Corso di laurea in Informatica Introduzione agli Algoritmi

Esercizi sulle Equazioni di ricorrenza

Angelo Monti

Esercizio 1

Consideriamo la seguente ricorrenza:

$$T(n) = \left\{ egin{array}{ll} \Theta(1) & ext{se } n \leq 1 \\ T\left(rac{n}{2}
ight) + \Theta(1) & ext{altrimenti} \end{array}
ight.$$

Metodo iterativo

Espandiamo la ricorrenza iterativamente:

$$T(n) = T\left(\frac{n}{2}\right) + \Theta(1)$$

$$= \left(T\left(\frac{n}{4}\right) + \Theta(1)\right) + \Theta(1)$$

$$= T\left(\frac{n}{4}\right) + 2\Theta(1)$$

$$= \left(T\left(\frac{n}{8}\right) + \Theta(1)\right) + 2\Theta(1)$$

$$= T\left(\frac{n}{8}\right) + 3\Theta(1).$$

Proseguendo per k passi, otteniamo:

$$T(n) = T\left(\frac{n}{2^k}\right) + k\Theta(1).$$

$$T(n) = T\left(\frac{n}{2^k}\right) + k\Theta(1).$$

Quando k è tale che $\frac{n}{2^k}=1$, cioè $k=\log_2 n$, raggiungiamo la condizione iniziale $T(1)=\Theta(1)$, quindi:

$$T(n) = T(1) + \log_2 n \cdot \Theta(1).$$

Poiché $T(1) = \Theta(1)$, possiamo scrivere:

$$T(n) = \Theta(1) + \log_2 n \cdot \Theta(1).$$

Semplificando, otteniamo:

$$T(n) = \log_2 n \cdot \Theta(1).$$

Poiché $\log_2 n = \Theta(\log n)$, la soluzione asintotica finale è:

$$T(n) = \Theta(\log n).$$

Metodo dell'albero

$$T(n) = \left\{ egin{array}{ll} \Theta(1) & ext{se } n \leq 1 \\ T\left(rac{n}{2}
ight) + \Theta(1) & ext{altrimenti} \end{array}
ight.$$

In questa equazione di ricorrenza è presente un'unica chiamata ricorsiva. Di conseguenza, l'albero di ricorsione si riduce a una semplice catena, e il metodo di soluzione basato sull'albero si riconduce al metodo iterativo.

Metodo di sostituzione

$$T(n) = \left\{ \begin{array}{ll} \Theta(1) & \text{se } n \leq 1 \\ T\left(\frac{n}{2}\right) + \Theta(1) & \text{altrimenti} \end{array} \right.$$

Supponiamo che $T(n) = \Theta(\log n)$.

Dimostreremo che $T(n) = \Theta(\log n)$ in due passi: prima mostrando che $T(n) \in O(\log n)$, e successivamente dimostrando che $T(n) \in \Theta(\log n)$.

Passo 1: Dimostrare che $T(n) \in O(\log n)$

Eliminando l'asintotica dall'equazione di ricorrenza e partendo per semplicità di calcoli da T(2), otteniamo:

$$T(n) \leq \left\{ egin{array}{ll} b & ext{se } n \leq 2 \\ T\left(rac{n}{2}
ight) + a & ext{altrimenti} \end{array}
ight.$$

Dimostreremo che esiste una costante c per cui $T(n) \leq c \log_2 n$. Prendendo $c \geq b$ abbiamo

$$T(2) \le b \le c \cdot 1 = c \log_2 2$$

e l'ipotesi vale per il caso base.

Applicando l'ipotesi di induzione, cioè $T\left(\frac{n}{2}\right) \leq c\log_2\frac{n}{2}$), otteniamo:

$$T(n) \leq c(\log_2 n - 1) + a = c\log_2 n - (c - a) \leq c\log_2 n$$

Dove l'ultima diseguaglianza vale prendendo $c \geq a$. Quindi, prendendo $c = \max\{a,b\}$ abbiamo dimostrato che:

$$T(n) = O(\log n)$$

Passo 2: Dimostrare che $T(n) \in \Omega(\log n)$

Eliminando l'asintotica dall'equazione di ricorrenza, otteniamo:

$$T(n) \geq \left\{ egin{array}{ll} b & ext{se } n \leq 1 \\ T\left(rac{n}{2}
ight) + a & ext{altrimenti} \end{array}
ight.$$

