Corso di laurea in Informatica
Introduzione agli Algoritmi

Esercizi su alberi 1

Angelo Monti

SAPIENZA

W&/ UNIVERSITA DI ROMA

Nel sequito , se non altrimenti detto, si assumera che i nodi degli alberi
saranno rappresentati con la sequente classe:

class NodoAB:
def __init__ (self, key = None, left = None, right = None):

self.key = key
self.left = left
self.right = right

Esercizio

Progettare una funzione Crea che dato il puntatore alla radice di un
albero binario memorizzato tramite puntatori restituisca l'albero in
notazione posizionale.

A =12, 10, 4, None, None, 3, None, None, None, None, None, None, 7]

Se l'albero puntato da p contiene nodi allora quantifico lo spazio
necessario per inserire nella lista posizionale A 1 nodi dell'albero
(funzione spazio) e poi inserisco in A i nodi nelle’'albero nelle posizioni
opportune
def spazio(p, x = 0):
restituisce la locazione massima

def crea(p) . # necessaria a sistemare i nodi nella
. # versione posizionale dell'albero non vuoto
1f p == None: a=b=0
if p.left:
retm.'n [] a=spazio(p.left, 2xx+1)
n = spazio(p) if p.right:
= b=spazio(p.right, 2xx+2)
‘.\ e [None.]*(n+1) return max(a,b,x)
inserisci(p, A)
return A def inserisci(p, A, x=0):

per ogni nodo dell'albero a puntatori
krea un nodo nel vettore A
if p!= None:
Al[x]=p.key
if p.left:
inserisci(p.left, A, 2xx+1)
if p.right:
inserisci(p.right, A, 2xx+2)

Esercizio

Tutti gli alberi non vuoti hanno foglie, dato un albero binario
non vuoto vogliamo sapere qual'e il livello minimo in cui
compaiono le sue foglie.

Esempio: per l'albero binario a sinistra la risposta deve essere 2

Progettare un algoritmo che dato il puntatore alla radice di un
albero binario non vuoto di n nodi restituisce il livello minimo in
cui nell'albero compaiono foglie.

L'algoritmo deve avere complessita O(n).

Algoritmo:

Ogni nodo restituisce al padre il livello minimo a cui si trovano
le foglie nel suo sottoalbero

def es(p):
if p.left == p.right == None: return 0
if p.left == None: return es(p.right) + 1
if p.right == None: return es(p.left) + 1
return min(es(p.right), es(p.right)) +1

La complessita & quella di una visita (in postordine)
dell'albero quindi O(n).

Esercizio

Progettare una funzione che dato il puntatore alla radice di un albero
binario non vuoto memorizzato tramite puntatori verifichi se nell'albero
e presente un cammino radice-foglia dove la sequenza di chiavi
incontrate e strettamente crescente.

Ad esempio per l'albero a sinistra la risposta deve essere False mentre

per l'albero di destra la risposta deve essere True (grazie al percorso
2,4,5,7).

P

L'algoritmo deve avere complessita O(n) dove n e il numero di
nodi dell'albero

Esercizio

Ogni nodo restituisce al padre True se e radice di albero per
cui esiste il percorso, risponde False altrimenti.

def es(p):
if p.left == p.right == None:
return True

if p.left!=None and es(p.left) and p.key <p.left.key) or (p.right!=None and es(p.right) and p.key <p.right.key):
return True

return False

Che in modo equivalente si puo anche scrivere come:

def es(p):
if p.left == p.right == None:
return True

if p.left!=None and es(p.left) and p.key <p.left.key:
return True

return p.right!=None and es(p.right) and p.key <p.right.key

La complessita & quella di una visita dell'albero dove

non tutti 1 nodi vengono necessariamente visitati,
quindi O(n).

Esercizio

In un albero binario sono presenti nodi con un solo figlio, nodi con due figli
e nodi senza figli (le foglie).

Progettare un algoritmo che dato il puntatore alla radice di un albero binario
di n nodi restituisce la terna di interi (x,y,z) dove x & il numero di nodi con
due figli, y il numero di nodi con 1 figlio e z il numero di foglie.

Ad esempio per l'albero binario in figura l'algoritmo deve restituire la terna

5, 1, 6).

L'algoritmo deve avere complessita O(n).

IDEE
Affinché ciascun nodo calcoli la terna corrispondente al suo

sottoalbero o, e necessario che esso riceva opportune informazioni
da entrambi i suoi figli e poi effettui il calcolo. Per questo, la
funzione che dobbiamo scrivere dovra sequire la filosofia della

visita in post-ordine.

