  it is t rue  for  z~ of length t on the  assumpt ion  tha t  it holds for 
z, of length < t .  Therefore it holds for every  der ivat ion D. 

LEI~MA 7. Suppose t h a t  D = ( ~ ,  • • • , ~ )  is a derivat ion in G'  where 
QI = [B111 . Then  

( I )  if ~ = [B~h,  (C~, . . . ,  C~+~) C K, C~ ~ C~+~A,+~ (1 < i< m), 
and C~+I = B~, then  there is a derivat ion 

([C~]~, . - .  , z~[C~ . . .  CmB~]~) in G'. 

( I I )  if ¢, = [B~ . . .  B.]2 and B~ ~ B~x, then  there is a derivat ion 

( [B,] I ,  . . -  , z~[Bn]~) in G'. 

The  proof is analogous to  t ha t  of L e m m a  6. I n  the induct ive step, 
case ( I ) ,  we take  Q~ as the last of the  Q's in which one of C~, . - .  , C~ 
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appears, and instead of (iiib) in (7), we form 

[Ci " "  G]2--* [G " "  C,~BI . . .  B~E]~ 

by ( i ra) .  The proof goes through as above, with similar modifications 
throughout.  In case ( I I )  of the inductive step we let Qj be the last Q of 
the form [ B 1 . . .  B,~]2(j < r , m  <- n) ,  andQk the last Q of the form 
[B1 " .  B~]l(m <- n) .  Taking q -- max(j ,k)  [instead of min( j ,k )] ,  the 
proof is analogous throughout,  with (iva) taking the place of (iiib). 

In general, because of the symmetries in case (iii), (iv) of the con- 
struction [reflecting the parallel possibilities (30), (3d) for recursion], 
most of the results obtained come in symmetrical pairs, as above, where 
the proof' of the second is analogous to the proof of the first. Only one 
of the pair of proofs will actually be presented. 

We will require below only the following special case of (I)  of Lemmas 
6, 7 (which, however, could not be proved without the general case). 

LEMMA 8. Suppose that  D = ([B]~, . - -  , z[B]2) is a derivation in G' 
and that  C ~ B. Then 

(a) if C --~ AB, there is a derivation 

( [ C B h ,  . . .  ,z[C]~) in G'  

(b) if C --~ B A ,  there is a derivation 

([C]~, - . .  , z[CB]2) in G'. 

DEFINITION 10. Suppose that  G' is formed from G by the construction 
and D is an a-derivation of x in G. D will be said to be represented in G ~ 
if and only if ~ = a or a = A and there is a derivation ([All,  . . .  , x[A]2) 
in G'. 

What  we are now trying to prove is that  every S-derivation of G is 
represented in G'. 

DEFrNITIoNll. Le tD1  = ( ~ , . - . , ~ m )  and D2 = ( ~ l , ' " , ~ b ~ )  be 
derivations in G. Then DI*D2 is the derivation 

( ~ 1 ~ ,  ~2¢1, . - . ,  ~ ,  ~,,¢~, . . .  , ~m¢~). 

LEMMA 9. Let  Di be an A-derivation of x and D2 a B-derivation of y 
in G. If Di and D2 are represented in G ~ and C ~ A B ,  then 

Da = (C~1 . - -  ~ )  

is represented in G', where (~1, • "" , ~,~) = D~*D2. (D3 is thus a C-der- 
ivation of xy.)  
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PROOF. By  hypothesis, there are derivations 

([A]I, . . .  , x[A]=) (18) 

([B]I, . . .  , y[B]~) (19) 

in G'. 
Case 1. Suppose A ~ C ~ B. Then by Lemma 8, there are derivations 

([C]1, . . . ,  x[CA ]~) (20) 

([CB]I, ' ' -  , y[C]2) (21) 

in G'. By (iib) of the construction, 

[CA]~ -- .  [CB]I (22) 

Combining (20), (22), and (21), we have the required derivation. 
Case 2. C = A .  .', C ~ B by assumption of regularity of G. By Lemma 

8, case (a),  we have again the derivation (21). By ( i ra)  of the con- 
struction, 

[A]~ = [C]2 -*  [CB]~. (23) 

Combining (18), (23), (21) we have the required derivation. 
Case 3. C = B .  .'. C ~ A .  By Lemma 8, case (b),  we have (20). 