Dimostreremo che esiste una costante c per cui $T(n) \ge c \log_2 n$. Abbiamo

$$T(1) \ge b \ge 0 = c \cdot \log_2 1$$

e l'ipotesi vale per il caso base. Supponiamo che l'ipotesi di induzione sia valida, cioè che

$$T\left(\frac{n}{2}\right) \ge c \log_2 \frac{n}{2}.$$

Sostituendo questa ipotesi nella ricorrenza, otteniamo:

$$T(n) \ge c(\log_2 n - 1) + a = c\log_2 n + (a - c) \ge c\log_2 n$$

Dove l'ultima diseguaglianza vale prendendo $c \le a$. Quindi, prendendo c = a abbiamo dimostrato che:

$$T(n) = \Omega(\log_2 n)$$

Teorema principale

$$T(n) = \left\{ egin{array}{ll} \Theta(1) & ext{se } n \leq 1 \\ T\left(rac{n}{2}
ight) + \Theta(1) & ext{altrimenti} \end{array}
ight.$$

Calcoliamo $\log_b a = \log_2 1 = 0$. Poiché $f(n) = \Theta(1) = \Theta(n^{\log_b a})$, il caso 2 si applica. La soluzione è:

$$T(n) = \Theta(\log n).$$

Esercizio 2

Consideriamo la seguente ricorrenza:

$$T(n) = \left\{ \begin{array}{ll} \Theta(1) & \text{se } n = 2 \\ 2T(\sqrt{n}) + \Theta(\log n) & \text{altrimenti} \end{array} \right.$$

Metodo iterativo

Espandiamo la ricorrenza iterativamente:

$$\begin{split} T(n) &= 2T \left(n^{\frac{1}{2}} \right) + \Theta(\log n) \\ &= 2 \left(2T \left(\left(n^{\frac{1}{2}} \right)^{\frac{1}{2}} \right) + \Theta\left(\log n^{\frac{1}{2}} \right) \right) + \Theta(\log n) \\ &= 2^2 T \left(n^{\frac{1}{2^2}} \right) + 2 \cdot \Theta\left(\frac{1}{2} \log n \right) + \Theta(\log n) \\ &= 2^2 T \left(n^{\frac{1}{2^2}} \right) + 2 \cdot \Theta(\log n) \\ &= \dots \\ &= 2^i T \left(n^{\frac{1}{2^i}} \right) + i \cdot \Theta(\log n) \end{split}$$

$$2^i T\left(n^{\frac{1}{2^i}}\right) + i \cdot \Theta(\log n)$$

l'iterazione termina quando $n^{\frac{1}{2^i}}=2$, ovvero quando $\frac{1}{2^i}\log_2 n=1$. Da questo otteniamo $\log_2 n=2^i$, il che implica che $i=\log_2\log_2 n$. A quel punto, otteniamo:

$$\begin{split} T(n) &= 2^{\log_2 \log_2 n} T(2) + \log_2 \log_2 n \Theta(\log n) \\ &= \Theta(\log_2 n) + \Theta(\log n \log \log n) \\ &= \Theta(\log n \log \log n) \end{split}$$

Metodo dell'albero

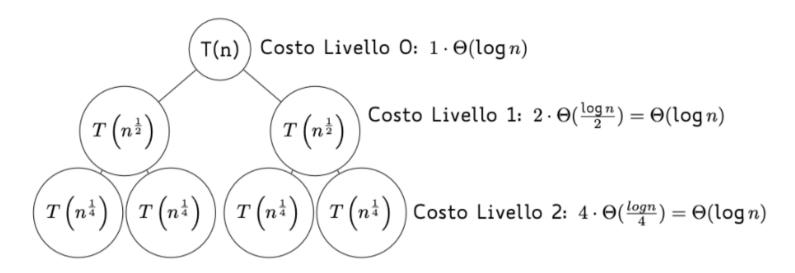
$$T(n) = \left\{ egin{array}{ll} \Theta(1) & ext{se } n=2 \\ 2T(\sqrt{n}) + \Theta(\log n) & ext{altrimenti} \end{array}
ight.$$

Costruzione dell'albero.

