ASINTOTICA: ESEMPI ED ESERCIZI

docenti: T. Calamoneri, A. Monti Sapienza Università di Roma

Esempio 1. Dimostrare o confutare che la funzione 4^n è in $O(2^n)$.

 4^n NON è in $O(2^n)$, e la dimostrazione è per assurdo. Assumiamo 4^n in $O(2^n)$ allora esiste una costante c ed un valore n_0 per cui si ha $4^n \le c2^n$ per $n \ge n_0$, questo significa che da un certo n in poi vale $2^n \le c$ e questo è assurdo perché la funzione 2^n cresce e non può essere limitata da una costante c.

Esempio 2. Dimostrare o confutare che la funzione $(n+10)^3$ è in $\Theta(n^3)$.

- 1. $(n+10)^3$ è $O(n^3)$, infatti: per $n \ge 10$ si ha $(n+10)^3 \le (2n)^3 = 8n^3$. Quindi basta prendere $n_0 = 10$ e c = 8.
- 2. $(n+10)^3$ è $\Omega(n^3)$, infatti: $n^3 < (n+10)^3$. Quindi basta prendere $n_0 = c = 1$.

Dai punti 1) e 2) segue che $(n+10)^3$ è $\Theta(n^3)$

Esercizio 1. Dimostrare o confutare che

- la funzione 4^n è $O(2^{n \log n})$.
- $(n-50)^2 \in \Theta(n^2)$
- le due classi $O(5^n)$ e $O(2^n)$ sono inconfrontabili.
- le due classi $\Omega(5^n)$ e $\Omega(2^n)$ sono inconfrontabili.
- le due classi $\Theta(5^n)$ e $\Theta(2^n)$ sono inconfrontabili.

Esempio 3. Si consideri la sommatoria $S = \sum_{i=1}^{n} i$

1. dimostrare che $S = \Theta(n^2)$

(a)
$$S = \sum_{i=1}^{n} i = \ldots + \left\lceil \frac{n}{2} \right\rceil + \ldots + n \ge \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n}{2} \right\rceil \ge \frac{n^2}{4} = \Omega(n^2)$$

(b)
$$S = \sum_{i=1}^{n} i = 1 + \ldots + n \le n + n + \ldots + n = n \cdot n = O(n^2)$$

da
$$a$$
) e b) segue $S = \Theta(n^2)$

2. dimostrare che : $S = \frac{n(n+1)}{2}$

Esercizio 2. Si consideri la sommatoria $S = \sum_{i=1}^{n} i^{c}$ dove c è una qualsiasi costante reale positiva.

• dimostrare che $S = \Theta(n^{c+1})$

Esempio 4. Si consideri la sommatoria $S = \sum_{i=0}^{n} 2^{i}$

1. dimostrare che $S = 2^{n+1} - 1$

- 2. dimostrare che $S = \Theta(2^n)$
 - la dimostrazione segue dal punto precedente in quanto $2^{n+1}-1=2\cdot 2^n-1=\Theta(2^n)$

Esercizio 3. Si consideri la sommatoria $S = \sum_{i=1}^{n} c^{i}$ dove c è una qualsiasi costante intera positiva diversa da 1. Dimostrare che $S = \frac{c^{n+1}-1}{c-1}$.

Deduciamo quindi che

$$S = \begin{cases} \Theta(c^n) & \text{se } c > 1 \\ \Theta(1) & \text{se } c < 1 \end{cases}$$

1.
$$S = \frac{c^{n+1}-1}{c-1}$$

2.
$$S = \Theta(c^n)$$
 se $c > 1$ e $S = O(1)$ se $c < 1$.

Esempio 5. Si consideri la sommatoria $S = \sum_{i=1}^{n} i2^{i}$

1. Dimostrare che $S = (n-1)2^{n+1} + 2$

$$S = 2 + 2 \cdot 2^{2} + 3 \cdot 2^{3} + \dots + (n-1) \cdot 2^{(n-1)} + n2^{n}$$

$$2S = 2^{2} + 2 \cdot 2^{3} + \dots + \dots + (n-1)2^{n} + n2^{n+1}$$

$$S - 2S = 2 + 2^{2} + 2^{3} + \dots + \dots + 2^{n} - n2^{n+1}$$

deduciamo dunque che

$$-S = \sum_{i=1}^{n} 2^{i} - n2^{n+1} = (2^{n+1} - 1) - 1 - n2^{n+1}$$

dove si usa il valore della somma geometrica calcolato nell'esercizio 4. Abbiamo quindi $S=(n-1)2^{n+1}+2$.

