
Introduzione agli Algoritmi

Esame Scritto a canali unificati
con spunti per la soluzione

docenti: T. Calamoneri, A. Monti

Sapienza Università di Roma

15 Gennaio 2026

Esercizio 1 (10 punti): Nella funzione riportata qui sotto,

i valori delle costanti a, b corrispondono rispettivamente alla
seconda e terza cifra che compaiono nella propria matricola.

def es1(n):

if n <= 2:

return 1

s, t = (a+1)*n, 0

for i in range(s):

t+= i

for i in range (b+1):

t += (b+1)*es1(n//(a+2))

return t

Si sostituiscano i parametri a e b con i valori corrispondenti

dati dalla propria matricola (evitando di ragionare in forma

parametrica) e si risponda alle seguenti domande:

1. Qual è l’equazione di ricorrenza che descrive il costo

computazionale della funzione es1(n)? Perché?

1

2. Risolvere l’equazione di ricorrenza con con un metodo a

vostra scelta, dettagliando i calcoli.

Diamo una soluzione generale, che serve per capire come
procedere. Tuttavia, sottolineiamo che il testo richiede di
svolgere l’esercizio sostituendo i valori di a e b PRIMA di
scrivere l’equazione di ricorrenza.

1. il primo for ha costo Θ(n).
Il secondo for itera b+1 volte ed ogni iterazione fa una
chiamata ricorsiva su n//(a+2) per un costo di (b+1)T

(
n

a+2

)
.

La ricorrenza è dunque:

T (n) =


Θ(1) se n ≤ 2,

(b+ 1)T

(
n

a+ 2

)
+Θ(n) se n > 2.

2. Possiamo risolvere l’equazione con il teorema principa-
le, infatti la ricorrenza è della forma:

T (n) = AT
(n

B

)
+ f(n),

dove
A = b+ 1, B = a+ 2, f(n) = Θ(n);

inoltre, il caso base è T (1) = Θ(1) come richiesto dall’e-
nunciato del teorema.
Si confronta f(n) con la funzione critica

nlogB A = nloga+2(b+1)

ottenendo così:

T (n) =


Θ(n) se b+ 1 < a+ 2,

Θ(n logn) se b+ 1 = a+ 2,

Θ
(
nloga+2(b+1)

)
se b+ 1 > a+ 2.

2

Esercizio 2 (10 punti): Siano dati un array A di n elementi

(con possibili ripetizioni) ordinato in ordine non decrescente

ed un intero non negativo k.

Progettare un algoritmo iterativo che restituisca la coppia

di indici della prima e dell’ultima occorrenza di k in A. I

due indici dovranno essere uguali se k occorre solo una volta

ed entrambi pari a -1 se k non è presente in A. Il costo

computazionale deve essere O(logn).

Dell’algoritmo proposto:

a) si scriva lo pseudocodice opportunamente commentato, in

modo da chiarire il senso delle istruzioni,

b) si giustifichi il costo computazionale.

a. È immediato capire che bisogna sfruttare due leggere
modifiche della ricerca binaria, in modo che determini-
no rispettivamente la prima e l’ultima occorrenza di k.
Ecco un possibile pseudocodice:

def es2(A, k):

A è un array ordinato e k è una chiave

si richiama la funzione che cerca la prima occorrenza

i = PrimaOccorrenza(A,k)

se k non presente inutile proseguire

if i == -1:

return (-1,-1)

si richiama la funzione che cerca l'ultima occorrenza

j = UltimaOccorrenza(A,k)

return(i,j)

dove le due funzioni richiamate sono:

3

def PrimaOccorrenza(A, k):

A è un array ordinato e k è una chiave

restituisce l'indice della prima occorrenza di k,

o -1 se k non è presente

min, max = 0, len(A)-1

risultato = -1

while min<=max:

med = (min+max)//2

if k == A[med]:

risultato = med

max = med -1

elif A[med] < k:

min = med + 1

else:

max = med-1

return risultato

def UltimaOccorrenza(A, k):

A è un array ordinato e k è una chiave

restituisce l'indice dell'ultima occorrenza di k,

o -1 se k non è presente

min, max = 0, len(A)-1

risultato = -1

while min <= max:

med = (min+max)//2

if k == A[med]:

risultato = med

min = med +1

elif A[med] < k:

min = med + 1

else:

max = med-1

return risultato

4

b. Il costo computazionale è dato dalla somma dei costi
delle due funzioni, RicBinSin e RicBinDes, entrambi pa-
ri al costo della ricerca binaria, cioè O(logn). È richiesto
di calcolare il costo formalmente.

Esercizio 3 (10 punti):
Sia dato un albero binario con n nodi tramite il puntatore r

alla sua radice, in cui ogni nodo contiene:

- un campo key, che rappresenta la chiave del nodo;

- un puntatore left al figlio sinistro;

- un puntatore right al figlio destro.

Progettare un algoritmo ricorsivo che, presi r ed un intero non

negativo k, stampi tutte le chiavi dei nodi che si trovano al

livello k dell’albero (assumendo che la radice si trovi al livello

0). Le chiavi devono essere stampate nell’ordine in cui i nodi

vengono incontrati durante una visita inorder dell’albero.

Si assuma che l’albero possa essere vuoto.

Il costo computazionale deve essere O(n).

Ad esempio per l’albero in figura con k = 1 vanno stampate le

chiavi 4 e 10; con k = 2 vanno stampate 1, 8 e 15 mentre con

k = 5 non va stampato nulla.

Dell’algoritmo proposto:

a) si scriva lo pseudocodice opportunamente commentato, in

modo da chiarire il senso delle istruzioni,

5

b) si giustifichi il costo computazionale, scrivendo la ricor-

renza che lo caratterizza.

NOTA BENE: nello pseudocodice della funzione ricorsiva non
si deve far uso di variabili globali.

a. L’algoritmo esegue una visita inorder dell’albero bina-
rio. Durante la discesa ricorsiva, il parametro k viene
decrementato a ogni livello. Quando k = 0, il nodo cor-
rente si trova al livello richiesto e la sua chiave viene
stampata. In questo modo vengono stampate solo le
chiavi dei nodi al livello k nell’ordine inorder.
Ecco un possibile pseudocodice:

def es3(r, k):

if r is None:

return

visita al sottoalbero sinistro (inorder)

es3(r.left, k - 1)

visita del nodo

if k == 0:

print(r.key)

visita al sottoalbero destro

es3(r.right, k - 1)

b. Il costo computazionale è quello di una visita. L’equa-
zione di ricorrenza relativa alla visita è:

– T (n) = T (k) + T (n− 1− k) + Θ(1)

– T (0) = Θ(1)

dove k, è il numero di nodi presenti nel sottoalbero
sinistro, 0 ≤ k < n. L’equazione si può risolvere con il
metodo di sostituzione e dà come soluzione Θ(n).

6