- · Al livello 0, il costo è $f(n) = \Theta(\log n)$.
- · Al livello 1, abbiamo 2 sottoproblemi di dimensione \sqrt{n} , ciascuno con costo $\Theta\left(\log n^{\frac{1}{2}}\right) = \Theta(\frac{\log n}{2})$, per un costo totale di $2 \cdot \Theta(\frac{\log n}{2}) = \Theta(\log n)$.
- · Al livello k, ci sono 2^k sottoproblemi di dimensione $n^{\frac{1}{2^k}}$, ciascuno con costo $\Theta\left(\frac{\log n}{2^k}\right)$, per un costo totale di:

Costo livello
$$k = 2^k \cdot \Theta\left(\frac{\log n}{2^k}\right) = \Theta(\log n).$$

Nell'immagine che segue ci sono i primi livelli dell' albero di ricorsione per $T(n) = 2T(\sqrt{n}) + \Theta(\log n)$:



Calcolo del numero di livelli. L'albero si espande fino a quando i sottoproblemi raggiungono dimensione 2 cioé:

$$n^{\frac{1}{2^k}} = 2 \Rightarrow k = \log_2 \log_2 n$$

Costo complessivo. Il costo totale è la somma dei costi su tutti i livelli:

$$\mathsf{Costo} \ \mathsf{totale} = \sum_{k=0}^{\log_2 \log_2 n} \Theta(\log n) = \Theta(\log n \log \log n).$$

Metodo di sostituzione

$$T(n) = \left\{ egin{array}{ll} \Theta(1) & ext{se } n=2 \\ 2T(\sqrt{n}) + \Theta(\log n) & ext{altrimenti} \end{array}
ight.$$

Dimostreremo che $T(n) = \Theta(\log n \log \log n)$ in due passi:

- 1. prima mostrando che $T(n) \in O(\log n \log \log n)$,
- 2. e successivamente dimostrando che $T(n) \in \Omega(\log n \log \log n)$.

Passo 1: Dimostrare che $T(n) \in O(\log n \log \log n)$

Eliminando l'asintotica dall'equazione di ricorrenza e partendo per semplicità di calcoli da n=4, otteniamo:

$$T(n) = \left\{ \begin{array}{ll} b & \text{se } n = 4 \\ 2T(\sqrt{n}) + a\log_2 n & \text{altrimenti} \end{array} \right.$$

Dimostreremo che esiste una costante c per cui

$$T(n) \le c \log_2 n \log_2 \log_2 n.$$

Prendendo $c \geq b$ e considerando che $\log_2 4 \log_2 \log_2 4 = 2 > 0$ abbiamo

$$T(4) = b \le c \log_2 4 \log_2 \log_2 4$$

e l'ipotesi vale per il caso base.

Sostituendo l'ipotesi induttiva per $T(\sqrt{n})$, otteniamo:

$$T(n) \leq 2c \cdot \log_2 \sqrt{n} \cdot \log_2 \log_2 \sqrt{n} + a \log_2 n.$$

Poiché $\log_2 \sqrt{n} = \frac{\log_2 n}{2}$ e $\log_2 \log_2 \sqrt{n} = \log_2 \log_2 n - 1$, abbiamo:

$$T(n) \leq c \cdot \log_2 n \log_2 \log_2 n - c \log_2 n + a \log_2 n \leq c \cdot \log_2 n \log_2 \log_2 n.$$

dove l'ultima diseguaglianza vale se $c \geq a$. Quindi, prendendo $c = \max\{a,b\}$, abbiamo dimostrato che:

$$T(n) = O(\log n \log \log n)$$

Passo 2: Dimostrare che $T(n) \in \Omega(\log n \log \log n)$

Eliminando l'asintotica dall'equazione di ricorrenza otteniamo:

$$T(n = \left\{ egin{array}{ll} b & ext{se } n=2 \ 2T(\sqrt{n}) + a\log_2 n & ext{altrimenti} \end{array}
ight.$$

Per dimostrare che $T(n)\in\Omega(\log n\log\log n)$, possiamo utilizzare un argomento analogo a quello che abbiamo usato per la parte di $O(\log n\log\log n)$, ma in senso opposto. Ipotizziamo che esista una costante c>0 tale che:

$$T(n) \ge c \log_2 n \log_2 \log_2 n$$

Per n=2 abbiamo

$$T(2)=b\geq 0=c\cdot 0=c\log_2 2\log_2\log_2 2$$

dove l'ultimo passaggio segue perché $\log_2\log_22=0$. Dunque l'ipotesi vale per il caso base.