By (iiib), 

[CA]~ --~ [C]~ = [B]~. (24) 

Combining (20), (24), (19), we have the required derivation. 
Since C ---+ CC is ruled out by assumption of regularity, these are the 

only possible cases. 
LE~MA 10. If D1 = ( ~ ,  " -  , ~r) is a Xl~l-derivation, where Xl 

I ~ ~ ,  then there is a derivation D2 = D~*D~ = (g,~, . . .  , ¢~r) such 
that  t r  = ~r,  D3 is a x~-derivation and D~ is an wl-derivation. 

])ROOF. Since for i > 1, q~ is formed from ~_~ by replacement of a 
single symbol of ~_~ ,~7 we can clearly find X~, ~ s.t. ~ = x ~  where 
either (a) xi = x~-i and w~-1 --~ ~ or (b) xi-~ --~ x~ and ~i = o~_~ 
(X~-~-~ = ~-~).  Then D~ is the subsequence of (X~, " '" , X,) formed 
by  dropping repetitions and D4 is the subsequence of ( ~ ,  . . . ,  ~ )  
formed by  dropping repetitions. 

LEY~MA 11. If G' is formed from G by the construction, then every 
a-derivation D in G is represented in G'. 

~ Which, however, may not be uniquely determined. Compare footnote 8. 
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PROOF. Obvious, in case D contains 2 lines. Suppose t rue  for all deriva- 
t ions of fewer than  r lines (r > 2).  Let  D = (~i ,  " ' "  , ~ ) ,  where ~1 = a. 
Since r > 2, a = A ,  ~2 = B C . . ' .  ( ~ ,  . .  • , ~ )  is a BC-derivat ion.  B y  
Le lnma 10, there is a Dz = D~*D~ = (¢~2, • "" , ~k~) s.t. D,  is a B-deriva-  
tion, D4 a C-derivation,  and ~kr = ~r • B y  induct ive hypothesis ,  bo th  D3 
and D4 are represented in G'. B y  L e m m a  9, D is represented in G'. 

I t  remains to  show t h a t  if (JAIl ,  -. • , x[A]2) is a derivat ion in G', then  
there is a derivat ion (A, . - .  , x) in G. 

LEMMA 12. ~s Suppose t h a t  G' is formed b y  the construct ion f rom G, 
regular and  non-s.c., and t h a t  

(a)  D = ( ~ l , - . . , ~ l , - - . , ~ q , - - - , ~ m 2 , . . . , ~ , )  is a derivat ion 
in G', where Q~ = [A1], Qml = Q ~  = [A1 - . .  A~]n, Q~ = [A1 . . -  Aj]~, 

(b)  there is no u, v s.t. u ¢ v, Q~ = Q~ = [B1 . . -  B~]t, and s < k 19 
(c) for ml < u < m2, if Q~ = [A1 . . .  A , ] t ,  then  s > f0  

T h e n  it follows tha t  
(A) if n -- 2, there is an m0 < m~ such t h a t  Q~0 = [A~ . - .  Ak]t 
(B)  if n = 1, there is an m~ > m2 such t h a t  Qm = [Aj . . .  Ak]2 
(C)  j = ~ 

PROOF. (A) Suppose n = 2. Assume ~ to  be the earliest line to  con- 
ta in  [A1 . . .  A~]2. Clearly there  is an ~ =< m~ s.t. Q~ --- [A1 . . .  Ak+~]~, 
Q.a-~ = [A1 . . .  Ak+t]~(t > 0). I f  there is no m0 < ~ s.t. 

