
On the Streaming Complexity of Computing Local
Clustering Coefficients∗

Konstantin Kutzkov
IT University of Copenhagen

Copenhagen, Denmark
konk@itu.dk

Rasmus Pagh
IT University of Copenhagen

Copenhagen, Denmark
pagh@itu.dk

ABSTRACT
Due to a large number of applications, the problem of es-
timating the number of triangles in graphs revealed as a
stream of edges, and the closely related problem of estimat-
ing the graph’s clustering coefficient, have received consider-
able attention in the last decade. Both efficient algorithms
and impossibility results have shed light on the computa-
tional complexity of the problem. Motivated by applications
in Web mining, Becchetti et al. presented new algorithms
for the estimation of the local number of triangles, i.e., the
number of triangles incident to individual vertices. The algo-
rithms are shown, both theoretically and experimentally, to
efficiently handle the problem. However, at least two passes
over the data are needed and thus the algorithms are not
suitable for real streaming scenarios.

In the present work, we consider the problem of estimat-
ing the clustering coefficient of individual vertices in a graph
over n vertices revealed as a stream of m edges. As a first
result we show that any one pass randomized streaming al-
gorithm that can distinguish a graph with no triangles from
a graph having a vertex of degree d with clustering coeffi-
cient > 1/2 must use Ω(m/d) bits of space in expectation.

Our second result is a new randomized one pass algorithm
estimating the local clustering coefficient of each vertex with
degree at least d. The space requirement of our algorithm
is within a logarithmic factor of the lower bound, thus our
approach is close to optimal. We also extend the algorithm
to local triangle counting and report experimental results on
its performance on real-life graphs.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems

∗Work supported by the Danish National Research Council
under the Sapere Aude program.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSDM’13, February 4–8, 2013, Rome, Italy.
Copyright 2013 ACM 978-1-4503-1869-3/13/02 ...$15.00.

Keywords
Graph algorithms, Streaming, Local clustering coefficient,
Triangle counting

1. INTRODUCTION
The last decades have witnessed a rapid growth of avail-

able data. Many of the best known algorithms assume ran-
dom access to the input, and this turns out to be an infeasi-
ble requirement for many real-life problems. This motivates
the (semi-) streaming model of computation where only one
or a small number of sequential scans of the input are al-
lowed. The model has become a ubiquitous computational
paradigm and considerable progress has been made towards
a better understanding of the complexity of many basic al-
gorithmic problems.

Graphs are a ubiquitous representation of relationships
between objects in real-life problems. Many applications re-
quire knowledge of certain structural properties of a given
graph which will allow a better analysis of the original prob-
lem. The clustering coefficient of a graph, introduced in [32],
gives the probability that two of the neighbors of a vertex
chosen at random are connected by an edge. It provides
important information about the structure of the graph and
the existence of local communities. The computation of the
clustering coefficient of a graph, and the closely related prob-
lem of computing the total number of triangles in a graph
revealed as a stream of edges, have received considerable
attention. Becchetti et al. [6] showed that for certain ap-
plications in Web mining the computation of the clustering
coefficient of individual vertices is required, and presented a
semi-streaming algorithm for the problem. In this paper we
study whether the problem admits an efficient solution in a
real streaming scenario when only one pass over the input
graph is allowed.

2. PRELIMINARIES

Notation.
Let G = (V,E) be a simple undirected graph without

loops. We denote the number of vertices V by n and the
number of edges E by m. An edge between the vertices
u and v is written as (u, v). We assume a total order on
vertices in V and since our graph is undirected and loopless
we will consider only edges (u, v) with u < v. NG(v) = {u ∈
V : (u, v) ∈ E} is the neighborhood of v. The degree of a
vertex v is dv = |NG(v)|, i.e., the number of edges adjacent
to v. An r-clique Kr in G is a subgraph of G on r vertices

677

such that for any vertex pair u, v in Kr there exists an edge
(u, v) ∈ E. A triangle is a 3-clique. Tv = 1

2
|{(u, w) ∈ E :

(u, v) ∈ E, (v, w) ∈ E}| is the number of triangles containing
v. A 2-path centered at v is a triple of vertices (u, v, w) such
that there exist edges (u, v), (v, w) and u and w are called the
endpoints of the 2-path (u, v, w). A triangle on the vertices
u, v, w is denoted by 〈u, v, w〉. The clustering coefficient of a
vertex v of degree at least two, denoted as Cv, is defined as
the ratio of triangles containing v to the number of 2-paths
centered at v. More formally, we define

Cv =
2Tv

dv(dv − 1)

The global clustering coefficient of G is

GG =
1

n

∑
v∈V :d(v)≥2

Cv.

Note that we define the local clustering coefficient only for
vertices of degree at least two. In the literature the cluster-
ing coefficient of vertices of degree less than two traditionally
has been set to either 0 or 1, or declared to be meaningless.
As discussed in several works, see e.g. [18, 26], the differ-
ent definitions have resulted in different results. Therefore,
in order to avoid confusions, we consider only graphs with
vertices of degree at least two. This is also justified by the
real-life graphs we consider in our experiments, since they
do not contain vertices of degree less than two.

