
Reductions in Streaming Algorithms, with an Application to Counting
Triangles in Graphs

Ziv Bar-Yossef∗ Ravi Kumar† D. Sivakumar‡

Abstract

We introduce reductions in the streaming model as a tool in the design of streaming algo-
rithms. We develop the concept of list-efficient streaming algorithms that are essential to the
design of efficient streaming algorithms through reductions.

Our results include a suite of list-efficient streaming algorithms for basic statistical primi-
tives. Using the reduction paradigm along with these tools, we design streaming algorithms for
approximately counting the number of triangles in a graph presented as a stream.

1 Introduction

In the context of computing with massive data sets, algorithms designed to work in the streaming
model [HRR99, AMS99, FKSV99] are gaining popularity, both for their theoretical significance
and for their usefulness in practice. In this model, data arrives in a stream, one item at a time,
and algorithms have fairly stringent requirements to be considered efficient: they are required to
use very little space and per-item processing time (both typically polylogarithmic in the length
of the data stream). Also, in many cases, streaming algorithms are required to work correctly
even if the input is an array that is presented in an arbitrary order. Nevertheless, in recent years,
efficient randomized algorithms have been designed in the streaming model for several fundamental
problems, including the approximate computation of frequency moments [AMS99], Lp distances
between vectors [AMS99, FKSV99, FS00], histograms [GKS01], wavelet transforms [GKMS01], and
others. See [Bab01] for an extensive bibliography on streaming algorithms. Insights from streaming
algorithms have also led to derandomization of several approximation algorithms [EIO02, Siv01].

Summary. In this work, we promote reductions in the streaming model as a basic tool in
the design of efficient streaming algorithms. We begin by underscoring the subtleties involved in
designing efficient streaming algorithms via reductions between computational problems. Our anal-
ysis leads to the concept of list-efficient streaming algorithms that, in conjunction with reductions,
are ideally suited for the design of efficient streaming algorithms. Our first technical contributions
include the design of list-efficient streaming algorithms for some basic primitives, most notably to
the problem of (approximately) computing the number of distinct elements in a data stream. Using
the reduction methodology together with these tools, we design efficient streaming algorithms for

∗Computer Science Division, University of California at Berkeley, Berkeley, CA 94720, zivi@cs.berkeley.edu.
Part of this work was done while the author was visiting IBM Almaden Research Center. Supported by NSF Grant
CCR-9820897.

†IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, ravi@almaden.ibm.com
‡IBM Almaden Research Center, 650 Harry Road,San Jose, CA 95120, siva@almaden.ibm.com

1

approximately counting the number of triangles in a graph presented as a stream. Our triangle
algorithms seem to be the first natural graph algorithms in the streaming model.

Stream reductions and list-efficient algorithms. Reductions between computational problems
are fundamental tools of complexity theory and algorithm design. Owing to the stringent require-
ments of efficiency in the streaming model, designing efficient algorithms via reductions turns out
to be a rather delicate matter. For example, consider a hypothetical streaming reduction R from
problem A to problem B that works as follows: upon reading each data item in an instance (a
stream) of problem A, the reduction R outputs a polynomially long sequence of data items to
produce an instance (a stream) of problem B. Here, an efficient algorithm for problem B does not
necessarily translate into an efficient algorithm for problem A (the processing time per data item
with respect to the instance of A could now be polynomial, as opposed to polylogarithmic). What
combinations of reductions R, together with efficient algorithms for B, then, would give us efficient
algorithms for A? We address this issue in Section 3.

We pinpoint a class of streaming algorithms, which we call list-efficient , as appropriate for use
in conjunction with streaming reductions. Intuitively, the idea is the following. Since the reduction
itself is a streaming algorithm, each sequence of items in the instance of problem B has a succinct
representation — the configuration of the reduction algorithm R plus the item of data read from
the instance of A. Thus an algorithm for B that can process an entire list of items — given only
its succinct representation — is a good candidate to compose with the reduction R. In typical
applications, we do not expect the succinct representation of a list to be as prosaic as the “internal
configuration of reduction algorithm R”. Rather, it is more likely to possess more special structure,
for example, an interval of integers. This makes the task of constructing list-efficient algorithms
for B a natural problem within the realm of streaming algorithm design. Indeed, the notion of
list-efficient algorithms includes (and was motivated by) the range-summable hash functions of
[FKSV99].

List-efficient primitives. We then turn to the design of list-efficient algorithms for certain
problems that we consider to be basic primitives and for the case where the lists are intervals
(a.k.a. ranges). Our set of primitives consists of the frequency moments Fk, k ≥ 0. Recall that
given a sequence of n items from the set [m] .= {0, . . . ,m−1}, the frequency fj of item j ∈ [m] is the
number of times j appears in the sequence, and for k ≥ 0, the k-th frequency moment, Fk, is given
by

∑
j∈[m] f

k
j . Our choice of the frequency moments as the primitives to focus on is motivated by

two main factors. The algorithms of [AMS99] for the frequency moments are perhaps the first major
results in the design of streaming algorithms; since then they have influenced several other results,
notably those of [FKSV99, Ind00, GKMS01]. Consequently, we expect that these problems, as well
as ideas that emanate from their solutions, will also impact new research on streaming algorithms.
Secondly, we present, in Section 6, two algorithms for counting the number of triangles in a graph;
these algorithms are designed following the reduction paradigm we develop, and make essential use
of list-efficient algorithms for the frequency moments.

For k ≥ 2, we show (Section 5) how the algorithms of [AMS99] for approximating Fk to within
a factor of 1 ± ε (including a variant of F2) easily lend themselves to be range-efficient (that is,
list-efficient where the lists are intervals). (Note that k = 1 is trivial with logarithmic space.)

For the case of F0, that is, computing the number of distinct elements in a data stream, we
present in Section 4 a new streaming algorithm that approximates F0 to within arbitrary small
relative error ε, using O((1/ε3) log m) space and processing time per data item. A sampling-

2

based algorithm for the same problem was recently presented by Gibbons and Tirthapura [GT01]
(see also [Gib01]), building on ideas from [FM85, AMS99]. Independently, Trevisan [Tre01] also
proposed an algorithm for the same problem. Our algorithm is slightly worse than the algorithms
in [GT01, Tre01] in terms of the dependence on the error ε (they run in O((1/ε2) log m) space and
time). However, we show how our algorithm for F0 can also be made range-efficient (this property
is crucial for our application, counting triangles). Note that computing F0 range-efficiently is also
a natural computational problem: consider a stream of data, where each entry in the stream is an
interval of integers, and the goal is to compute the number of distinct elements in the union of all
the intervals.