Q~0 = [A1 . - .  Ak]l, 

then  there mus t  be a u < r~ s.t. Q~ = [A~ • • • A~]:, 

Q~+I = [A0 . . "  A ~ _ I B o . . .  B,~]I, 

where ~+~ is formed b y  ( i ra )  of the  construct ion,  A0 = I ,  B0 = Ak ,  
m = 1, and s < /c (since ( i ra )  gives the  only possibility for increasing 
the  length of Q by  more  t h a n  1 ) . . ' .  B,~_I --> A~B . . . .  ". A~ ~ ~ A ~ B ~ ¢ .  

But  Q~ = [A~ . . .  A~]2 cannot  recur in any  line following f ~  [this 
would contradic t  assumpt ion  (b)].  Therefore,  iust  as above, there mus t  
be a v > m2 s.t. Q~_~ = [A0 . . .  A,_~Co . . .  C,~,]~, Q, = [A~ . . .  A~]~, 

where ~ is formed b y  (iiib) of the  construct ion,  A0 = I ,  Co = A ~ ,  

m'  > 1, p < s (since (iiib) gives the  only possibility for decreasing the  

~s W e  c o n t i n u e  to  e m p l o y  C o n v e n t i o n  2, above .  
19 T h a t  is ,  Q~I = Q~: is t h e  s h o r t e s t  Q of D t h a t  r e p e a t s .  
~0 T h a t  is,  Qq is t h e  s h o r t e s t  Q of t h i s  f o r m  b e t w e e n  ~ i  a n d  f ~ :  . 
~ T h a ~  is ,  Qq is n o t  s h o r t e r  t h a n  Q~I = Q~e - 
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length of Q by  more than  1 ) . . ' .  Cm,-1 ---> Cm,A~ . But A~ ~ ~1C,~,-1~2 
(Lemma 3 ) . . ' .  A~ ~ e lC~,Ap~2 ~ ~ 1 C ~ , ~ A ~ 4  ~ ~ I C ~ , ~ 3 ~ A ~ B , ~ 4 .  

Contra., since G is assumed to be non-s.c. 
.'. there is an m0 < r~ _= m~ s.t. Q~0 = [At • ..  Ak]~ 
(B) Suppose n = 1. Proof is analogous. 
(C) ( I ) .  Suppose n = 2. Suppose j  < k. Suppose i (in Qq) is 2. Clearly 

there must  be a v > m~ s.t. either Q~ = [A~ - . .  A~.]2 [which contradicts 
assumption (b)] or Q,_~ = [A0 . . .  Aj-~Co . . .  C~]~ , Q~, = [A1 . . .  A~,]~ , 
where f~ is formed by  (iiib) of the construction, Ao .~- I ,  Co = A i ,  

m => 1, p < j [as in the second paragraph of the proof of (A)]. Suppose 
the l a t t e r . . ' .  C~_~ --* C m A ~ .  .'. A j ~ ~ C m A , ¢ .  Furthermore,  since 
p < j ,  A ~ ~ ~ C ~ A  ~ .  

From assumption (c) and assumption of regularity of G, it follows tha t  
~q+~ can only have been formed by  (iva) of the construct ion. . ' .  Qq+l = 

[A0 . . "  Ai_~Do . . "  Dt]:t, where A0 = I ,  Do = A~., t ~ 1. . ' .  Dt_~- - ->AiDt .  

.'. A i ~ xaA ~Dt~, . .'. A i ~ o~fC~o~A i x ~ D t ~  , and A~. is self-embedded, 
contrary to assumption. 

Suppose tha t  i (in Qq) is 1. By  (A), there is an m0 < m~ s.t. Qm0 = 
[A~ . - .  A , ]~ . . ' .  there is a u < m0 s.t. either Q~ = [A1 - . .  A~]~ [which 
contradicts assumption (b)] or Q, = [A~ . . -  A,]~, 

Q~+I = [A0 . - .  Aj_1Bo . . .  Bin]l,  

where ~+1 is formed by  ( i ra) ,  Ao = I ,  Bo = A ~ ,  m >= 1, s < j .  As- 
suming the latter, we conclude tha t  A j  ~ ~IAjw2Bm¢~, as above. 