Probability theory.
We assume that the reader is familiar with basic defini-

tions from probability theory. In the analysis of our algo-
rithms we will use these inequalities:

• Markov’s inequality Let X be a random variable. Then
for every λ > 1:

Pr[X ≥ λE[X]] ≤ 1

λ
(1)

• Chebyshev’s inequality. Let X be a random variable
and s > 0. Then

Pr[|X −E[X]| ≥ s] ≤ V [X]

s2
(2)

• Chernoff’s inequality. We will use the following form
of the inequality:

LetX1, . . . , X� be � independent identically distributed
Bernoulli random variables and E[Xi] = μ. Then for
any ε > 0 we have

Pr[|1
�

�∑
i=1

Xi − μ| > εμ] ≤ 2e−ε2μ�/2 (3)

A family F of functions from V to a finite set S is k-wise
independent if for a function f : V → S chosen uniformly at
random from F it holds

Pr[f(v1) = c1 ∧ f(v2) = c2 ∧ · · · ∧ f(vk) = ck] =
1

sk

for s = |S|, distinct vi ∈ V and any ci ∈ S and k ∈ N.
A family H of functions from V to a finite totally ordered

set S is called (ε, k)-min-wise independent if for any X ⊆ V

and Y ⊆ X, |Y | = k, for a function h chosen uniformly at
random from H it holds

Pr[max
y∈Y

h(y) < min
z∈X\Y

h(z)] = (1± ε)
1(|X|
k

)
We will refer to a function chosen uniformly at random

from a k-wise independent family as a k-wise independent
function.

We will say that an algorithm returns an (ε, δ)-approximation
of some quantity q, if it returns a value q̃, such that (1 −
ε)q ≤ q̃ ≤ (1 + ε)q, with probability at least 1 − δ for any
0 < ε, δ < 1.

The streaming model.
We assume that the input graph is read as a stream of

edges. In the literature, two models have been considered.
In the incidence list stream model for each vertex u ∈ V
the edges (u, v1), . . . , (u, vdu), i.e., all edges adjacent to u,
are revealed in succession. In an adjacency stream model
edges arrive in arbitrary order. Clearly, the incidence list
model provides more information and algorithms analyzed in
this model are usually better than algorithms assuming the
adjacency stream model. Our results apply to the adjacency
stream model.

3. PREVIOUS WORK
Counting the number of triangles in a graph and comput-

ing its clustering coefficient are widely studied problems,
with applications ranging from computational biology to
mining social networks. It is known that unlike random
Erdös-Rényi graphs [14], real-life graphs are characterized by
high clustering coefficients, see for instance [2], and the clus-
tering coefficient is an important metric for mining knowl-
edge about the original data. For example, Coleman [11]
and Portes [25] use the clustering coefficient when analyzing
human behaviour in social networks, and Becchetti et al. [6]
used it for the detection of spamming activity in large-scale
Web graphs. The best known exact algorithm [3] uses as
a subroutine matrix multiplication and runs in time O(nω),
where ω = 2.3727 is the best known exponent for rectan-
gular matrix multiplication [30]. The algorithm also counts
exactly the number of triangles per vertex. Note however
that this algorithm is mainly of theoretical importance since
it requires random access to the graph, and thus the graph
has to fit in memory. Also, currently known asymptotically
fast matrix multiplication algorithms do not admit an effi-
cient implementation for realistic input sizes.

Several authors presented sampling based algorithms for
the estimation of the global number of triangles in a (semi)-
streaming setting [5, 9, 12, 16, 21, 24, 28, 29]. Building
upon results from linear algebra, researchers proposed tech-
niques for approximate triangle counting not relying on sam-
pling [4, 27]. The closely related problem of estimating the
global clustering coefficient was considered in [10, 26]. The
algorithm by Schank and Wagner [26] is based on sampling
and requires two passes over the input graph. The algorithm
was improved to work in a single pass by Buriol et al. [10] at
the price of a slightly increased time and space complexity.
Motivated by the problem of detection of emerging web com-
munities by analyzing the Web graph [22], Buriol et al. [10]
studied the problem of counting bipartite cliques of small
size. The more general problem of estimating the number of
graph minors of fixed size was studied by Bordino et al [7].

678

Despite of the fact that researchers have considered ap-
plications involving counting the number of triangles per
vertex [13, 23], only recently the problem of estimating the
local number of triangles was rigorously studied by Becchetti
et al. [6]. The authors propose two algorithms working in a
semi-streaming fashion such that the input graph is stored
on an external device and a few sequential scans over it are
allowed. The algorithms are based on min-wise permutation
hashing [8]. Both algorithms use O(n) main memory. How-
ever, the first algorithm also requires sequential writing to
a persistent storage device and uses O(m) external memory.
The second algorithm works only in main memory but one
cannot theoretically prove that the algorithm achieves an
arbitrarily good approximation of the number of triangles
at individual vertices. It is easy to adjust the algorithms to
work in two passes but there is no straightforward extension
of the approach running in a single pass over the input, thus
it is not suitable for real streaming applications.