Counting triangles in graphs. Finally, in Section 6, we present streaming algorithms to compute
the number of triangles in a graph. To the best of our knowledge, these are the first algorithms
for any natural graph problem in the streaming model of computation (see also [HRR99]). We
consider two models: the “adjacency stream,” where the graph is presented as a sequence of edges
in arbitrary order, and there is no bound on the degree of any vertex, and the “incidence stream,”
where we consider bounded-degree graphs and where all edges incident to a vertex are presented
successively. In fact, we present unbiased estimators for the number of triangles; the variance of our
estimators depend on the number of triangles in the graph. Our algorithms are based on stream
reductions and use the range-efficient algorithms for F0, F1 and F2. We also present lower bounds
(Section 6.3) on the performance of streaming algorithms for counting triangles.

We note that counting the number of triangles is related to the question of estimating the tran-
sitivity of the binary relation represented by the graph; we believe that this will have applications
to query plan optimization in databases where “degree of transitivity” of a relation is often a useful
measure in deciding how to implement a relational query. We also note that our algorithms for
counting triangles easily extend to any constant-sized (directed or undirected) subgraph, albeit with
poorer space/time performance. The algorithms for counting small subgraphs in bounded-degree
graphs is likely to have applications in the structural analysis of massive graphs like the Web graph.

2 Preliminaries

2.1 Streaming algorithms

An input stream for a function f : An → B is a sequence of pairs ((π(1), xπ(1)), . . . , (π(n), xπ(n))),
where x ∈ An is an input for f and π ∈ Sn is a permutation of this input. We denote such an
input stream by π(x). A streaming algorithm for f is a randomized algorithm that accepts as input
an error parameter ε > 0 and a confidence parameter 0 ≤ δ < 1, and is given one-pass access
to an input stream π(x). The algorithm is required to output an ε-approximation of f(x) with
probability at least 1 − δ, for any input x and for any permutation π.

The two main measures of complexity for streaming algorithms are the space and the processing
time per data item. The space for given ε and δ is the maximum amount of work space the algorithm
uses over all possible input streams, all input permutations, and all the random choices of the
algorithm. The processing time per data item for given ε and δ is the maximum number of steps
the algorithm spends on a single pair (π(i), xπ(i)) in the stream, where the maximum is taken over
all i ∈ [n], all possible inputs, all permutations of these inputs, and all the random choices of the
algorithm. We will be interested in streaming algorithms whose space and processing time per data
item are poly-logarithmic in n and in |A|.

3

In this paper we consider two kinds of approximation: relative approximation and ratio ap-
proximation. An (ε, δ)-relative approximation of a function f , for 0 ≤ ε ≤ 1, gives for any input
x a value in the interval ((1 − ε)f(x), (1 + ε)f(x)) with probability at least 1 − δ. A (c, δ)-ratio
approximation of f , for c ≥ 1, gives for any x a value in ((1/c)f(x), cf(x)).

2.2 Frequency moments

The k-th frequency moment, Fk : An → R, takes as input a sequence of n data items σ1, . . . ,σn

from a set A = {a1, . . . , am} of size m and outputs the sum
∑m

j=1 fk
j , where fj

def= |{i ∈ [n] | σi = aj}|
is the frequency of aj in the input sequence. F0, for example, is the number of distinct data items
in the input sequence, and F1 is simply n.

Alon, Matias, and Szegedy [AMS99] showed several streaming algorithms to approximate the
frequency moments that use (in most cases) optimal space and processing time per data item. The
algorithms (known as the AMS algorithms) assume the domain of the data set items A is simply
the set of integers [m]. In the following we briefly review these algorithms.

Theorem 1 ([AMS99]) There is a streaming algorithm that produces a (c, 2/c)-ratio approxima-
tion of F0 for any c > 2, using O(log m) space and processing time per data item.

The algorithm picks a random hash function h : [m] → [m] from a 2-universal family (e.g., the
Carter-Wegman family [CW79]) , and applies h to each data item in the stream. It keeps track of
the value r — the maximum number of trailing 0’s in the binary representations of h(σ1), . . . , h(σn),
and outputs in the end R = 2r. Note that the algorithm needs to store only h (O(log m) bits)
and r (O(log log m) bits) in memory. At data item σi, the algorithm needs to compute h(σi) and
compare it against r; this requires O(log m) time steps for an appropriately chosen family of hash
functions (e.g., the Carter-Wegman one).

Theorem 2 ([AMS99]) There is a streaming algorithm that produces an (ε, δ)-relative approxi-
mation of F2, using O

(
1
ε2 log 1

δ (log m + log n)
)

space and processing time per data item.

The algorithm runs O((1/ε2) log(1/δ)) independent basic estimators X for F2 in parallel, each
one having E(X) = F2 and Var(X)/E2(X) = O(1). Using the standard median-of-averages tech-
nique, the algorithm obtains an (ε, δ)-relative approximation. Each basic estimator X uses a random
4-wise independent hash function h : [m] → {±1}, computes the sum Y =

∑n
i=1 h(σi), and outputs

Y 2. X needs to store only h and Y in its memory (requiring O(log m) + O(log n) bits), and to
spend O(log m + log n) step per data item to compute h(σi) and update the sum Y .

Theorem 3 ([AMS99]) There is a streaming algorithm that produces an (ε, δ)-relative approxi-
mation of Fk, for any k ≥ 2, using O

(
1
ε2 log 1

δkm1−1/k(log m + log n)
)

space and processing time
per data item.

The algorithm runs O((1/ε2) log(1/δ)km1−1/k) independent basic estimators X for Fk in par-
allel, and as before uses median-of-averages to obtain an (ε, δ)-approximation. Each estimator X
picks a random i ∈ [n] and counts the number r of i ≤ j ≤ n such that σj = σi (i.e., the frequency
of σi in the suffix of the sequence from position i). The estimator outputs n(rk − (r − 1)k). X
needs to store in memory only σi (O(log m) bits) and r (O(log n) bits). The processing time per
data item is O(log n + log m).

Finally, note that F1 can be trivially computed (exactly) using O(log n) space and O(log n)
processing time per data item, simply by maintaining a counter of the data items.

4

3 Stream reductions and list efficiency

In this section we introduce the notion of stream reductions, as a new technique for streaming
algorithm design. Our basic goal is to exploit existing streaming algorithms (such as the AMS
algorithms for the frequency moments) to obtain new streaming algorithms for other functions. A
stream reduction reduces an input stream for a function f into one or more virtual input streams
for functions g1, . . . , gq, so that approximations of g1, . . . , gq on these virtual streams yield an
approximation of f on the original stream.

A stream reduction from a function f : An → B to a collection of functions g1 : A1 →
B1, . . . , gq : Aq → Bq is best defined by describing a streaming algorithm M that simulates q
streaming algorithms M1, . . . ,Mq for g1, . . . , gq and uses their outcomes to output an approximation
for f . We will denote the configuration spaces of M,M1, . . . ,Mq by C,C1, . . . , Cq respectively; a
configuration is a binary string representing the machine’s state, work space, head locations, and
the values under these heads; we will assume that the configuration space is of size 2S , where S is
the machine’s space. The machine M applies three basic procedures:

(1) an approximation parameter reduction, φA : R2 → (R2)q, which maps the error and confi-
dence parameters for the approximation of f into error and confidence parameters for the approx-
imations of g1, . . . , gq.