From assumption (c) and assumption of regularity of G, it follows 
tha t  Cq can only have been formed by  (iiib). Contradiction follows as 
above. 

( I I )  Suppose n = 1. Proof is analogous. 
This completes the proof. From Lemma  12 it follows readily by  the 

same kind of reasoning as above tha t  
COROLLARY. Under the assumptions of Lemma 12, 
(A) if n = 2, ~m1+1 is formed by  ( i ra)  of the construction 
(B) if n = 1, ~m2 is formed by  (iiib) of the construction 
(C) Q~ is of the form [A1 . . -  AkBo . . .  B~]t (s >-_ O, Bo =- I ) ,  for u such 

tha t :  (a)  where n = 2 and m0is as in  (A), Lemma 12, then m0 < u < m2 ; 
(b) where n = 1 and m~ is as in (B),  Lemma 12, then ml < u < m3. 

Furthermore,  for ml < u < m2, s > 0 if t # n. 
DEFINITION 12. Let  D = (~i, ' • • , ~ )  be a derivation in G' formed 
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by  the const ruct ion f rom G. T h e n  D ~ corresponds to  D if D'  is a deriva- 
t ion of z~ 22 in G and for each i, j ,  k ( i  < j )  such tha t  

(a)  ~i is the  earliest line containing [AI - . .  Ak]l 
(b)  ~j is the  latest  line containing [AI . . .  Ak]2 
(c) there  is no  p, q s.t. i < p < j ,  q < h, and Qp = [A1 . - .  Aq]~, 

there is a subsequence (ziA~b, . . .  , zj~b) in D' .  
LEMMA 13. Let  D = (~1, • • ", ~r) be a derivat ion in G t formed by the  

construct ion f rom a regular, non-s .e .G.  Suppose t h a t  Q1 = [A~ . .  • A~]I, 
Qr = [A~ - . .  A~]2, and there is no p, q such t h a t  1 < p < r, q < s, 
Qp = [ A 1 . . .  Aq]~. 

Then  there  is a der ivat ion D r = (~1 ~ , • • -, ~ , )  corresponding to  D. 
PnOOF. Proof  is by  induct ion on the number  of recurrences of symbols 

Qi in D (i.e., the number  of cycles in the  derivat ion) .  
Suppose t h a t  there are no recurrences of a ny  Q~ in D. I t  follows t h a t  

there  can have been no applications of ( iva)  in the  construct ion of D, 
i.e., no pairs Qi -- [A1 - - .  Aj]2, Qi+~ = [A1 . . .  A~]I where j < h. For  
suppose there  were such a p a i r . . ' .  Ak_~ ~ A ~ A k .  Also, j > s, or Q~ is 
repeated as Q~. Clearly there is an m > i ~- 1 s.t. Q~ = [A~ . . -  A~+~]~ 
(n > 0 ) . . ' .  there is a t > m s.t. either Qt = [A1 . . .  Aj]2 (con t ra ry  t o  
assumpt ion  of no repeti t ions) or 

Qt = [A1 . . .  As+~]2, Qt+l = [A1 . . .  Aj-,,]I (u,  v > 1), 

where ~+1 is formed b y  ( i i ib ) . . ' .  

con t ra ry  to  the  assumpt ion  tha t  G is non-s.e. Similarly, there can be no 
applications of (iiib) in the  const ruct ion of D. Bu t  now the  proof for 
this case follows immedia te ly  b y  induct ion on the  length of D. 

Suppose now t h a t  the  l emma is t rue  for every  derivat ion containing 
< n  occurrences of repeating Q's. Suppose t h a t  D contains n such oc- 
currences. 