Our contribution.
Algorithms working in only one pass over the input are

important since they can be used in real streaming scenarios
and thus have a wider range of applications. We study the
complexity of estimating the local clustering coefficient by
randomized algorithms in one pass over the input from two
perspectives:

1. Lower bound. We show that any one pass randomized
algorithm detecting with error probability at most 1/3
if there exists a vertex of degree at least 2d with clus-
tering coefficient at least 1/2 needs Ω(m/d) bits. This
holds even if we guarantee that if there exists any tri-
angle, there exists a vertex with clustering coefficient
at least 1/2.

2. Upper bound. We design a randomized one pass algo-
rithm deciding with constant error probability whether
a given vertex of degree d or more has a clustering
coefficient above a given constant threshold α using
O(m

d
) words. More precisely, we achieve an (ε, δ)-

approximation of the clustering coefficient α of all ver-
tices of degree at least d in time O(m

αε2
log 1

ε
log n

δ
) and

space O((m
d
+ log 1

ε
) 1
αε2

log n
δ
) for any δ, ε, α > 0. We

extend our algorithm to also estimate the number of
triangles per high-degree vertex. At the end we pro-
vide an experimental evaluation of the algorithm.

In case d is no larger than the average degree, the space
usage is Ω(n) bits so we are in the semi-streaming domain
in terms of space usage. Our algorithm has space usage o(n)
whenever the fraction of vertices with degree d or more is
sufficiently small. This is the case for many real-life graphs.

Note that the lower bound is given in bits while the upper
bound is terms of the number of sampled edges, i.e. machine
words of O(log n) bits each. Thus, for a fixed vertex the
lower and upper bound match up to a logarithmic factor.

4. LOWER BOUND
We begin with a negative result that will show the limi-

tations of any randomized one pass algorithm detecting ver-
tices with high clustering coefficient. Lower bounds on the
complexity of global triangle counting have been shown in
several works [5, 16, 33].

Theorem 1. Let G = (V,E) be a simple undirected graph
without loops over m edges. Any randomized streaming al-
gorithm, performing only one pass over the edges of G and
being able to distinguish between a graph where all vertices
of degree 2d = o(

√
m) have a clustering coefficient 0, and

a graph where there is a vertex of degree 2d with clustering
coefficient at least 1/2, with error probability 1/3, must use
Ω(m/d) bits in expectation.

Proof. Let DetectClusteredVertices be a random-
ized streaming algorithm detecting vertices with high clus-
tering coefficient in G. Assume without loss of generality
that m/(2d) is integer. We show that if DetectClus-

teredVertices uses s bits of memory, this would imply
a protocol for the Set Disjointness problem on strings
x, y ∈ {0, 1}m/(2d) using s bits of communication. This
problems has answer 1 if there exists an index i such that
xi = yi = 1, and answer 0 otherwise. By existing lower
bounds on the randomized communication complexity of
Set Disjointness [19] this implies that s = Ω(m/d) bits
are needed for any constant error probability smaller than 1.

Denote by xi the ith bit in the string x. We will reduce
the Set Disjointness problem to detecting vertices with
clustering coefficient more than 1/2 in a graph revealed as
a stream of edges in the adjacency stream model. Let W x =
{wx

1 , . . . , w
x
d}, W y = {wy

1 , . . . , w
y
d}, Ux = {ux

1 , . . . , u
x
d}, Uy =

{uy
1 , . . . , u

y
d} be four sets of d vertices each. The reader is re-

ferred to Figure 1 for a graphical description of our construc-
tion. We read x ∈ {0, 1}m/(2d) bit by bit and create a vertex
vi for the ith index in x. If xi = 0, then we feed Detect-

ClusteredVertices with the d edges (vi, u
x
j), 1 ≤ j ≤ d.

If xi = 1, then we feed DetectClusteredVertices with
the d edges (vi, w

x
j), 1 ≤ j ≤ d. We proceed with the bits in

y in the same way but we create edges (vi, u
y
j) and (vi, w

y
j).

After processing x and y we add d2 edges (wx
i , w

y
j), 1 ≤

i, j ≤ d, for wx
i ∈ W x, wy

j ∈ W y. Now it is easy to see
that the graph contains a triangle if and only if there exists
an i such that xi = yi = 1, and in this case the clustering
coefficient of vi is d

2/
(
2d
2

)
> 1/2, otherwise all vertices have

clustering coefficient 0. Also, each vertex vi has degree ex-
actly 2d, the total number of vertices is m/(2d)+4d and for
d = o(

√
m) the number of edges is m + d2 = O(m). Thus,

we have reduced the Set Disjointness problem for input
strings x, y ∈ {0, 1}m/(2d) to the problem of distinguishing
between vertices of degree d with clustering coefficient 0 or
more than 1/2 in streamed graphs over O(m) edges. We
conclude that DetectClusteredVertices needs Ω(m/d)
bits for graphs over m edges.

One can extend the above proof such that the vertices
vi can also have odd degree in a trivial way. For a better
readability we choose not to present this extension here.