(2) a data item reduction, φD : A × C → A∗
1 × · · ·A∗

q , which based on the currently read data
item from the input stream of f and based on the current configuration of M , produces q lists of
data items L1, . . . , Lq for the functions g1, . . . , gq; each such list may be empty, contain a single
data item, or contain several data items.

(3) an output reduction, φO : (B1 × C1) × · · · × (Bq × Cq) → B, which maps the outputs of
M1, . . . ,Mq and their corresponding final configurations into an output for f .

As usual, M is required to output an (ε, δ)-approximation of f(x), for any input x and for any
permutation π.

Let us consider the space and time requirements of the reduction machine M . The space used
by M is clearly the sum of the space used by M1, . . . ,Mq, in addition to the space required to
compute the reduction functions φA,φD,φO. Note that M does not need to store the output of
φD after applying it to the currently read data item, because it can sequentially generate the data
items in each of the lists L1, . . . , Lq and feed them into the simulations M1, . . . ,Mq.

The analysis of M ’s processing time per data item is more subtle. In a naive implementation,
M would generate each of the items in the lists L1, . . . , Lq one by one and feed them into the
algorithms M1, . . . ,Mq. This would mean that M spends

∑q
i=1 |Li|Pi steps per data item, where

Pi is the processing time per data item of machine Mi. The size of the lists Li may be very large
(as large as n), which would imply the processing time of M is prohibitive. Note, however, that
each list Li has a succinct representation: it is fully determined by the currently read data item a
and M ’s configuration c. Sometimes (as in our triangle application), this succinct representation
takes an even more explicit form, like a range [as, ae] of values from Ai. Now, if each machine
Mi can take the succinct representation of Li and process all the data items in the list efficiently
as a function of the succinct representation size, then this would enable M to have an efficient
processing time per data item.

The discussion above motivates the following notion of list efficiency for streaming algorithms.
Let f : An → B be a function we wish to compute by a streaming algorithm. Let L ⊆ A∗ be a
class of lists of data items from A; for each L ∈ L, we denote by s(L) the size of the representation
of L. An input x ∈ An is now represented as a stream of lists L ∈ L. A streaming algorithm M for

5

f is said to be t-efficient with respect to L, if it approximates f and spends at most t(s) steps for
each list in the input stream, where s is the size of the representation of the list. The algorithm is
required to work for any input x, and for any way of representing x as a stream of lists.

One special class of lists we will be focusing on are ranges of the form [as, ae], where as ≤ ae ∈ A.
Note that a range can be succinctly represented by its two delimiters. A streaming algorithm is
called range-efficient if it is list efficient with respect to the class of all ranges. In some cases
the data items are vectors rather than scalars; for such vectors of dimension d, we define a j-th
coordinate range, (a1, . . . , aj−1, [aj,s, aj,e], aj+1, . . . , ad), to be the list of vectors x with xi = ai for
i (= j and xj ∈ [aj,s, aj,e]. We call a streaming algorithm range-efficient in every coordinate if it is
list efficient with respect to all the coordinate ranges.

List efficiency and range efficiency are crucial in stream reductions, but may be also of indepen-
dent interest. For example, one could be interested in computing frequency moments of a stream
that consists of ranges of integers rather than single integers.

A notion similar to range efficiency played an important role in the work of Feigenbaum et
al. [FKSV99], who presented a streaming algorithm for the L1 distance between vectors. Their
algorithm generated for each data item in the input stream a range of integers on which they needed
to apply a hash function and sum the resulting values; they defined the notion of range summable
hash functions as hash functions for which this task can be performed in time polynomial in the
size of the representation of the range.

4 Counting distinct elements (F0) in a stream

In this Section 4.1 we present our new streaming algorithm for approximating F0 to within arbitrary
small error. In Section 4.2 we show how to implement this algorithm range-efficiently.

4.1 Approximating F0 with arbitrary error

Theorem 4 There exists a streaming algorithm that produces an (ε, δ)-relative approximation for
F0 using O

(
1
ε3 log 1

δ log m
)

space and processing time per data item.

Proof. We first describe a two-pass algorithm to approximate F0, and we then show how to convert
it into a one-pass algorithm.

Let σ1, . . . ,σn be the input for the algorithm, let T = F0(σ1, . . . ,σn), and let a1, . . . , aT be the
T distinct data items in the input sequence. Our goal is to (ε, δ)-approximate T .

Our algorithm runs in parallel k = O(log(1/δ)) independent estimators Z1, . . . , Zk for T , each
one succeeding to obtain an ε-relative approximation of T with probability at least 2/3. It then
outputs the median of these estimators; Chernoff bound implies that this median is an ε-relative
approximation for T with probability at least 1 − δ. Let us then describe one such estimator Z.

In the first pass Z uses the AMS algorithm of Theorem 1 to obtain a (c, 2/c)-ratio approximation
of T , where c = 12. Thus, with probability at least 5/6, Z gets a value R such that T ≤ R ≤ c2T .
In the following we assume that Z succeeds to obtain such a value.

In the second pass Z runs & =)c′/ε2* independent basic estimators Y1, . . . , Y$ for T , and outputs
their average (c′ is another constant to be fixed later). Each basic estimator Y picks a hash function
h : [m] → [R] chosen from a 2-universal family of hash functions. Note that h may be described by
)log m*+)log R* bits. Set B =)(4c2)/ε*. Denote by L(h) the list of data items aj that h maps to
0 (i.e., L(h) = {aj ∈ [T] | h(aj) = 0}) and by X its size. Y outputs R ·X ′, where X ′ = min{X,B}.

6

First note that the computation of Y can be carried out using O ((1/ε) log m)) bits of memory
and spending O ((1/ε) log m) time per data item in the stream. In order to compute X ′, Y first
needs to store the description of the function h (2 log m bits), and then to maintain the first B
elements in the list L(h). This list requires at most O((1/ε) log m) bits of space. At each data
item σi encountered in the stream Y needs to compute h(σi), and if it equals 0 to check whether
σi ∈ L(h). This requires a total of O ((1/ε) log m) time steps.

For each j ∈ [T], let Xj be an indicator random variable which is 1 iff h(aj) = 0. Clearly,
X =

∑T
j=1 Xj and E(Xj) = Pr(h(aj) = 0) = 1/R, implying that E(X) = T/R. Our goal is thus

to estimate T = E(R · X); however, we can get only the value of X ′ = min{X,B}. We first show
that E(X ′) is not far from E(X):

Claim 1 (1 − ε/2)E(X) ≤ E(X ′) ≤ E(X)

Proof. The right inequality is trivial, since X ′ ≤ X always. To prove the left inequality, we use
conditional expectation: E(X ′) = E(X ′ | X ≤ B) Pr(X ≤ B) + E(X ′ | X > B) Pr(X > B) =
E(X | X ≤ B) Pr(X ≤ B) + B Pr(X > B).