I. 
1. Suppose t h a t  the  shortest  recurring Q in D is [A~ • • • Akin. 
2. Select m l ,  m~ s.t. m~ < m~ ; Q ~  = [A~ . . .  A~]~ = Q~: ; there  is 

no i, m~ < i < m~, s.~. Qi = [A1 . . .  A~]~ ; there  is no j > m2 s.t. 
Qj = [A1 . . .  A~]~. 

22 Compare Convention 2. 



164 CHOMSKY 

3. B y  L e m m a  12 (A) ,  we know t h a t  the re  is an  m0 < ml s.t. Qm0 = 
[A1 - . .  A~]I.  Select  m0 as the  ear l ies t  such ( the re  is in fac t  only  one) .  
B y  the  Coro l l a ry  to  L e m m a  12, ( C ) ,  and  the  i nduc t ive  hypothes i s ,  t he re  
is a de r iva t i on  D~ = (zmoAk , . . . ,  z m)58 cor responding  to  ( ~ o ,  "" ", ~ 1 ) .  

4. B y  Coro l l a ry  ( A ) ,  we know t h a t  

~ml+~ = z,~l[Ao " ' "  A k - i B o  " ' "  Bm] l ,  

where  Ao = I ,  Bo = A k  , m >= 1, Bm-~ --~ A k B ~  . Obvious ly ,  the re  is a 
v(m~ < v < m2) s.t. e i ther  Q~ = [A0 - . -  A~_IBo . . .  Bm]2 or 

Qv = [A0 . . .  A~-IBo  . . .  B~+t]2,  Qv+~ = [Ao . . -  A k - l B o  " ' "  B m - u ] l ,  

where  u, t > 1 and  ~+1 is fo rmed  b y  ( i i ib)  [note Coro l l a ry  (C)] .  F r o m  

the  l a t t e r  a s sump t ion  we can deduce  se l f -embedding,  as a b o v e . . ' ,  we 
can select  v as the  la rges t  in teger  ( m 2  s.t. Q, = [A0 • • • Ak_~Bo • • • B~]~.  

5. Le t  t be  the  la rges t  in teger  (ml ~- 1 ~ t ~ v) s.t .  

Qt = [A0 . . .  Ak_~Bo . . .  Bm_u] i ,  u > O. 

Suppose  t h a t  i = 1. B u t  ~t+1 m u s t  be fo rmed  b y  ( i ia)  or ( i l ia)  of the  
c o n s t r u c t i o n . . ' ,  u = 1 and  Bm_~ - ~  BmC,  c o n t r a r y  to  a s sumpt ion  of 
regu la r i ty ,  since B~_~ ~ A k B m .  

.'. i = 2, a n d  Qt+l = [A0 . . .  Ak_lBo  . . .  B~+.]1(n _-> 0),  where  
~t+l is fo rmed  b y  ( i r a )  of the  c o n s t r u c t i o n . . ' .  

B m + , - I  - ~  B,,_~,B~+,~ ~ ~Bm-I~2B~,+~ --~ ~IAkBm~2Bm+,~ . 

Suppose  n = 0. Then  B,,_~ --+ B m - ~ B m ,  so tha t ,  b y  regu la r i ty ,  B~_~ ---- 
A k . . ' .  Qt = [A~ • • • A~-]2, c o n t r a r y  to  a s sump t ion  in s tep  2. 

.'. n ~ O. .'. Bm ~ ~ B , ~ + ~ _ ~ 4 .  .'. Bm ~ ~ 3 ~ A ~ B , ~ : B ~ + , ~ x 4 ,  cont ra .  