The above lower bound supports the intuition that the
space requirements of any randomized one pass algorithm for
estimating the clustering coefficient of individual vertices,
should not depend only on the value of the coefficient but
also on the vertex degree. In order to estimate the clustering
coefficient of a given vertex v we need some kind of sampling
of 2-paths centered at v for which we can check whether they
are a part of a triangle. But to obtain a good estimate of
low degree vertices, without any prior knowledge about the
degree distributions in the graph, we need a low sampling
probability, which in turn results in many sampled edges.

679

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

W x W y

Vbits

Ux Uy

Figure 1: An example of a hard instance for our
lower bound construction. The edges going out from
v1 denote that x1 = 1 and y1 = 0. Similarly, we see
that x4 = 0 and y4 = 1, while x6 = y6 = 0 and x10 =
y10 = 1. Only v10 among the considered vertices is
part of a triangle and has a clustering coefficient
larger than 1/2.

5. ONE PASS ALGORITHM
In this section we present a randomized one pass algo-

rithm estimating the clustering coefficient of vertices of de-
gree above some threshold d. In Section 5.1 we first give
some intuition what are the difficulties for the estimation of
the clustering coefficient in only one pass and then describe
the main idea behind the new algorithm. A thorough de-
scription and theoretical analysis of our algorithm is given
is Section 5.2. In Section 5.3 we show how to extend the
algorithm to local triangle counting for high-degree vertices.
In Section 5.4 we conclude with an experimental evaluation
of the performance of the algorithm on real-life graphs.

5.1 Intuition
A straightforward idea for the estimation of the cluster-

ing coefficient in only one pass of high degree vertices is
to sample independently each incoming edge with a certain
probability p. Then in the sparsified graph we compute the
clustering coefficient for all vertices. This sparsification ap-
proach is essentially the Doulion algorithm [28, 29], which
was shown to accurately estimate the number of triangles in
a graph given as a stream of edges. Let us consider a vertex
v contained in a triangle 〈u, v, w〉. The probability that we
will sample the 2-path (u, v, w) is p2 while the probability to
sample the triangle 〈u, v, w〉 is p3. Thus, we have to multiply
by 1/p the clustering coefficient we have computed for each
vertex in the sparsified graph in order to obtain in expec-
tation the true clustering coefficient. But this means that
the estimates obtained from the sparsified graph need to be
very accurate in order to obtain a concentration around the
expected value with high probability, which in turn implies
a large value for the sampling probability p resulting in large
space consumption.

A simple algorithm can work as follows: for each vertex v
we sample independently a number of 2-paths (u, v, w) and

for each of them check whether the edge (u,w) exists in the
graph. The approach can be implemented in three passes
over the edges. In the first pass we find a set of candidate
vertices of degree at least d. This can be done by a frequent
items mining algorithms, e.g. [20], in space O(m/d) such
that each vertex of degree d or more is guaranteed to be
among the candidates. In a second pass we determine the
set of vertices of degree d or more and the exact degree of
each of them. Then for each vertex v of degree d or more
we sample a number of 2-paths (u, v, w) and check whether
the edge (u,w) appears in the stream, this can be done for
example using reservoir sampling [31] as shown in [9]. It
is easy to show that the sketched algorithm will compute
an (ε, δ)-approximation of a vertex of degree at least d and
clustering coefficient α in space O(m

dε2α
log 1

δ
)

In the next section we show how to combine the above two
approaches to work for high degree vertices in only one pass
over the input graph achieving essentially the same space
complexity. We will use the idea of monochromatic sam-
pling [24]. Basically, we randomly color the vertices and
then take an edge in the sample iff its endpoints have the
same color. Clearly, if two of the edges of a triangle are
sampled, the third edge must also be sampled. Thus, for
a sampled 2-path (u, v, w), after processing the stream of
edges we can check whether there exists a triangle 〈u, v, w〉.
The sampling probability for a triangle 〈u, v, w〉 is the same
as for the 2-path (u, v, w), namely p2.

5.2 The algorithm
A high-level pseudocode description of our algorithm is

given in Figure 2. The main method is EstimateCluster-

ingCoefficients. It reads the input graph as a stream of
edges in arbitrary order. First we run K independent copies
of SparsifyGraph in parallel. Assume we have defined a
k-wise independent function f : V → [0, 1]1, for a k that
will be specified later. Let C be a natural number denot-
ing the number of colors. Then we sample each incoming
edge (u, v) iff �Cf(u)� = �Cf(v)�, where �r� denotes that
the real number r is mapped to the biggest integer smaller
than (or equal to) r, i.e., we map to one of C colors. At the
end we obtain a sparsified graph where all edge endpoints
have the same color. Obviously, if C = d, we expect spar-
sified graphs with m/d edges. In order to control the space
usage of the algorithm, we check after each edge has been
sampled whether not more than t edges are sampled, for a
user-defined t. If this is the case, then the algorithm breaks
its execution and returns an empty graph.