- 2. Dimostrare che $\sum_{i=0}^n i2^i = \Theta(n2^n)$
 - la dimostrazione segue dal punto precedente infatti $(n-1)2^{n+1}-2 = \Theta(n2^n)$

Esercizio 4. Si consideri la sommatoria $S = \sum_{i=1}^{n} i \cdot c^{i}$ dove c è una qualsiasi costante maggiore di 1.

- Dimostrare che $S = \frac{nc^{n+1}}{c-1} \frac{c^{n+1}-1}{(c-1)^2} + 1$
- Dimostrare che $S = \Theta(nc^n)$

Esempio 6. Si consideri la sommatoria $S = \sum_{i=1}^{n} \log_2 i$. Dimostrare che $S = \Theta(n \log n)$

- Preliminarmente si osservi che $\sum_{i=1}^n \log_2 i = \log_2 (\prod_{i=1}^n i) = \log_2 (n!)$ mentre dalla definizione di n! si ha $\left(\frac{n}{2}\right)^{\frac{n}{2}} \leq n! \leq n^n$.
 - 1. $S = \log_2(n!) \le \log_2 n^n = n \log_2 n$. Quindi $S = O(n \log n)$
 - 2. $S = \log_2(n!) \ge \log_2\left(\frac{n}{2}\right)^{\frac{n}{2}} = \frac{n}{2}\log_2\left(\frac{n}{2}\right) = \frac{n}{2}\log_2 n \frac{n}{2} = \frac{n}{4}\log_2 n + \frac{n}{4}\log_2 n \frac{n}{2} \ge \frac{n}{4}\log_2 n$ dove l'ultima diseguaglianza vale per $n \ge n_0 = 4$. Quindi $S = \Omega(n \log n)$.

Da 1) e 2) segue
$$S = \Theta(n \log n)$$

Esercizio 5. Si consideri la sommatoria $S = \sum_{i=1}^{n} \log_2^c i$ dove c è una qualsiasi costante maggiore di 1.

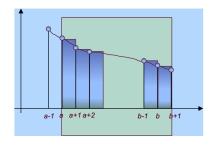
Dimostrare che $S = \Theta(n \log^c n)$.

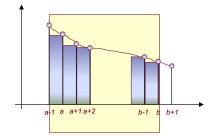
Esempio 7. Si consideri la sommatoria $S = \sum_{i=1}^{n} \frac{1}{i}$.

Dimostrare che $S = \Theta(\log n)$.

Non è nota una forma chiusa per questa somma (nota come somma armonica). Possiamo però ottenerne stime per difetto e per eccesso ricorrendo agli integrali.

In generale quando una somma può essere espressa come $\sum_{i=a}^{b} f(i)$ dove f(i) è una funzione monotona continua non crescente allora possiamo approssimarla tramite integrali





$$\int_{a}^{b+1} f(x)dx \le \sum_{i=a}^{b} f(i) \le \int_{a-1}^{b} f(x)dx$$

applicando il metodo al nostro caso abbiamo:

1.
$$\sum_{i=1}^{n} \frac{1}{i} \ge \int_{1}^{n+1} \frac{1}{x} dx = [\ln x]_{1}^{n+1} = \ln(n+1) - \ln 1 = \ln(n+1).$$
 Quindi $S = \Omega(\log n)$

2.
$$\sum_{i=1}^n \frac{1}{i} = 1 + \sum_{i=2}^n \ln x \le 1 + \int_1^n \frac{1}{x} dx = 1 + [\ln x]_1^n = 1 + \ln n - \ln 1 = 1 + \ln n$$
. Quindi $S = O(\log n)$

Da 1) e 2) deduciamo $S = \Theta(\log n)$. Più precisamente abbiamo:

$$\ln(n+1) < S < \ln n + 1.$$

Esercizio 6. Utilizzando le limitazioni offerte dagli integrali:

$$\int_{a-1}^b f(x)dx \le \sum_{i=a}^b f(i) \le \int_a^{b+1} f(x)dx$$

con f(x) continua e crescente, dimostrare che:

- $\bullet \ \sum_{i=1}^{n} i^c = \Theta(n^{c+1}).$
- $\sum_{i=1}^{n} c^{i} = \Theta\left(c^{n}\right)$