Supponendo che per $T(\sqrt{n})$ valga l'ipotesi induttiva:

$$T(\sqrt{n}) \ge c \log_2 \sqrt{n} \log_2 \log_2 \sqrt{n}.$$

Poiché $\log_2 \sqrt{n} = \frac{\log_2 n}{2}$ e $\log_2 \log_2 \sqrt{n} = \log_2 \log_2 n - 1$, abbiamo:

$$T(\sqrt{n}) \geq c \cdot \frac{\log_2 n}{2} \cdot (\log_2 \log_2 n - 1).$$

Sostituendo nella ricorrenza:

$$T(n) \geq 2 \cdot \left(c \cdot \frac{\log_2 n}{2} \cdot (\log_2 \log_2 n - 1)\right) + a \log_2 n.$$

Semplificando:

$$T(n) \geq c \cdot \log_2 n \log_2 \log_2 n + (a-c) \log_2 n \geq d \cdot \log_2 n \cdot \log_2 \log_2 n$$

dove l'ultima diseguaglianza segue se $c \le a$. Quindi, assumendo c = a, possiamo concludere che : $T(n) \in \Omega(\log n \log \log n)$.

Esercizio 3

Consideriamo la seguente ricorrenza:

$$T(n) = \left\{ egin{array}{ll} \Theta(1) & ext{se } n=1 \\ 4T\left(rac{n}{2}
ight) + \Theta(n) & ext{altrimenti} \end{array}
ight.$$

Metodo iterativo

$$T(n) = 4T\left(\frac{n}{2}\right) + \Theta(n)$$

$$= 4\left(4T\left(\frac{n}{2^2}\right) + \Theta\left(\frac{n}{2}\right)\right) + \Theta(n)$$

$$= 4^2T\left(\frac{n}{2^2}\right) + 4\Theta\left(\frac{n}{2}\right) + \Theta(n)$$

$$= \dots$$

$$= 4^iT\left(\frac{n}{2^i}\right) + \sum_{j=0}^{i-1} 4^j\Theta\left(\frac{n}{2^j}\right)$$

$$4^{i}T\left(\frac{n}{2^{i}}\right) + \sum_{j=0}^{i-1} 4^{j}\Theta\left(\frac{n}{2^{j}}\right)$$

Ci fermiamo quando $\frac{n}{2^i} = 1$ vale a dire $i = \log_2 n$ ed otteniamo

$$T(n) = 4^{\log_2 n} T(1) + \Theta\left(n \sum_{j=0}^{\log n - 1} 2^j\right)$$

$$= 2^{2 \log_2 n} \Theta(1) + \Theta\left(n 2^{\log n}\right)$$

$$= \Theta(n^2) + \Theta\left(n^2\right)$$

$$= \Theta\left(n^2\right)$$

Dunque la soluzione tramite questo metodo è $\Theta(n^2)$.

$$T(n) = \left\{ egin{array}{ll} \Theta(1) & ext{se } n=1 \ 4T\left(rac{n}{2}
ight) + \Theta(n) & ext{altrimenti} \end{array}
ight.$$

Metodo principale

Possiamo applicare questo metodo perché la ricorrenza soddisfa le ipotesi del teorema; inoltre:

- a = 4, b = 2
- $n^{\log_b a} = n^{\log_2 4} = n^2$
- $f(n) = \Theta(n) = O(n^{\log_b a \epsilon})$ (ad es. per $\epsilon = 1$)

Siamo quindi nel **caso 1**, da cui: $T(n) = \Theta(n^2)$.

$$T(n) = \left\{ egin{array}{ll} \Theta(1) & ext{se } n=1 \\ 4T\left(rac{n}{2}
ight) + \Theta(n) & ext{altrimenti} \end{array}
ight.$$

Metodo di sostituzione

Dobbiamo innanzi tutto eliminare la notazione asintotica, quindi l'equazione diventa:

$$T(n) = 4T\left(\frac{n}{2}\right) + b \cdot n$$
$$T(1) = a$$

Dove a e b sono costanti positive. Proviamo a dimostrare per induzione che la soluzione è:

 $T(n) \ge c \cdot n^2$, dove c è una costante da determinare.