Clearly, if we have sampled a 2-path (u, v, w), then, if exis-
tent, we must have also sampled the edge (u, w). In Check-

TwoPaths for each vertex with at least two sampled neigh-
bors we choose the two of these neighbors for which f gives
the smallest value and check whether the considered 2-path
is part of a triangle. We will show that the expected value
is an almost unbiased estimator of the clustering coefficient
of vertex v such that the bias depends on how independent
is the coloring function. Assume we return R ≤ K non-
empty graphs. At the end, for each vertex v with at least
R/2 sampled 2-paths (u, v, w) we output as an estimate of
the clustering coefficient αv the ratio of triangles to 2-paths
centered at v obtained from the samples.

1In fact, f maps V to a discrete set uniformly distributed
on the unit interval.

680

Theorem 2. Let G = (V,E) be a graph over n vari-
ables revealed as a stream of m edges. Let further K =
4

αε2
log n

δ
, C = d/4 colors, fi : V → [0, 1], 1 ≤ i ≤ K,

be k-wise independent, such that k = O(log 1
ε
), and t =

9m/d. Then EstimateClusteringCoefficients returns
an (ε, δ)-approximation of the clustering coefficient for all
vertices of degree at least d and clustering coefficient at least
α for any ε, α, δ > 0. The expected running time of the al-
gorithm is O(m

αε2
log 1

ε
log n

δ
) and the worst case space com-

plexity is O((m
d
+ log 1

ε
) 1
αε2

log n
δ
).

Proof. Let us assume that we runK parallel instances of
SparsifyGraph. In the following we will obtain a bound on
K that will guarantee the claimed bounds. We will estimate
the probability for each of three “bad” events that lead to
an incorrect estimate.

Assume first that for a given vertex v we have sampled
� ≤ K 2-paths (ui, v, wi), each in one of the copies of the
algorithm run in parallel. For a given non-empty sparsified
graph Gi

S, 1 ≤ i ≤ �, introduce an indicator random vari-
able Xi, 1 ≤ i ≤ �, such that Xi = 1 iff (ui, wi) ∈ Gi

S ,
i.e., if u, v, w form a triangle. We first show that for a ran-
dom enough coloring function fi, E[Xi] is an almost un-
biased estimator of α. Let v’s clustering coefficient be αv

and let us define a function h : N(v) → [0, 1] as h(u) =
(f(u)− f(v)) mod 1 for u ∈ N(v). It is easy to see that the
two vertices u,w yielding the smallest values h(u) and h(w)
are those yielding the smallest values f(u) and f(w) larger
than f(v). Thus, under the assumption that |Nv(GS)| ≥ 2,
choosing the two neighbors of v in GS with the smallest val-
ues given by f corresponds to choosing the two vertices in
Nv(G) with the smallest values given by h. If f is k-wise
independent under the assumptions that f(v) evaluates to a
certain value, we have that h is (k−1)-wise independent. For
k = O(log 1

ε
), h is then (ε, 2)-min-wise independent, see [15]

for the state-of-the-art result. Thus, the chosen pair of ver-
tices is sampled almost uniformly at random among all pairs
of v’s neighbors and we have (1− ε)αv ≤ E[Xi] ≤ (1+ ε)αv.

We return α̃v = 1
�

∑�
i=1 Xi as an estimation of αv. The

functions fi are independent and thus the colorings are also
independent. Consequently the indicator random variables
Xi are independent, thus by applying Chernoff’s inequality
and using ε < 1 we bound the probability that α̃v is not

an (1 ± 3ε)-approximation is upper bounded by 2−ε2αv�/2.
Since α ≤ αv , we need

� =
log 3

ε2α
log

n

δ

such that the error probability for a single vertex is bounded
by δ

3n
. Thus, the error probability of the estimate for any

vertex is δ/3.
Second, let us assume that the K parallel instances return

R non-empty graphs, i.e., in R cases we have not sampled
more than the allowed t edges. We estimate how many in-
dependent colorings, each for C = d/4 colors, are needed
such that we obtain at least � = log 3

ε2α
log n

δ
samples for a

vertex of degree at least d. Consider a given vertex v with
dv ≥ d. We have d

4
colors and thus a sampling probability of

4
d
. We introduce an indicator random variable X1, . . . , Xdv

for each neighbor ui of v, denoting whether f(v) = f(ui).

Let X =
∑dv

i=1 Xi. We want to bound Pr[X ≤ 1]. Clearly,

we have E[X] = 4dv
d

≥ 4. The Xi are {0, 1}-valued, and
w.l.o.g. we can assume that f is 3-wise independent, there-

fore it is easy to see that V [X] ≤ E[X]. Thus, we can set
s = E[X]− 1 in Chebyshev’s inequality and obtain

Pr[|X − E[X]| ≥ E[X]− 1] ≤ V [X]

(E[X]− 1)2

≤ E[X]

(E[X]− 1)2
≤ 4

9

for dv ≥ d. Now, we introduce an indicator random vari-
able Y v

i for vertex v of degree at least d, denoting whether
enough edges have been sampled in the ith sparsified graph,
1 ≤ i ≤ S. Clearly, E[Y v

i] ≥ 5/9. Since the colorings are
independent, we can apply again Chernoff’s inequality and
bound the probability for not enough sampled edges. There-
fore, if we have

R = 2
log 3

ε2α
log

n

δ

the probability that in � = log 3
ε2α

log n
δ
graphs for any vertex

of degree at least d we have less than two sampled neighbors,
is upper bounded by δ/3.