The pairwise independence of X1, . . . ,XT implies that Var(X) =
∑T

j=1 Var(Xj) = T ·(1/R)·(1−
1/R) ≤ T/R ≤ 1. Thus, using Chebyshev’s inequality and the fact that E(X) and Var(X) are at
most 1, we have: Pr(X > B) = Pr(X ≥ B + 1) ≤ Pr(|X −E(X)| ≥ B) ≤ Var(X)/B2 ≤ ε2/(16c4).

Now, we apply the Cauchy-Schwartz inequality and obtain: E(X | X > B) Pr(X > B) =∑T
i=B+1 iPr(X = i) ≤ (

∑T
i=B+1 i2 Pr(X = i))1/2·(

∑T
i=B+1 Pr(X = i))1/2 ≤ (E(X2) Pr(X > B))1/2 ≤

(Var(X) + E2(X))1/2 · ε/(4c2) ≤
√

2ε/(4c2), where the last inequality follows from the fact that
E(X) ≤ 1 and Var(X) ≤ 1.

Now, using the fact that E(X) = T/R ≥ 1/c2, we obtain E(X | X > B) Pr(X > B) ≤
(ε/2)E(X). Therefore, E(X ′) ≥ E(X | X ≤ B) Pr(X ≤ B) = E(X) − E(X | X > B) Pr(X >
B) ≥ (1 − ε

2)E(X). !

We now show that Z outputs an ε-relative approximation of T with probability at least 2/3.
Note that E(Z) = (1/&)

∑$
i=1 E(Yi) = E(Y) = R ·E(X ′). Therefore, by Claim 1, |Z−T | = |Z−R ·

E(X)| ≤ |Z−R·E(X ′)|+|R·E(X ′)−R·E(X)| ≤ |Z−E(Z)|+(ε/2)·R·E(X) = |Z−E(Z)|+(ε/2)T .
Since Y1, . . . , Y$ are independent, Var(Z) = (1/&2)

∑$
i=1 Var(Yi) = (1/&)Var(Y) = (R2/&)Var(X ′).

Using Chebyshev’s inequality, Pr(|Z − T | ≥ εT) ≤ Pr(|Z − E(Z)| ≥ (ε/2)T) ≤ 4Var(Z)/(ε2T 2) =
4R2Var(X ′)/(&ε2(R · E(X))2) ≤ 4E(X ′2)/(&ε2 · E2(X)) ≤ 4E(X2)/(&ε2 · E2(X)).

Now, using the fact E(X) = T/R ≥ 1/c2, we have: E(X2) = Var(X) + E2(X) ≤ E(X) +
E2(X) ≤ E2(X)(c2 +1). Therefore, Pr(|Z −T | ≥ εT) ≤ 4(c2 +1)/(&ε2). Setting c′ = 24(c2 +1), we
have that the probability that Z outputs an ε-relative approximation of T is at least 5/6. Summing
up the two error probabilities: the probability that Z does not obtain a value T ≤ R ≤ c2T in the
first pass, and the probability it does not output an ε-approximation in the second pass, we have
that Z gets an ε-approximation with probability at least 2/3.

We next show how to make this a one-pass algorithm. Note that in the above description, Y
needed to know the crude estimate R for T obtained by the AMS algorithm, since R was set to be
the range size of h. The AMS algorithm always outputs a power of 2, and thus R ∈ {1, 2, 4, . . . ,m}.
Our one-pass algorithm picks a pairwise independent hash function h : [m] → [m]. Note that for
every R = 1, 2, 4, . . . ,m, the function hR : [m] → [R] obtained from h by projecting its output on
the last log R bits is also a pairwise independent hash function.

Y starts its execution assuming R = 1, and thus initially uses h1. Each time the current size
of L(hR) exceeds B, Y replaces hR by h2R. The crucial point here is that L(h2R) ⊆ L(hR); thus,

7

when moving from hR to h2R, Y does not have to rescan the items seen to far to build L(h2R). It
can simply scan L(hR), and extract from it the items that belong to L(h2R). Let us denote by RY

the value of R after scanning all the items in the stream.
The estimator Z runs simultaneously the & estimators Y1, . . . , Y$ as well as a simulation of the

AMS algorithm to get a crude estimate R∗ for T . We claim that Z can still get the value of
X ′ = min(X,B) for each of the estimators Y as follows: if RY ≤ R∗, then L(hR∗) ⊆ L(hRY), and
thus Z can extract L(hR∗) from L(hRY) and get X ′ = X = |L(hR∗)|; if RY > R∗, then necessarily
|L(hR∗)| > B, and thus X ′ = B.

It is easy to verify that the storage requirements and the processing time per data item of each
estimator Y are still O((1/ε) log m). Therefore, the total space and processing time per data item
are O((1/ε3) log(1/δ) log m). !

This algorithm can be adapted to work with a stream of data items of any set A of size m
(not necessarily the set of integers {1, . . . ,m}). All we need is an explicit mapping of A into
{1, . . . ,m}. In particular, the algorithm works even if each data item in the stream is a vector
of integers; we map a vector (σi,1, . . . ,σi,d) ∈ [m]d into [md] by a simple radix transformation:
σi = σi,1m0 + σi,2m1 + · · · + σi,dmd−1.

4.2 Approximating F0 range-efficiently

In this section we show how to implement the streaming algorithm presented in the previous
section range-efficiently.

Theorem 5 The algorithm of Theorem 4 can be implemented range-efficiently spending
O

(
1
ε5 log 1

δ log5 m
)

time steps per range.

Proof. We have to show how to implement each of the two basic building blocks of our algorithm
range-efficiently: the AMS algorithm and the estimator Y .

Without loss of generality, we assume m is a power of two; otherwise, we replace it by the
smallest power of two above it.

The 2-universal family of hash functions we use for both the AMS simulation and the estimator
Y is the Toeplitz family [Gol97]: for M ≤ N , an M × N Toeplitz matrix is one whose diagonals
are homogeneous, i.e., all the entries in each diagonal contain the same value. Thus, a Toeplitz
matrix is completely specified by the values at its first row and its first column. Each function
h : {0, 1}N → {0, 1}M in the Toeplitz family is specified by a pair (U, v) where U is a random
M×N Toeplitz matrix over GF (2) and v ∈ {0, 1}M is a random vector. Given a vector x ∈ {0, 1}N ,
h(x) = Ux + v, where the operations are over GF (2). Note that each h in the family is specified
by N + 2M − 1 bits.

We now show how, given a Toeplitz hash function h : {0, 1}N → {0, 1}M and a range [as, ae],
where as ≤ ae ∈ [2N], to efficiently enumerate the values x ∈ [as, ae] for which h(x) = 0.