<u>Passo base</u>. $T(1) = a \ge c$, da cui deduciamo una prima condizione su c.

<u>Passo induttivo</u>. Sostituendo nell'equazione generica otteniamo:

$$T(n) \geq 4c \left(\frac{n}{2}\right)^2 + b \cdot n$$

$$= c \cdot n^2 + b \cdot n$$

$$\geq c \cdot n^2$$

Ne concludiamo che $T(n) = \Omega(n^2)$.

Per quanto riguarda la maggiorazione, tentiamo la soluzione $T(n) \le c \cdot n^2$ dove c è una costante da determinare.

<u>Passo base</u>. $T(1) = a \le c$, da cui deduciamo una prima condizione su c.

<u>Passo induttivo</u>. Sostituendo nell'equazione generica otteniamo:

$$T(n) \le 4c \left(\frac{n}{2}\right)^2 + b \cdot n = c \cdot n^2 + b \cdot n$$
 che non è mai $\le c \cdot n^2$ perché b è una costante positiva.

Tentiamo allora $T(n) \le c \cdot n^2 - d \cdot n$.

<u>Passo base</u>. $T(1) = a \le c - d$ che è vera per certi valori di c e d (ad esempio c = 2d e $d \ge a$)

<u>Passo induttivo</u>. Sostituendo l'ipotesi induttiva nell'equazione otteniamo:

$$T(n) \leq 4\left(c\left(\frac{n}{2}\right)^2 - d\left(\frac{n}{2}\right)\right) + b \cdot n$$

$$= c \cdot n^2 - 2d \cdot n + b \cdot n$$

$$= c \cdot n^2 - d \cdot n - d \cdot n + b \cdot n$$

$$\leq c \cdot n^2 - d \cdot n$$

Dove l'ultima diseguaglianza segue prendendo $d \ge b$. Ne concludiamo che prendendo c = 2de $d = \max\{a,b\}$ si ha $T(n) = O(n^2)$.

Unendo le due limitazioni abbiamo: $T(n) = \Theta(n^2)$.

$$T(n) = \left\{ \begin{array}{ll} \Theta(1) & \text{se } n = 1 \\ 4T\left(\frac{n}{2}\right) + \Theta(n) & \text{altrimenti} \end{array} \right.$$

Metodo dell'albero

- · Nell'albero ogni nodo ha 4 figli questo significa che a livello i ci saranno 4^i nodi ciascuno dei quali contribuirà per un costo $\Theta\left(\frac{n}{2^i}\right)$.
- . La ricorsione termina quando $\frac{n}{2^i} = 1$, a dire $i = \log_2 n$ questo significa che i livelli dell'albero sono $\log n + 1$ (da O a $\log n$).

Il contributo totale sommato per livelli sarà

$$\sum_{i=0}^{\log n} 4^i \Theta\left(\frac{n}{2^i}\right) = \sum_{i=0}^{\log n} 2^i \Theta(n) = \Theta(n) \sum_{i=0}^{\log n} 2^i = \Theta(n) \Theta\left(2^{\log n}\right) = \Theta(n)\Theta(n) = \Theta(n^2)$$

Dove per risolvere la sommatoria ho utilizzato $\sum_{i=0}^{n} 2^i = \Theta\left(2^x\right)$

Esercizio 4

Consideriamo la seguente ricorrenza:

$$T(n) = \left\{ egin{array}{ll} \Theta(1) & ext{se } n=1 \\ 2T\left(rac{n}{2}
ight) + \Theta(n^2) & ext{altrimenti} \end{array}
ight.$$