Finally, we have to consider the possibility that too many
edges have been sampled and the algorithm returns an empty
graph. By simply applying Markov’s inequality for a sam-
pling probability 4

d
we get that with probability 4/9 more

than 9m
d

edges are sampled. We apply again Chernoff’s in-
equality. Running

K = 4
log 3

ε2α
log

n

δ

copies in parallel, we bound the probability that too many
edges are sampled in more than R = 2 log 3

ε2α
log n

δ
of the

copies, to δ/3.
Summing up, the probability that either too many edges

are sampled, or not enough neighbors for a vertex of degree
d are sampled, or the algorithm does not return an (1 ±
ε)-approximation of the clustering coefficient for vertices of
degree at least d, is 3(δ/3) = δ for 0 < δ < 1.

A O(log 1
ε
)-wise independent function can be defined in

O(log 1
ε
) machine words and evaluated in time O(log 1

ε
).

Note that for a approximation parameter ε that can be de-
scribed in constant number of machine words, log 1

ε
is con-

stant. Storing the adjacency lists of the vertices in the spar-
sified graphs in hashtables, we can achieve expected constant
update time per incoming edge. The sampling of 2-paths
and checking whether they are contained in a triangle can
thus be done in expected linear time in the size of the spar-
sified graph. The size of the hash table H is clearly bounded
by the number of sampled edges in the R non-empty graphs
and the expected time for update and look-up is constant.
The time and space complexity of the algorithm follow then
immediately from the above discussion.

The size of the input graph.
In the above analysis we assume that the number of edges

and vertices are known in advance. If this is not the case, one
can start with a conservative choice for the number of colors
and, if too many edges have been sampled, scale the sam-
pling probability, i.e., increase the number of colors. When
presenting the implementation of our algorithm we discuss
more details about this, but we omit the rigorous description
of this extension.

681

SameColor

Input: a k-wise independent function f : V → [0, 1], num-
ber of colors C, vertices u and v

1: if �Cf(u)� = �Cf(v)� then
2: return true

3: else
4: return false

SparsifyGraph

Input: stream of edges E, number of colors C, k-wise inde-
pendent function f : V → [0, 1], threshold t

1: GS = ∅
2: for each edge (u, v) ∈ E do
3: if SameColor(f, C, u, v) then
4: GS = GS ∪ (u, v).
5: if |GS | > t then
6: return the empty graph.
7: Return GS .

CheckTwoPaths

Input: a sparsified graph GS

1: for each vertex v ∈ GS such that |NGS (v)| ≥ 2 do
2: choose the two neighbors u,w, u < w, from NGS (v)

with the smallest f(u) and f(w)
3: sampled(v) = true

4: if (u,w) ∈ GS then
5: X�(v) = 1 //there is a triangle
6: else
7: X�(v) = 0 //no triangle
8: Return a set of pairs (v,X�(v)) such that v ∈ V and

sampled(v)

EstimateClusteringCoefficients

Input: a stream of edges E, a family of K k-wise functions
fi : V → [0, 1], number of colors C, Hashtable H〈V,
〈Int, Int〉〉, int K, threshold t

1: Run in parallel K copies of SparsifyGraph(E,C, fi, t)
2: for each of R returned non-empty sparsified graph Gi

S

do
3: VP = CheckTwoPaths(Gi

S)
4: for each (v,X�(v)) ∈ VP do
5: if v /∈ H then
6: pv = tv = 0
7: else
8: get (v, (pv, tv)) from H
9: pv++
10: if X�(v) == 1 then
11: tv++
12: put (v, (pv, tv)) in H
13: for each (v, (pv, tv)) ∈ H with pv ≥ R/2 do
14: Return (v, tv/pv).

Figure 2: A high-level pseudocode description of the
algorithm.

5.3 Local triangle counting
It is easy to extend the algorithm to count the local num-

ber of triangles for vertices of sufficiently high degree. All
we need is to also estimate the number of 2-paths per high-
degree vertex. Indeed, we already have the necessary com-
ponents for the analysis. In the following theorem we show
how to estimate the degree of a vertex for which we have
sampled at least R/2 times at least two neighbors and that
for high degree vertices we can obtain a high quality esti-
mate of the degree. We will use the same notation as in the
proof of Theorem 2.

Theorem 3. Let G = (V,E) be a graph over n variables
revealed as a stream of m edges. There exists a random-
ized one pass algorithm achieving an (ε, δ)-approximation
of the number of triangles centered at each vertex of de-
gree at least d and a clustering coefficient at least α in ex-
pected time O(m

αε2
log 1

ε
log n

δ
) and worst case space complex-

ity O((m
d
+ log 1

ε
) 1
αε2

log n
δ
) for any ε, α, δ > 0.