Let q be the largest power of two such that the interval [k2q, (k + 1)2q) for some multiple k
is contained in [as, ae]. This interval corresponds to the shortest prefix α such that all the values
x ∈ {0, 1}N with prefix α are contained in the range [as, ae]. We set cs = k2q and ce = (k + 1)2q ,
and show how to enumerate the data items in the range [cs, ce) that h maps to 0. The data items
in [as, cs) and [ce, ae] are enumerated recursively in a similar way.

For each x ∈ [cs, ce), let us denote by x(1) the projection of x on its first (N − q) bits, and by
x(2) its projection on the last q bits. Similarly, we denote by U (1) the first (N −q) columns of U and

8

by U (2) its last q columns. Clearly, for all x ∈ [cs, ce), Ux = U (1)x(1) + U (2)x(2) = U (1)α+ U (2)x(2).
Thus, h(x) = Ux + v = 0 for x ∈ [cs, ce) if and only if,

U (2)x(2) = −(v + U (1)α) (1)

This implies that an enumeration of all the solutions of the linear system (1) yields an enu-
meration of all the data items x ∈ [cs, ce) that h maps to 0. We can get the solutions to (1) by
diagonalizing U (2) using Gaussian Elimination.

The running time of enumerating t data items with this procedure is at most O(log(ae−as)N3+
tN), since the procedure has at most O(log(ae − as)) recursive calls, each one requiring a Gaussian
Elimination of a matrix of dimension at most N × N , and each enumerated data item requires at
most O(N) steps to produce from the diagonalized matrix.

In the simulation of the AMS algorithm, we use a hash function h : [m] → [m], and we need to
find for each given range [as, ae] whether the value of h on any of the data items in this range has a
0-suffix longer than r (the current longest 0-suffix). Our simulation will sequentially test whether
each one of the following set of (log m − r) equations holds in the interval [as, ae]:

(Ux + v) mod 2j = 0, j = r + 1, . . . , log m

As soon as the simulation finds an equation j which does not hold it stops, and sets r = j − 1. We
now show how to test each of these equations. For equation j, define Uj to be the last j rows of
U , and vj to be the projection of v on its last j bits. Note that (Ux + v) mod 2j = 0 if and only if
Ujx+vj = 0. (Uj , vj) can be viewed as a Toeplitz hash function hj : {0, 1}log m → {0, 1}j . Therefore,
using the procedure described above we can enumerate all the solutions to this equation (and in
particular, find whether there exists a solution), in time O(log4 m). Thus, the total simulation of
the AMS algorithm per range requires at most O(log5 m) steps.

The computation of our basic estimator Y on a range [as, ae] is carried out as follows. Let R be
the current hash range size Y uses. Y sets up the equation system 1 corresponding to h and [as, ae].
It then starts to enumerate the solutions of only the first log R equations, because these are the
solutions corresponding to hR. If |L(hR)| exceeds B, Y suspends the solution enumeration, replaces
hR by h2R, extracts from L(hR) the items that h2R maps to 0, and resumes the enumeration, but
now of the solutions of the first log R + 1 equations.

The processing time of Y per range is at most O(log4 m + (1/ε2) log2 m), because Y may
need to enumerate at most O((1/ε) log m) solutions (O(1/ε) per value of R), which would take
O(log4 m + (1/ε) log2 m) time, and furthermore, the comparison of each enumerated data item
against a list of size at most O(1/ε) requires O((1/ε) log m) steps in a naive implementation.

To conclude, the total running time of our algorithm per range is O(1/ε4 log(1/δ) log5 m), since
it runs O(log(1/δ)) copies of the AMS simulations and O(1/ε2 log(1/δ)) copies of the Y estimator.

It can be easily verified that the space requirements of this implementation are not different
from what is stated in Theorem 4. !

A simple generalization shows that we can compute F0 range-efficiently in every coordinate,
even if the data items are vectors rather than scalars:

Proposition 6 The algorithm of Theorem 4 can be implemented range-efficiently in every coordi-
nate spending O

(
1
ε4 log 1

δd log5 m
)

time steps per range, where d is the dimension of the input data
items.

9

Proof. The inputs we consider here are vectors rather than scalars: σi ∈ [m]d for every data item σi

in the stream. A range is specified by a coordinate j ∈ [d], an assignment (a1, . . . , aj−1, aj+1, . . . , ad)
to all the coordinates except the j-th one, and a range [aj,s, aj,e] for the j-th coordinate.

In the one dimensional case all the data items in a range shared a common prefix α. Here,
all the data items in a range share both a common prefix α and a common suffix β. Thus, the
algorithm of Theorem 5 requires only a slight modification in order to work for this case too. We
split the matrix U into three parts: U (1) — the part that corresponds to α, U (2) – the middle part,
and U (3) — the part that corresponds to β. The linear system we will need to solve is the following:

U (2)x(2) = −(v + U (1)α+ U (3)β)

The rest of the argument continues as before. !

5 Approximating other frequency moments range-efficiently

In this section we first show how the Gilbert et al. [GKMS01] range-efficient implementation of
the AMS algorithm for F2 can be extended to be range-efficient in every coordinate. We then show
range-efficient implementations of the AMS algorithm for Fk, k ≥ 2.

Proposition 7 The AMS algorithm for F2 can be implemented range-efficiently in every coordinate
using O

(
1
ε2 log 1

δ (d log2 m + log n)
)

space and spending O
(

1
ε2 log 1

δ (d logO(1) m + log n)
)

steps per
range, where d is the dimension of the input data items.

Proof. Gilbert et al. [GKMS01] show how to implement the AMS algorithm for F2 (Theorem
2) range-efficiently. They exhibit a construction of a 7-wise independent family of hash functions
h : [m] → {±1} based on second order Reed-Muller codes, and prove that the functions in this
family are range-summable; that is, given any function h from the family and a range [as, ae], it
is possible to compute the sum

∑ae
x=as

h(x) in polynomial time. This immediately enables running
the AMS algorithm for F2 spending O(1/ε2 log(1/δ) logO(1) m) steps per range.

Each hash function h : [m] → {±1} in the Reed-Muller family corresponds to a degree-2
(log m)-variate polynomial ph(x1, . . . , xlog m) over GF (2). h is specified by

(log m
2

)
+ log m + 1 bits,

corresponding to the coefficients of the polynomial ph. Each input x ∈ [m] of h is interpreted as an
assignment to the log m variables, and the value of h is simply ph(x). It is easy to check that this
family is 7-wise independent; [GKMS01] used a fact from Linear Group Theory [Dic58] to give a
polynomial time algorithm that computes

∑ae
x=as

h(x).
We show how an easy extension of the method of [GKMS01] yields an algorithm for F2 which

is range-efficient in every coordinate. In our case each input is a vector σi ∈ [m]d. Each hash
function h : [m]d → {±1} corresponds now to a degree-2 (d log m)-variate polynomial ph. Our
main observation is the following: given an assignment a = (a1, . . . , aj−1, aj+1, . . . , ad) to the
d − 1 coordinates different from j, the polynomial pa

h(xj)
def= ph(a1, . . . , aj−1, xj , aj+1, . . . , ad) is a

degree-2 log m-variate polynomial. Moreover, the coefficients of pa
h can be easily computed (in time

O(d log2 m)) from the coefficients of ph and from the assignment a. Thus, given ph and a coordinate
range (j, aj,s, aj,e, a), we can compute the coefficients of the polynomial pa

h, and use the [GKMS01]
algorithm to compute

∑aj,e
x=aj,s

pa
h(x) =

∑aj,e
x=aj,s

ph(a1, . . . , aj−1, x, aj+1, . . . , ad). This immediately
implies an implementation of the AMS algorithm for F2 that is range-efficient in every coordinate.
!