(s.e.). 
6..'. there is no t such as that postulated in step 5. Consequently 

(~+i, • •., ~) meets the assumption of the inductive hypothesis e~ and 
there is a derivation D~ -- (z~+~Bm,. "',Zm~) ~ corresponding to 

( ~ m 1 + 1  , " " " ,  ~t~v)" 

7. Since v was selected in s tep  4 to  be max ima l ,  i t  follows t h a t  ~,+~ 
canno t  be fo rmed  b y  ( i va ) ,  b y  reasoning s imi lar  to  t h a t  invo lved  in 

~ Recall that  z ~  ,~0+~. zm0z~ , i.e., there is a derivation (A~, • • • , z,~o+h~. 
~a From nonexistence of such a t it  follows at once that  for u such that  mt 

u < v, Q~ = [A0 .-- A~_~Bo . . .  B,~Co . . .  C~]i (~  >= O, Co ~ I) .  
~ That is, there is a derivation (B,~ , . - .  , z~+~). 
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s tep 4. B y  regular i ty  assumpt ion ,  it cannot  have  been fo rmed  b y  ( l ib)  
or (iiib) of the  construct ion,  since B,,-I  ---+ A k B ~ . . ' .  

Q~+I -- [A0 . . -  Ak-IBo . . .  B,~-112. 

8. Suppose m = 1, so t h a t  Q~+I = [AI . . -  A~]2 . . ' .  v -t- 1 = m2,  b y  
a s sumpt ion  of step 2, and  AIo ~ AkB~.  Let  D2' be the  der iva t ion  fo rmed  
f rom D~ (cf. s tep 6) b y  delet ing initial  z~1+~ f rom each line. Le t  

(~1, " " ,  ~ )  = DI*D2' 

(cf. Defini t ion 11; DI as in s tep 3).  Clear ly  D3 = (z,~oAl~, ~ ,  . . . ,  ~ )  
is a der iva t ion  corresponding to  ( ~ 0 ,  "" ", ~ ) .  

9. Suppose m _>- 2. B y  a s sumpt ion  t h a t  G is non-s.e.,  and  t h a t  v is 
m a x i m a l  (in s tep 4) we can show t h a t  e~+~ m u s t  be fo rmed  b y  (i ib) of 
the  cons t ruc t ion  (all o ther  cases lead to  c o n t r a d i c t i o n ) . . ' .  

Q~+2 = [A0 • . .  Ak-lBo . . .  Bm-2C]l, B~_2 --> Bm_lC. 

As above,  we can find a vl which is the  largest  integer  <m2 s.t. Q~ = 
[A0 . . .  Ak-~Bo . . .  B,~-2C]2 and  s.t. (¢,+~, . . . ,  ~1)  mee t s  the  induct ive  
h y p o t h e s i s . . ' ,  there  is a der iva t ion  D4 = (z~+2C, . . . ,  z~) corresponding 
to  (~+~ ,  • • . ,  ~ ) .  

10. Suppose m = 2 . . ' .  

B,~_2---+ B1C, vl + 1 = m2,  Q~+I = lAx . . .  Ak]~ 

(as above ) .  Le t  D4' be the  der iva t ion  fo rmed  f rom D4 b y  delet ing initial  
z~+2 f rom each line. Le t  (~b,, . . . ,  ~p) be as in s tep 8. Le t  (x l ,  • • ", xq) = 
(z~oB1, ~1, "" ", ~b~)*D4'. Clear ly  D5 = (zmoAk, Xl, " " ,  Xq) is a der iva-  
t ion  corresponding to  ( ~ 0 ,  • • -, ~ = ) .  

11. Similarly,  wha t eve r  m is, we can find a der iva t ion  

A = (Z,~oAk, . . - , z ~ )  

corresponding to  ( ~ 0 ,  . . . ,  e ~ ) .  
12. Consider  now the  der iva t ion  D6 fo rmed  b y  delet ing f rom the  

original D the  lines ~ + ~ ,  • • . ,  ~ and  the  media l  segment  z ~  +~ f rom 
each la ter  line. T h a t  is, D6 = (~1, "" ", ~t) (t = r - (m~ - m~)),  where  
for  i < m~, ~b~ = ~ ,  and  for  i > m~, ~b~ -= z ~ z m _ ~ + ~ 2 _ ~ 1 + ~ .  B y  
induct ive  hypothesis ,  there  is a der iva t ion  D~ corresponding to  D~. 