Metodo Iterativo

$$T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n^2)$$

$$= 2\left(2T\left(\frac{n}{2^2}\right) + \Theta\left(\left(\frac{n}{2}\right)^2\right)\right) + \Theta(n^2)$$

$$= 2^2T\left(\frac{n}{2^2}\right) + 2\Theta\left(\left(\frac{n}{2}\right)^2\right) + \Theta(n^2)$$

$$= \dots$$

$$= 2^iT\left(\frac{n}{2^i}\right) + \sum_{j=0}^{i-1} 2^j\Theta\left(\left(\frac{n}{2^j}\right)^2\right)$$

$$= 2^iT\left(\frac{n}{2^i}\right) + \Theta\left(n^2\sum_{j=0}^{i-1} \frac{1}{2^j}\right)$$

$$2^{i}T\left(\frac{n}{2^{i}}\right) + \Theta\left(n^{2}\sum_{j=0}^{i-1}\frac{1}{2^{j}}\right)$$

Ci fermiamo quando $\frac{n}{2^i} = 1$ vale a dire $i = \log_2 n$ ed otteniamo

$$T(n) = 2^{\log_2 n} T(1) + \Theta\left(n^2 \sum_{j=0}^{\log n-1} \frac{1}{2^j}\right)$$

$$= n\Theta(1) + \Theta(n^2)\Theta(1)$$

$$= \Theta(n) + \Theta(n^2)$$

$$= \Theta\left(n^2\right)$$

Dove ho utilizzato $\sum_{i=0}^{\infty} c^i = \Theta(1)$ quando c < 1

Dunque la soluzione tramite questo metodo è $\Theta(n^2)$.

$$T(n) = \left\{ egin{array}{ll} \Theta(1) & ext{se } n=1 \\ 2T\left(rac{n}{2}
ight) + \Theta(n^2) & ext{altrimenti} \end{array}
ight.$$

Metodo Principale

Possiamo applicare questo metodo perché la ricorrenza soddisfa le ipotesi del teorema; inoltre:

- a = 2, b = 2
- $n^{\log_b a} = n^{\log_2 2} = n$
- $f(n) = \Theta(n^2) = \Omega(n^{\log_b a + \epsilon})$ (ad es. per $\epsilon = 1$)

Poiché
$$a \cdot f\left(\frac{n}{b}\right) = 2\left(\frac{n}{2}\right)^2 = \frac{n^2}{2} < cn^2 \text{ con } c = \frac{1}{2}, \text{ siamo}$$

nel caso 3 e possiamo concludere che $T(n) = \Theta(n^2)$

$$T(n) = \left\{ egin{array}{ll} \Theta(1) & ext{se } n=1 \\ 2T\left(rac{n}{2}
ight) + \Theta(n^2) & ext{altrimenti} \end{array}
ight.$$

Metodo di sostituzione

Dobbiamo innanzi tutto eliminare la notazione asintotica, quindi l'equazione diventa:

$$T(n) = 2T\left(\frac{n}{2}\right) + b \cdot n^2$$

$$T(1) = a$$

Per a e b costanti positive.

Proviamo a dimostrare per induzione la soluzione:

 $T(n) \le cn^2$ dove c è una costante da determinare.

<u>Passo base</u>. $T(1) \le a \le c$, da cui deduciamo una prima condizione su c.

<u>Passo induttivo</u>. Sostituendo nell'equazione generica otteniamo:

$$T(n) \leq 2c \left(\frac{n}{2}\right)^2 + b \cdot n^2$$

$$= c\frac{n^2}{2} + b \cdot n^2$$

$$= \left(\frac{c}{2} + b\right) n^2$$

$$\leq c \cdot n^2$$

Dove l'ultima disuguaglianza vale se $\frac{c}{2} + b \le c$ e basta quindi prendere $c \ge 2b$.

Abbiamo dimostrato che $T(n) = O(n^2)$

Proviamo ora a dimostrare per induzione che vale anche $T(n) = \Omega(n^2)$. Ipotizziamo dunque:

 $T(n) \ge c \cdot n^2$ dove c è una costante da determinare.

<u>Passo base</u>. $T(1) = a \ge c$, da cui deduciamo una prima condizione su c.