Ogni nodo restituisce al padre la terna corrispondente al proprio
sottoalbero, se il nodo non a figli restituisce la terna (0,1,0)
altrimenti ricava una terna da ciascuno dei figli se questi sono
due fonde le due terne sommando componente per componente e
aggiorna infine la componente della terna corrispondente alla sua
situazione (vale a dire la prima se & un nodo con due figli, alla
seconda se ha solo un figlio o alla terza se non ha figli)
incrementando quella componente di 1. Restituisce infine al

padre la terna cosi calcolata.

def es(p):
if p== None:
return 0,0,0
if p.left == p.right == None:
return 0, 0, 1
if p.left != None:

dueS, unoS, zeroS = es(p.left)
if p.right != None:
dueD, unoD, zeroD = es(p.right)

if p.left == None:
return dueD, unoD + 1, zeroD
if p.right == None:
return dueS, unoS + 1, zeroS
return dueS + dueD + 1, unoS + unoD, zeroS + zeroD

La complessita & quella di una visita (in postordine)
dell'albero quindi O(n).

Esercizio

In un albero binario lo sbilanciamento di un nodo e il valore assoluto
tra il numero di nodi nel suo sottoalbero sinistro ed il numero di nodi
nel suo sottoalbero destro. Assumiamo che lo sbilanciamento dell'albero

vuoto sia zero

Esempio: a sinistra l'albero binario ed a destra lo sbilanciamento dei
suoi nodi:

Progettare un algoritmo che dato il puntatore alla radice di un albero
binario di n nodi restituisce il massimo tra gli sbilanciamenti dei suoi
nodi.

L'algoritmo deve avere complessita O(n).

Prima soluzione che fa uso di una variabile globale sbilanciamento
inizializzata a zero e che al termine della procedura conterra lo
sbilanciamento massimo dell’'albero

IDEE

Affinché ciascun nodo calcoli il suo sbilanciamento, e necessario che
riceva opportune informazioni da entrambi i suoi figli e poi effettui
il calcolo. Per questo, la funzione che dobbiamo scrivere dovra sequire
la filosofia della visita in post-ordine.

Ogni nodo restituisce al padre il numero di nodi presenti nel suo
sottoalbero

Grazie alle informazioni ricevute dai suoi due figli il nodo padre sara
in grado di calcolare il suo sbilanciamento aggiornando
eventualmente la variabile globale sbilanciamento di modo che questa
contenga lo sbilanciamento massimo per i nodi finora visitati. Il
nodo trasmettera poi al padre il numero di nodi nel suo sottoalbero.

Al termine la variabile globale sbilanciamentoconterra lo

sbilanciamento massimo.

sbilanciamento = 0
def es(p):
global sbilanciamento
if p == None: return 0
if p.left == p.right == None:
return 1
a = es(p.left)
b = es(p.right)
sbilanciamento| = max(sbilanciamento, abs(a-b))
return a+b+1

La complessita & quella di una visita (in postordine)
dell'albero quindi O(n).

Seconda soluzione che non fa uso di una variabili globali: ogni nodo oltre a
restituire il numero di nodi restituisce anche lo sbilanciamento massimo nel
suo sottoalbero

IDEE
Affinché ciascun nodo calcoli il suo sbilanciamento, e necessario

che esso riceva opportune informazioni da entrambi 1 suoi figli e
poi effettui il calcolo. Per questo, la funzione che dobbiamo

scrivere dovra sequire la filosofia della visita in post-ordine.

Ogni nodo restituisce al padre lo sbilanciamento massimo per i
nodi nel suo sottoalbero e il numero di nodi nel suo sottoalbero.
Grazie alle informazioni ricevute dai suoi due figli il nodo padre
sara in grado di calcolare e trasmettere al padre lo sbilanciamento
massimo nel suo sottoalbero e il numero di nodi nel suo
sottoalbero.

Al termine della visita la funzione restituira lo sbilanciamento

massimo (ed il numero di nodi dell'albero).

def es(p):
if p == None:
return 0,0
maxS, nodiS = es(p.left)
maxD, nodiD = es(p.right)
massimo = max(abs(nodiS - nodiD), maxS, maxD)
return massimo, nodiS + nodiD + 1

La complessita & quella di una visita (in postordine)
dell'albero quindi O(n).