I n  s teps 2 and  3, m0,  m~, m~ were chosen so t h a t  ~ 0  contains  the  
earliest  occurrence of Q~0 = [A~ . . -  A~]~, and  ~ the  la tes t  occurrence 
of Q ~  = Qm~ = [A~ . - -  A~.]2, and  so t h a t  no occurrences of Q ~  occur 
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between ~1  and ~ . . ' .  in Ds, Cmo contains the earliest occurrence of 
Q,~o and ¢/ml the latest occurrence of Q~I. Furthermore, by Corollary 
(C), there is no Q shorter than Qm0 between ~m0 and ~ 1 . . ' .  by induc- 
tive hypothesis and the definition of correspondence, it follows that D7 
contains a subsequenee D7 = (z~oAk~b, . . . ,  zm~) .  But step 11 guarantees 
us a derivation A = (z,~oAk , . . . ,  z ~ )  corresponding to ( ~ 0 ,  "" ", ~ ) .  
We now construct Ds by replacing 1)7 in D7 by A = (zmoAk~, . . . ,  z ~ ) ,  
formed by suffixing ~ to each line of 4, and inserting z~ °+~ after z~  in 
all lines of D7 following the subsequenee/)7. 

Clearly/)8 corresponds to D, which is the required result in case the 
shortest recurring Q is of the form [.. .]~. 

II. 
An analogous proof can be given for the case in which the shortest 

recurring Q is of the form [. . .]~. 
We have shown that the lemma holds for derivations with no recur- 

sions, and that it holds of a derivation with n occurrences of recurring 
Q's on the assumption that it holds for all derivations with <n  such 
occurrences..', it is true of all derivations. 

A corollary follows immediately. 
COROLLaR:C. If G' is formed from G by the construction and D' = 

([A]~, . . - ,  x[A]~) is a derivation in G', then there is a derivation D = 
(A, -.-, x) in G. 

From this result and Lemma 11, we draw the following conclusion. 
THEO~E~ 10. If G' is formed from G by the construction, then there 

is a derivation (S, - . . ,  z) in G if and only if there is a derivation ([S]1, 
• . . ,  z[S]2) in G'. 

That is, if [S]~ in G' plays the role of S in G, then G and G' are equiva- 
lent if we emend the construction by adding the rule Q1 --~ a wherever 
there are Q~, ...,Q~ (n __-> 2) such that Q1 -~ aQ2 and Q~ --~ Q3 --~ " .  --+ 
Q~, where Q~ -- [S]~, Qi is of the form [-. "]2 for 1 < i =< n, and Q1 
is of the form [...]1. 

But in the grammar thus formed all rules are of the form A --~ aB 
(where a is I unless the rule was formed by step (i) of the construction) 
or A --~ a. I t  is thus a type 3 grammar, and the language L~ generated 
by G could have been generated by a finite state Markov source (of. 
Theorem 6) with many vacuous transitions. But for every such source, 
there is an equivalent source with no identity transitions (el. Chomsky 
and Miller, 1958). Therefore L~ could have been generated by a finite 
Markov source of the usual type. Obviously, every type 3 grammar is 
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non-s.e. (the lines of its A-derivations are all of the form xB). Conse- 
quently: 

THEOREM 11. If L is a type 2 language, then it is not a type 3 (finite 
state) language if and only if all of its grammars are self-embedding. 

Among the many  open questions in this area, it seems particularly 
important  to t ry  to arrive at some characterization of the languages of 
these 2s various types 27 and of the languages that  belong to one type 
but  not the next lower type in the classification. In particular, it would 
be interesting to determine a necessary and sufficient structural prop- 
erty tha t  marks languages as being of type 2 but  not type 3. Even given 
Theorem 11, it does not appear easy to arrive at such a structural char- 
acterization theorem for those type 2 languages that  are beyond the 
bounds of type 3 description. 

RECEIVED: October 28, 1958. 
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