Introduzione agli Algoritmi
Esame Scritto a canali unificati
con spunti per la soluzione

docenti: T. Calamoneri, A. Monti
Sapienza Universita di Roma

15 Gennaio 2026

Esercizio 1 (10 punti): Nella funzione riportata qui sotto,
i valori delle costanti a,b corrispondono rispettivamente alla
seconda e terza cifra che compaiono nella propria matricola.

def esl(n):
if n <= 2:
return 1
s, t = (a+1)*n, O
for i in range(s):
t+= 1
for i in range (b+1):
t += (b+1)*esl(n//(a+2))
return t

Si sostituiscano i parametri a e b con i valori corrispondenti
dati dalla propria matricola (evitando di ragionare in forma
parametrica) e si risponda alle sequenti domande:

1. Qual é l'equazione di ricorrenza che descrive il costo
computazionale della funzione esl(n)? Perché?

2. Risolvere l'equazione di ricorrenza con con un metodo a
vostra scelta, dettagliando i calcoli.

Diamo una soluzione generale, che serve per capire come
procedere. Tuttavia, sottolineiamo che il testo richiede di
svolgere l'esercizio sostituendo i valori di a e b PRIMA di
scrivere l'equazione di ricorrenza.

1. il primo for ha costo O(n).
Il secondo for itera b+ 1 volte ed ogni iterazione fa una
chiamata ricorsiva su n//(a+2) per un costo di (b+1)T (;25).
La ricorrenza e dunque:

O(1) se n <2,
T(n)=

(b+1)T()—f—@(n) se n > 2.

a—+ 2

2. Possiamo risolvere l'equazione con il teorema principa-
le, infatti la ricorrenza é della forma:

T(n) = AT(%) + (),
dove
A=b+1, B=a+2, f(n)=0(n);

inoltre, il caso base é 7'(1) = ©(1) come richiesto dall'e-
nunciato del teorema.
Si confronta f(n) con la funzione critica

nlogp A — jlog, 5 (b+1)
ottenendo cosi:

O(n) seb+1<a+2,

T'(n) = ¢ ©(nlogn) seb+1l=a+2,

O (n'°%+2t) se h+1>a+2.

2

Esercizio 2 (10 punti): Siano dati un array A di n elementi
(con possibili ripetizioni) ordinato in ordine non decrescente
ed un intero non negativo k.

Progettare un algoritmo iterativo che restituisca la coppia
di indici della prima e dell'ultima occorrenza di k¥ in A. 1
due indici dovranno essere uguali se k occorre solo una volta
ed entrambi pari a -1 se & non é presente in A. Il costo
computazionale deve essere O(logn).

Dell'algoritmo proposto:

a) si scriva lo pseudocodice opportunamente commentato, in
modo da chiarire il senso delle istruzioni,

b) si giustifichi il costo computazionale.

a. E immediato capire che bisogna sfruttare due leggere
modifiche della ricerca binaria, in modo che determini-
no rispettivamente la prima e l'ultima occorrenza di &.
Ecco un possibile pseudocodice:

def es2(A, k):
A é un array ordinato e k & una chiave
si richiama la funzione che cerca la prima occorrenza
i = PrimaOccorrenza(A,k)
se k non presente inutile proseguire
if i ==-1:
return (-1,-1)
si richiama la funzione che cerca l'ultima occorrenza
j = UltimaOccorrenza(A k)
return(i,j)

dove le due funzioni richiamate sono:

def PrimaOccorrenza(A, k):
A e un array ordinato e k € una chiave
restituisce l'indice della prima occorrenza di k,
o -1 se k non e presente
min, max = O, len(A)-1
risultato = -1
while min<=max:
med = (min+max)//2
if k == A[med]:
risultato = med
max = med -1
elif Almed] < k:
min = med + 1
else:
max = med-1
return risultato

def UltimaOccorrenza(A, k):
A é un array ordinato e k & una chiave
H restituisce l'indice dell'ultima occorrenza di k,
o -1 se k non e presente
min, max = O, len(A)-1
risultato = -1
while min <= max:
med = (min+max)//2
if k == A[med]:
risultato = med
min = med +1
elif A[lmed] < k:
min = med + 1
else:
max = med-1
return risultato

b. Il costo computazionale é dato dalla somma dei costi
delle due funzioni, RicBinSin e RicBinDes, entrambi pa-
ri al costo della ricerca binaria, cioé O(logn). E richiesto
di calcolare il costo formalmente.

Esercizio 3 (10 punti):
Sia dato un albero binario con n nodi tramite il puntatore r
alla sua radice, in cui ogni nodo contiene:

- un campo key, che rappresenta la chiave del nodo;

- un puntatore left al figlio sinistro;

- un puntatore right al figlio destro.
Progettare un algoritmo ricorsivo che, presi r ed un intero non
negativo k, stampi tutte le chiavi dei nodi che si trovano al
livello k dell'albero (assumendo che la radice si trovi al livello
0). Le chiavi devono essere stampate nell'ordine in cui i nodi
vengono incontrati durante una visita inorder dell’albero.
Si assuma che l'albero possa essere vuoto.
Il costo computazionale deve essere O(n).

Ad esempio per l'albero in figura con k=1 vanno stampate le
chiavi 4 e 10; con k =2 vanno stampate 1, 8 e 15 mentre con
k=5 non va stampato nulla.

(5]
@
©Oe® @

® ©®

Dell'algoritmo proposto:
a) si scriva lo pseudocodice opportunamente commentato, in
modo da chiarire il senso delle istruzioni,

5

b) si giustifichi il costo computazionale, scrivendo la ricor-

renza che lo caratterizza.

NOTA BENE: nello pseudocodice della funzione ricorsiva non

si deve far uso di variabili globali.

d.

L'algoritmo eseqgue una visita inorder dell'albero bina-
rio. Durante la discesa ricorsiva, il parametro % viene
decrementato a ogni livello. Quando k£ =0, il nodo cor-
rente si trova al livello richiesto e la sua chiave viene
stampata. In questo modo vengono stampate solo le
chiavi dei nodi al livello i nell'ordine inorder.

Ecco un possibile pseudocodice:

def es3(r, k):
if r is None:
return
visita al sottoalbero sinistro (inorder)
es3(r.left, k - 1)
visita del nodo
if k == O:
print(r.key)
H visita al sottoalbero destro
es3(r.right, k - 1)

Il costo computazionale e quello di una visita. L'equa-
zione di ricorrenza relativa alla visita e:

dove k, € il numero di nodi presenti nel sottoalbero
sinistro, 0 < k£ < n. L'equazione si pud risolvere con il
metodo di sostituzione e da come soluzione O(n).