Proof. Consider a vertex v of degree dv ≥ d. We first
show how to obtain an approximation of dv. Assume we ex-
tend EstimateClusteringCoefficients in the following
way. For each vertex with at least one sampled neighbor we
record the number of sampled neighbors in each sparsified
graph.

Assume we return S = 3
ε′2 log n

δ
non-empty sparsified

graphs for some ε′ > 0 that will be specified later. Let
us logically divide them into log n

δ
groups of 3

ε′2 graphs. In
each group for each sparsified graph we introduce an indi-
cator random variable Xi, 1 ≤ i ≤ dv, for each of the dv

neighbors of v. Let X =
∑ 3dv

ε′2
i=1 Xi, i.e., X is the sum of the

Xi in all groups. Clearly, E[X] = 3dv
dε′2 . Also, we can assume

that the coloring function is 3-wise independent and the 3
ε′2

colorings are independent, thus we have V [X] ≤ E[X]. We
apply Chebyshev’s inequality with s = ε′E[X]:

Pr[|X−E[X]| ≥ ε′E[X]] ≤ V [X]

ε′2E[X]2
≤ 1

ε′2E[X]
=

d

3dv
≤ 1

3

In each of the log n
δ
groups we then estimate dv as dε′2X

3
,

which is with probability at least 2/3 (1±ε′)-approximation

of dv. Now we return the median of the estimates, d̃v, in the
log n

δ
groups. The colorings in the groups are independent

and a standard application of Chernoff’s inequality yields
that the median will not be an (1± ε′)-approximation of dv
with error probability δ/n. Summing up, the error proba-
bility for any vertex is bounded by δ.

An estimate of the number of triangles at v is now
(
d̃v
2

)
α̃v,

where α̃v is an (1 ± ε′)-approximation of the clustering co-
efficient αv. With some algebra one can obtain that this
yields an (1± 7ε′)-approximation of the number of triangles
at v.

The bounds on the running time and the space complexity
of the algorithm easily follow from Theorem 2 and the above
discussion.

For the case of directed graphs the algorithm can be ex-
tended to distinguish between the four possible kinds of tri-
angles [6] a high-degree vertex can be involved in. The only
difference is that we will count only the kind of triangles we
are interested in. We defer the description of the extension
to the full version of the paper.

682

5.4 Experiments
We implemented our algorithm in Java and ran experi-

ments on a Windows machine with an Intel Core i5 with
2.66 GHz clocked processor with 3 MB Cache. The avail-
able RAM memory was 4 GB. Due to the relatively small
amount of memory, we ran the copies of SparsifyGraph

sequentially, thus we will not report results on the running
time. It is clear that this modification does not affect in any
way the estimates obtained by our algorithm. For our color-
ing function we created random numbers r(v), v ∈ V , in the
interval [0, 1) by reading for each vertex 64 random bits from
the Marsaglia Random Number CDROM2. Then for a given
number of colors C two vertices u, v have the same color iff
�C · r(u)� = �C · r(v)�. When the graph size is not known
in advance, one can dynamically adjust the sampling prob-
ability as follows. Once we have that too many edges have
been sampled, we double the number of colors, C = 2C, and
throw away edges that are not any more monochromatic.

We performed experiments on several graphs and chose
to present results for two representative graphs, which we
think illustrate best the advantages and limitations of the
algorithm. Also, we present only experiments on the esti-
mation of the local clustering coefficient, since the estimates
on the local number of triangles yield identical observations.

The first graph, Web-BerkStan, is taken from the SNAP
library 3. It is a directed Web graph in which an edge (u, v)
shows that there is a link from a page u in the domain berke-
ley.edu to a page v in the domain stanford.edu. We made the
graph undirected such that there is an edge (u, v) for pages
u and v connected by a link in either direction and removed
loops. The resulting graph consists of 680,485 vertices and
15,190,579 edges.

Following [10] we created a graph MovieActors1000 from
the Internet Movie Database4. From a set of 1,000 movies,
with at least 10 actors starring, we created an undirected
graph such that an edge (u, v) records that the actors u in
v star together in at least one movie. The resulting graph
has 19,037 vertices and 6,501,181 edges.

Clearly, the first graph Web-BerkStan is very sparse, av-
erage degree of 22.323, while MovieAvtors1000 is a rela-
tively dense graph with an average degree of 341.502. Also,
the degree distribution in Web-BerkStan is quite skewed,
the largest degree being 84,290 while the largest degree in
MovieActors1000 is only 2,542.

The number of edges in the two graphs is of the same
order, thus we compared the results for a fixed sparsifica-
tion rate of 0.001 and a varying number of parallel copies
of SparsifyGraph. For the two graphs we computed ex-
actly the clustering coefficient for vertices of degree at least
1,000. Note that we chose a smaller sampling probability
than the one given by Theorem 2 such that estimates for
vertices of degree at least 1,000 will be reported with high
probability. The reason is that allows a clearer overview
of (dis)advantages of the algorithm for the two considered
graphs. In Web-BerkStan there are 568 vertices of degree
at least 1,000, while in MovieActors1000 there are 1,161
such vertices. The average clustering coefficient for the con-
sidered high-degree vertices for Web-BerkStan is 0.030141,
while for MovieActors1000 it is 0.466.