10

Proposition 8 The AMS algorithm for Fk, k ≥ 2, can be implemented range-efficiently spending
O

(
1
ε2 log 1

δkm1−1/k(log m + log n)
)

steps per range.

Proof. The range-efficient implementation of the algorithm for Fk (Theorem 3) is completely
straightforward. Each basic estimator X of the algorithm needs to find, given an item σi and a
range [as, ae], how many times σi occurs in the range, and update the counter r accordingly. σi

either does not occur in the range at all or occurs exactly once, depending on whether as ≤ σi ≤ ae.
Thus, the processing time per range of each estimator X is O(log m + log n). !

An identical argument shows how to implement this algorithm range-efficiently in every coor-
dinate:

Proposition 9 The AMS algorithm for Fk, k ≥ 2, can be implemented range-efficiently in every
coordinate spending O

(
1
ε2 log 1

δkmd(1−1/k)(d log m + log n)
)

steps per range, where d is the dimen-
sion of the data items.

6 Counting triangles in graphs

Our notion of reductions in streaming algorithms leads to the following application. The goal is
to design a streaming algorithm that approximates the number of triangles in a graph. As noted
in Section 1, counting the number of triangles in large graphs has applications to databases, query
optimization, and the World-Wide Web. Counting triangles (and more generally, small cycles) is a
well-studied problem in the non-streaming case (cf. [AYZ97]).

Let G = (V,E) be an undirected graph with |V | = n and let the degree of a vertex v ∈ V be
denoted deg(v). We consider two possible stream representations of graphs:

(1) Each edge e = {u, v} ∈ E is a data item. The data stream consists of edges in E in some
arbitrary order. We call this the adjacency stream of the graph.

(2) Each node u ∈ V along with all its neighbors v1, . . . , vdeg(v) is a data item. The data stream
consists of data items for each of the nodes in V in some arbitrary order. We call this the incidence
stream of the graph.

The adjacency stream is more appropriate for high degree graphs, while the incidence stream
suits bounded-degree graphs better.

Let V be the set of all (unordered) vertex triples of G (i.e., the set of all subsets of V of
size 3). We classify every triple {u, v, w} in V into one of four classes according to how many of
the three pairs {u, v},{u,w}, and {v,w} are edges in G. This induces a partition of V into four
disjoint subsets, V0,V1,V2, V3, where Vj (j = 0, 1, 2, 3) consists of all triples whose exactly j of their
corresponding pairs are edges. We denote by T0, T1, T2, T3 the sizes of these subsets. Note that T3

is exactly the number of triangles in the graph G, which is the quantity we wish to approximate.
Our approach for approximating T3 is to reduce the problem of counting undirected triangles to

estimating frequency moments for an appropriate virtual stream. We then apply the basic tools we
have developed to approximate these frequency moments. We present (Section 6.1) an algorithm
that works for graphs given in the adjacency stream representation; the space and processing time
per data item of this algorithm depend cubically on (T1 + T2)/T3. We present (Section 6.2) an
algorithm that works for bounded-degree graphs given in the incidence stream representation; the
space and processing time per data item of this algorithm depend quadratically on T2/T3. We
present (Section 6.3) a space lower bound of Ω(n2) for approximating the number triangles in

11

a graph given in the adjacency stream representation; this hints that for general graphs, it is
impossible to approximate the number of triangles efficiently with a streaming algorithm.

A naive sampling algorithm to approximate the number of triangles in a graph picks O((1/ε2) log(1/δ)(1+
(T0 + T1 + T2)/T3)) random triples from V and finds what fraction of them are triangles; this gives
an (ε, δ)-approximation of T3. It is not clear whether our adjacency streaming algorithm is strictly
superior to naive sampling; in fact, both the sampling algorithm and our algorithm are efficient only
on graphs with Ω(n2/poly log n) edges. On the other hand, our algorithm for the bounded-degree
case is strictly superior to naive sampling, since for degree d graphs with T2/T3 = o(

√
n), our

algorithm runs in o(n) space, while the sampling algorithm requires Ω(n3/(nd2)) = Ω(n2) space.
This happens whenever the graph has lot of correlations among neighbors of a vertex.

6.1 Adjacency stream algorithm

Theorem 10 There is a streaming algorithm that for any ε, δ > 0, and for any adjacency stream
of a graph with T3 > 0, computes an (ε, δ)-relative approximation of T3 using space

s = O

(
1
ε3

· log 1
δ
·
(

1 +
T1 + T2

T3

)3

· log n

)

and poly(s) processing time per data item.

Proof. For each e = {u, v} ∈ E, let Ve denote the set of triples in V that contain both u and v.
Note that |Ve| = n − 2. Each triple in Ve represents a data item. Let σ denote the data stream
consisting of the triples from Ve for every e ∈ E, where the ordering of e’s is arbitrary. It follows
|σ| = (n − 2)|E|. Given an adjacency stream of G, σ is easy to construct — upon receiving {u, v}
in the input stream, output {u, v, w} for w ∈ V,w (= u, v.

Our main observation is the following:

Fk = Fk(σ) = T1 · 1k + T2 · 2k + T3 · 3k.

This is because each triple in Ti contributes i data items to σ. Now, we can set up three linear
equations:

F0

F1

F2

 =

1 1 1
1 2 3
1 4 9

 ·

T1

T2

T3

 .

By inverting the non-singular matrix of this system, we can write T3 in terms of F0, F1, F2 as
T3 = F0 − 1.5F1 + 0.5F2. Thus, we can approximate T3 by approximating F0 and F2.

Lemma 11 If F̃0 is an (ε′, δ)-approximation of F0 and F̃2 is an (ε′, δ)-approximation of F2 for
ε′ = εT3/(6(T1 + T2 + T3))), then T̃3 = (F̃0 − 1.5F1 + 0.5F̃2)/3 is an (ε, 2δ)-approximation of T3.

Thus, the overall algorithm is to use the original stream to construct the virtual stream σ, apply
the streaming algorithms for F0, F1, and F2 to get F1 and ε′-approximations F̃0 and F̃2, and then
output (F̃0 − 1.5F1 + 0.5F̃2)/3.

The space requirements of this algorithm are governed by the space requirements of the F0 and
F2 algorithms. Note that here we need those algorithms to be able to deliver accuracies arbitrarily
close to 1; thus, we need to use the F0 algorithm of Theorem 4.