<u>Passo induttivo</u>. Sostituendo nell'equazione generica

otteniamo:

$$T(n) \geq 2c \left(\frac{n}{2}\right)^2 + b \cdot n^2$$

$$= c\frac{n^2}{2} + b \cdot n^2$$

$$= \left(\frac{c}{2} + b\right) n^2$$

$$\geq c \cdot n^2$$

Dove l'ultima disuguaglianza vale se $\frac{c}{2}+b\geq c$ e basta quindi prendere $c\leq 2b$.

Ne deduciamo che con $c = \min\{a, 2b\}$ vale $T(n) = \Omega(n^2)$ Dalle due limitazioni concludiamo che $T(n) = \Theta(n^2)$

$$T(n) = \left\{ egin{array}{ll} \Theta(1) & ext{se } n=1 \ 2T\left(rac{n}{2}
ight) + \Theta(n^2) & ext{altrimenti} \end{array}
ight.$$

Metodo dell'albero

- · Nell'albero ogni nodo ha 2 figli questo significa che a livello i ci saranno 2^i nodi ciascuno dei quali contribuirà per un costo $\Theta\left(\left(\frac{n}{2^i}\right)^2\right)$.
- . La ricorsione termina quando $\frac{n}{2^i} = 1$, vale a dire $i = \log_2 n$ questo significa che i livelli dell'albero sono $\log n + 1$ (da O a $\log n$).

Il contributo totale sommato per livelli sarà

$$\sum_{i=0}^{\log n} 2^i \Theta\left(\left(\frac{n}{2^i}\right)^2\right) = \sum_{i=0}^{\log n} \Theta\left(\frac{n^2}{2^i}\right) = \Theta\left(n^2 \sum_{i=0}^{\log n} \frac{1}{2^i}\right) = \Theta(n^2)$$

Dove per la sommatoria ho utilizzato $\sum_{i=0}^{\infty} c^i = \Theta(1)$ quando c < 1.

Esercizio 5

Consideriamo la seguente ricorrenza:

$$T(n) = \begin{cases} \Theta(1) & \text{se } n = 1 \\ 2T\left(\frac{n}{2}\right) + \Theta(n\log n) & \text{altrimenti} \end{cases}$$

Metodo principale:

- $\cdot \ a = b = 2$
- $n^{\log_b a} = n$
- n è asintoticamente più piccolo di $f(n) = n \log n$, ma non polinomialmente più piccolo.

Di conseguenza **non** possiamo applicare il metodo del teorema principale.

Metodo iterativo

$$T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n\log n)$$

$$= 2\left(2T\left(\frac{n}{2}\right) + \Theta\left(\frac{n}{2}\log\frac{n}{2}\right)\right) + \Theta(n\log n)$$

$$= 2^{2}T\left(\frac{n}{2^{2}}\right) + \Theta\left(n\log\frac{n}{2}\right) + \Theta(n\log n)$$

$$= \dots$$

$$= 2^{i}T\left(\frac{n}{2^{i}}\right) + \Theta\left(\sum_{j=0}^{i-1} n\log\frac{n}{2^{j}}\right)$$

$$= 2^{i}T\left(\frac{n}{2^{i}}\right) + \Theta\left(n\sum_{j=0}^{i-1} (\log n - \log 2^{j})\right)$$

$$= 2^{i}T\left(\frac{n}{2^{i}}\right) + \Theta\left(n\sum_{j=0}^{i-1} (\log n - \log 2^{j})\right)$$

$$2^{i}T\left(\frac{n}{2^{i}}\right) + \Theta\left(n\sum_{j=0}^{i-1}(\log n - j)\right)$$

Ci fermiamo quando $\frac{n}{2^i} = 1$ vale a dire $i = \log_2 n$ ed otteniamo

$$T(n) = 2^{\log_2 n} T(1) + \Theta\left(n \sum_{j=0}^{\log n-1} (\log n - j)\right)$$

$$= n\Theta(1) + \Theta\left(n \sum_{k=1}^{\log n} k\right)$$

$$= \Theta(n) + \Theta\left(n \log^2 n\right)$$

$$= \Theta\left(n \log^2 n\right)$$

Dove ho usato che $\sum_{k=1}^{x} k = \Theta(x^2)$

$$T(n) = \left\{ egin{array}{ll} \Theta(1) & ext{se } n=1 \\ 2T\left(rac{n}{2}
ight) + \Theta(n\log n) & ext{altrimenti} \end{array}
ight.$$

Metodo di sostituzione

Impostiamo la dimensione del caso base a 2, per evitare di dover gestire il caso di log $1 = 0 \rightarrow T(2) = \Theta(1)$.