12

In order to achieve the claimed processing time per data item, we use the following representation
of triples in the virtual stream. Each unordered triple {u, v, w} is represented by the dimension
3 vector (u, v, w) where u < v < w. Note that for every edge e = (u, v) in the input stream,
the set of triples Ve in the virtual stream can be represented as three coordinate ranges: ([1, u −
1], u, v), (u, [u + 1, v − 1], v), and (u, v, [v + 1, n]). Thus, we can use the versions of the streaming
algorithms for F0 and F2 that are range-efficient in every coordinate (see Sections 4 and 5) to
compute F0(σ) and F2(σ) with O((1/ε′4) log(1/δ) logO(1) n) processing time per range. !

6.2 Incidence stream algorithm

Theorem 12 There is a streaming algorithm that for any ε, δ > 0 and for any incidence stream of
a graph G = (V,E) with maxv∈V deg(v) = d and T3 > 0, computes an (ε, δ)-relative approximation
of T3 using space

s = O

(
1
ε2

· log 1
δ
·
(

1 +
T2

T3

)2

· log n + d log n

)

and poly(s) processing time per data item.

Proof. For each u ∈ V with neighbors v1, . . . , vd, let Vu denote the set of triples in V of the form
{u, vi, vj} for i (= j. Note that |Vu| =

(d
2

)
. Each triple in Vu represents a data item. Let σ denote

the data stream consisting of the triples from Vu for every u ∈ V , where the ordering of u’s is
arbitrary. It follows |σ| = n ·

(d
2

)
. Given an incidence stream of G, σ is easy to construct — upon

receiving u, v1, . . . , vd in the stream, output {u, vi, vj} for i (= j.
Our main observation is the following. By construction, we get for any k ≥ 0,

Fk = Fk(σ) = T2 · 1k + T3 · 3k.

This is because, each triple in V2 contributes one data item to σ and each triple in V3 contributes
three data items to σ. This gives the following linear system:

(
F1

F2

)
=

(
1 3
1 9

)
·
(

T2

T3

)
.

Therefore, by solving the system, we can write T3 in terms of F1, F2 as T3 = (−F1 + F2)/6. But,
F1 = |σ| = n

(d
2

)
. Thus, we can approximate T3 by just approximating F2.

Lemma 13 If F̃2 is an (ε′, δ)-approximation of F2 for ε′ = 6εT3/(T2+9T3), then T̃3 = (−F1+F̃2)/6
is an (ε, δ)-approximation of T3.

The rest of the proof is similar to the proof of Theorem 10, with the following differences: (1)
this algorithm needs to run only the F2 algorithm on the virtual stream; therefore, it requires only
O(1/ε′2 · log(1/δ) log n) space; (2) the algorithm needs additional O(d log n) space to store each
data item u, v1, . . . , vd as it arrives in the input stream; (3) the processing time per data item is
multiplied by a factor of

(d
2

)
, since the algorithm processes separately each triple (u, vi, vj) (4) we

do not need range efficiency here, since we handle each item in the virtual stream individually. !

13

6.3 A lower bound for counting triangles

We show that in general it is impossible to approximate the number of triangles in a graph
given as an adjacency stream using o(n2) space:

Theorem 14 For all sufficiently large n, there exists a family G of graphs on 3n nodes such that
any streaming algorithm A that (ε, δ)-approximates T3 for 0 < ε < 1 and 0 < δ < 1/100 requires
Ω(n2) space for at least one of the graphs in G.

Proof. The proof will work by reduction to one-round communication complexity (see [KN97]
for definitions). We denote the one-round randomized communication complexity of a function
f : X × Y → Z with error δ by R1

δ(f). For a distribution µ over the inputs of f , we denote by
D1,µ

δ (f) the one-round (µ, δ)-distributional communication complexity of f . Yao’s Lemma [Yao83]
implies that R1

δ(f) ≥ maxµ D1,µ
δ (f).

The family G we define is indexed by (S1, . . . , Sn, i, j), where S1, . . . , Sn are n subsets of [n] of size
t = n/10 and i, j ∈ [n]. GS1,...,Sn,i,j is an undirected graph (U ×V ×W,E), where U = {u1, . . . , un},
V = {v1, . . . , vn}, W = {w1, . . . , wn}, and the edges are the following:

(1) A perfect matching of U and V : ∀(j ∈ [n]), (uj , vj) ∈ E.
(2) Each node wi is connected to all vj for which j ∈ Si: ∀(i ∈ [n], j ∈ Si), (wi, vj) ∈ E.
(3) (wi, uj) ∈ E.
We define a Boolean function f(S1, . . . , Sn, i, j) as follows:

f(S1, . . . , Sn, i, j) =
{

1 if j ∈ Si

0 Otherwise

We view the inputs of f as composed of two parts: (S1, . . . , Sn) and (i, j). We first show
that a space-efficient streaming algorithm for approximating T3, implies an efficient one-round
communication complexity protocol for f :

Lemma 15 If there exists a streaming algorithm that uses space s and that (ε, δ)-approximates T3

for 0 < ε, δ < 1, then R1
δ(f) ≤ s.

Proof. Let A be an s-space streaming algorithm that (ε, δ)-approximates T3. Alice and Bob will
simulate A on the graph GS1,...,Sn,i,j, as follows: Alice starts the simulation, providing A with all
the edges defined in (1) and (2) in arbitrary order. Then it transmits the content of A’s work tape
(s bits) to Bob, who continues the simulation on the edge (3). Bob outputs 1 if A’s estimation of
T3 is greater than 0, and 0 otherwise.

Note that only 0 is a viable ε-approximation of T3 = 0, and that 0 is not a viable ε-approximation
of T3 ≥ 1, if ε < 1. Thus, when A succeeds to output an ε-approximation of T3, Bob outputs 1 if
and only if there is at least one triangle in GS1,...,Sn,i,j. The lemma now follows from the observation
that GS1,...,Sn,i,j has a triangle if and only if j ∈ Si. !

The Theorem follows from the following lower bound:

Lemma 16 For any 0 < δ < 1/100, R1
δ(f) ≥ n2/40.

14

Proof. We will use Yao’s Lemma, and exhibit a distribution µ over the inputs of f , for which
D1,µ

δ (f) ≥ n2/40.
Let S be an (n, n/10, n/20)-design of size N = 2n/10. That is, S = {S1, . . . , SN}, where each

Si ⊆ [n], |Si| = n/10, and for every two distinct Si, Sj , |Si ∩ Sj| ≤ n/20. The existence of such a
family can be proved by a probabilistic argument [NW94].

Let C be an (n, n/2 + 1, n/2)-error correcting code over an alphabet of size N . That is, C =
{c1, . . . , cT }, where ci ∈ [N]n, T = Nn/2+1, and for every two distinct ci, cj , ci and cj agree on
at most n/2 coordinates. The existence of such a code follows from coding theory (C can be, for
example, a Reed-Solomon code over a field of size N).

The distribution µ over inputs of f is obtained by picking a random codeword c ∈ C and random
i, j ∈ [n]. c is interpreted as a collection of n sets S1, . . . , Sn from the design S. We will show that
any one-round deterministic protocol has probability of at least 1/100 to output a wrong answer
when given inputs according to µ.

A deterministic one-round protocol can be specified by two functions ψA,ψB . Alice applies ψA

on its inputs and send the result to Bob. Bob applies ψB on what it received from Alice, as well
as its own input, and outputs the result. Assume, to the contradiction, there exists a one-round
protocol for f that uses less than n2/40 bits of communication. We partition Alice’s inputs into
classes, based on the value of ψA on them (that is, all the inputs that have the same ψA value are
in the same class). We will show that in each class there is at most one input of Alice for which
the protocol is correct on more than 39/40 of Bob’s inputs.

Claim 2 Let c, c′ be two inputs of Alice for which ψA(c) = ψA(c′). Then, for at least one of these
inputs, for at least 1/40 of Bob’s inputs, the protocol outputs the wrong answer.

Proof. Note that for any input (i, j) of Bob, since ψA(c) = ψA(c′), Bob outputs the same value
on (c, i, j) and on (c′, i, j).

Let (S1, . . . , Sn) be the sets corresponding to c, and let (S′
1, . . . , S

′
n) be the sets corresponding

to c′. Since c and c′ agree on at most n/2 coordinates, then for at least n/2 of i ∈ [n], Si (= S′
i.

For each such i, |Si ∩ S′
i| ≤ n/20, which implies that |Si . S′

i| ≥ n/10. If Bob’s input is a pair
(i, j) such that Si (= S′

i and j ∈ Si . S′
i, then f(c, i, j) (= f(c′, i, j), implying that Bob is wrong on

at least one the inputs. Thus, on at least n2/20 of the pairs (i, j) Bob outputs a wrong answer on
either (c, i, j) or (c′, i, j). It follows that for at least one of c and c′, Bob errs on at least n2/40 of
his inputs. !

It follows from Claim 2 that the probability of the protocol to output the correct answer, when
choosing (S1, . . . , Sn, i, j) according to µ, is at most

39
40

+
{# of classes}

T
≤ 39

40
+

2n2/40

2n2/20+n/10
≤ 99

100

for a sufficiently large n. Thus, the protocol is wrong with probability at least 1/100, which is
greater than δ, contradicting our initial assumption. !

!

15

7 Discussion and open problems

Our triangle algorithms easily generalize to directed graphs as well. They can be also generalized to
find the number of copies of larger cliques; however, this would require using streaming algorithms
for higher frequency moments (for k ≥ 3), which are not as efficient as the ones for F0, F1, F2.

Some issues left are open are: (1) Finding a range-efficient algorithm for F0 with a better
dependence on 1/ε; this would directly improve the dependence of our triangle algorithm on the
ratio (T1 + T2)/T3. (2) Getting a more explicit space lower bound for counting triangles in terms
of T1, T2, T3. (3) Understanding the situations in which our adjacency stream algorithm is superior
to the naive sampling algorithm.

Acknowledgments

We thank T. S. Jayram, Christos Papadimitriou, and Luca Trevisan for helpful discussions.
We are especially grateful to Martin Strauss for sharing portions of [GKMS01], and for helpful
discussions.

References

[AMS99] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the
frequency moments. Journal of Computer and System Sciences, 58(1):137–147, 1999.

[AYZ97] N. Alon, R. Yuster, and U. Zwick. Finding and counting given length cycles. Algorith-
mica, 17(3):209–223, 1997.

[Bab01] S. Babu. Work related to STREAM project, 2001. http://www-
db.stanford.edu/stream/related.html.

[CW79] J. L. Carter and M. N. Wegman. Universal classes of hash functions. J. of Computer
and System Sciences (JCSS), 18(2):143–154, 1979.

[Dic58] L. E. Dickson. Linear Groups with an Exposition of the Galois Field Theory. Dover,
1958.

[EIO02] L. Engebretsen, P. Indyk, and R. O’Donnell. Derandomized dimensionality reduction
with applications. In Proceedings of the 13th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), 2002. To Appear.

[FKSV99] J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan. An approximate L1-
difference algorithm for massive data streams. In Proceedings of the 40th IEEE Annual
Symposium on Foundations of Computer Science (FOCS), pages 501–511, 1999.

[FM85] P. Flajolet and G. N. Martin. Probabilistic counting algorithms for data base applica-
tions. Journal of Computer and System Sciences (JCSS), 31(2):182–209, 1985.

[FS00] J. Fong and M. Strauss. An approximate lp-difference algorithm for massive data
streams. In Proceedings of the Annual Symposium on Theoretical Aspects of Computer
Science (STACS), pages 193–204, 2000.

16

[Gib01] P. B. Gibbons. Distinct sampling for highly-accurate answers to distinct values queries
and event reports. In Proceedings of the 27th International Conference on Very Large
Data Bases (VLDB), 2001.

[GKMS01] A. C. Gilbert, Y. Kotidis, S. Muthuskrishnan, and M. J. Strauss. A few good terms:
Efficient streaming computation of wavelet decomposions. Manuscript, Available from
http://www.research.att.com/∼mstrauss/pubs/, 2001.

[GKS01] S. Guha, N. Koudas, and K. Shim. Data streams and histograms. In Proceedings of the
33rd Annual ACM Symposium on the Theory of Computing (STOC), pages 471–475,
2001.

[Gol97] O. Goldreich. A sample of samplers – a computational perspective on sampling (survey).
Electronic Colloquium on Computational Complexity (ECCC), TR97-020, 1997.

[GT01] P. B. Gibbons and S. Tirthapura. Estimating simple functions on the union of data
streams. In Proceedings of the ACM Symposium on Parallel Algorithms and Architec-
tures (SPAA), pages 281–291, 2001.

[HRR99] M. Henzinger, P. Raghavan, and S. Rajagopalan. Computing on data streams. In
DIMACS series in Discrete Mathematics and Theoretical Computer Science, volume 50,
pages 107–118, 1999.

[Ind00] P. Indyk. Stable distributions, pseudorandom generators, embeddings and data stream
computation. In Proceedings of the 41st IEEE Annual Symposium on Foundations of
Computer Science (FOCS), pages 189–197, 2000.

[KN97] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press,
1997.

[NW94] N. Nisan and A. Wigderson. Hardness vs. randomness. Journal of Computer and System
Sciences, 49(2):149–167, 1994.

[Siv01] D. Sivakumar. Algorithmic derandomization via complexity theory. Manuscript, 2001.

[Tre01] L. Trevisan. A note on counting distinct elements in the streaming model. Manuscript,
2001.

[Yao83] A. C-C. Yao. Lower bounds by probabilistic arguments. In Proceedings of the 24th
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 420–
428, 1983.

17