Dobbiamo innanzi tutto eliminare la notazione asintotica, quindi l'equazione diventa:

$$T(n) = 2T\left(\frac{n}{2}\right) + b \cdot n \log_2 n$$

$$T(2) = a$$

dove a e b sono costanti positive

Proviamo a dimostrare per induzione la soluzione:

 $T(n) \le cn \log_2^2 n$, dove c è una costante da determinare.

<u>Passo base</u>. $T(2) = a \le c * 2 * 1$, che è vera per $c \ge a/2$.

Passo induttivo:

$$T(n) = 2T\left(\frac{n}{2}\right) + b \cdot n \log_2 n$$

$$\leq 2c \cdot \frac{n}{2} \log_2^2 \frac{n}{2} + b \cdot n \log_2 n$$

$$\leq c \cdot n(\log_2 n - 1)^2 + b \cdot n \log_2 n$$

$$\leq c \cdot n(\log_2 n + 1 - 2\log_2 n) + b \cdot n \log_2 n$$

$$\leq c \cdot n \log_2 n + c \cdot n - 2c \cdot n \log_2 n + b \cdot n \log_2 n$$

$$\leq c \cdot n \log_2 n - c \cdot n \log_2 n + b \cdot n \log_2 n$$

$$\leq c \cdot n \log_2 n$$

Dove la penultima diseguaglianza vale perché $cn \le cn \log n$ e per l'ultima diseguaglianza basta prendere $c \ge b$

Abbiamo quindi dimostrato che $T(n) = O(n \log^2 n)$

Si lascia per esercizio dimostrare che $T(n) = \Omega(n \log^2 n)$

Esercizio 6

Consideriamo la seguente ricorrenza:

$$T(n) = \begin{cases} \Theta(1) & \text{se } n = 1 \\ 2T\left(\frac{n}{2}\right) + \Theta\left(\frac{n}{\log n}\right) & \text{altrimenti} \end{cases}$$

Metodo principale:

- $\cdot a = b = 2$
- $n^{\log_b a} = n$
- n è asintoticamente più grande di $f(n) = \frac{n}{\log n}$, ma non polinomialmente.

Di conseguenza **non** possiamo applicare il metodo del teorema principale.

Metodo iterativo

$$T(n) = 2T\left(\frac{n}{2}\right) + \Theta\left(\frac{n}{\log n}\right)$$

$$= 2\left(2T\left(\frac{n}{2}\right) + \Theta\left(\frac{n/2}{\log n/2}\right)\right) + \Theta\left(\frac{n}{\log n}\right)$$

$$= 2^{2}T\left(\frac{n}{2^{2}}\right) + \Theta\left(\frac{n}{\log_{2} n/2}\right) + \Theta\left(\frac{n}{\log n}\right)$$

$$= \dots$$

$$= 2^{i}T\left(\frac{n}{2^{i}}\right) + \Theta\left(\sum_{j=0}^{i-1} \frac{n}{\log \frac{n}{2^{j}}}\right)$$

$$= 2^{i}T\left(\frac{n}{2^{i}}\right) + \Theta\left(n\sum_{j=0}^{i-1} \frac{1}{\log n - j}\right)$$

$$2^{i}T\left(\frac{n}{2^{i}}\right) + \Theta\left(n\sum_{j=0}^{i-1}\frac{1}{\log n - j}\right)$$

Ci fermiamo quando $\frac{n}{2^i} = 1$ vale a dire $i = \log_2 n$ ed otteniamo

$$T(n) = 2^{\log_2 n} T(1) + \Theta\left(n \sum_{j=0}^{\log n - 1} \frac{1}{\log n - j}\right)$$

$$= n\Theta(1) + \Theta\left(n \sum_{k=1}^{\log n} \frac{1}{k}\right)$$

$$= \Theta(n) + \Theta\left(n \log \log n\right)$$

$$= \Theta\left(n \log \log n\right)$$

Dove ho usato che $\sum_{k=1}^{x} \frac{1}{k} = \Theta(\log x)$