2http://www.stat.fsu.edu/pub/diehard/cdrom/
3http://snap.stanford.edu/data/
4http://www.imdb.com/

Let H be the set of vertices of degree at least 1,000 for
which estimates were reported and let h = |H |. Let further
Cv be the exact clustering coefficients for vertices v ∈ H
and C̃v be the corresponding approximation we obtain. Fol-
lowing [6] we evaluated our algorithm with respect to the
following measures:

1. Average relative error.

∑
v∈H

|Cv − C̃v|
Cv

2. Pearson correlation coefficient.

r =

h
∑
v∈H

CvC̃v − ∑
v∈H

Cv

∑
v∈H

C̃v

√
(h

∑
v∈H

C2
v − (

∑
v∈H

Cv)2)(h
∑
v∈H

C̃2
v − (

∑
v∈H

C̃v)2)

3. Spearman’s rank correlation.

Let Exact and Approx be two sets containing the ex-
act and approximated clustering coefficients. Sorting
Exact and Approx in decreasing order, for each vertex
v ∈ H we define dist(v) = rExact(Cv) − rApprox(C̃v),
where rS(x) is the rank of the element x ∈ S in the
sorted sequence S. Then the Spearman’s rank corre-

lation is defined as ρ = 1− 6
∑

v∈H dist(v)2

h(h2−1)

For a number of parallel copies of the algorithm, varying
between 50 and 400, we evaluated the quality of the achieved
estimates. Note that this means that the sparsification fac-
tor is between 5% and 40%. We report estimates on the
clustering coefficient of vertices v ∈ V for which in at least
half of the copies a 2-path centered at v was recorded.

Our first observation is that the larger skew in degree
distributions in Web-BerkStan results in a higher recall in
reported results for vertices of degree 1,000 or more. For
Web-BerkStan for all number of parallel copies estimates
for more than 80% of the high degree vertices were reported
while for MovieActors1000 the recall never exceeded 50%.

Not surprisingly, the larger the number of samples the
better approximation is achieved. Figures 3 and 4 show the
achieved approximation of clustering coefficient of reported
high-degree vertices for the two graphs for a sparsification
ratio of 20%. The approximation is tighter for the MovieAc-
tors1000 graph while for Web-BerkStan it is more dispersed
but this is due to the larger clustering coefficients in the for-
mer graph. This is also confirmed by the plot in Figure 5
where we see that the average relative error is much smaller
for MovieActors1000. However, the correlation of the esti-
mates of the clustering coefficient for high degree vertices
and its true value is comparable for the two graphs as can
be seen in Figures 6 and 7.

The above evaluation, as well as other experiments we
performed but not report here, lead to the following obser-
vations:

• For graphs with a very skewed degree distribution we
can report good estimates only for a fraction of the
vertices if we want to achieve notable space savings.
This is in accordance with the result in Theorem 1 and
we believe that this is the best one can hope for. On
the other hand the high degree vertices are correctly
identified.

683

• For graphs with a lighter skew in the degree distri-
bution however, our algorithm is able to yield good
results for a reasonably big proportion of the vertices.
A drawback is that it becomes more difficult to detect
all high degree vertices.

• Even in cases when the estimates do not approximate
very good the exact values, as in Web-BerkStan, there
is a clear correlation between estimates and exact val-
ues.

It is worth noting that we did not perform experiments
on the large Web-scale graphs considered in [6]. For the
full version of the paper we are planning to present a more
thorough experimental evaluation on datasets from different
domains.

0 50 100 150 200 250 300 350 400 450 500
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Vertices

C
lu

st
e

ri
n

g
 c

o
e

ff
ic

ie
n

t

Exact
Approximation

Figure 3: Exact and approximated clustering coeffi-
cients of high degree vertices for Web-BerkStan.

0 50 100 150 200 250 300 350 400 450
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Vertices

C
lu

st
e

ri
n

g
 c

o
e

ff
ic

ie
n

t

Exact
Approximation

Figure 4: Exact and approximated clustering coeffi-
cients of high degree vertices for MovieActors1000.

6. FUTURE DIRECTIONS
We have presented results on the streaming complexity of

randomized algorithms estimating the local clustering coeffi-
cient. The upper and lower bound on the space usage almost
match. We believe that our algorithm is almost optimal in
terms of space requirements and an open question is to ob-
tain a tight bound on the space complexity of the problem.
Also, it would be interesting whether a similar lower bound
is possible for the incidence list stream model.

50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Parallel copies

A
ve

ra
g

e
 r

e
la

tiv
e

 e
rr

o
r

Web−BerkStan
MovieActor1000

Figure 5: Average relative error for a varying num-
ber of parallel copies for the two graphs.

50 100 150 200 250 300 350 400

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Parallel copies

P
e

a
rs

o
n

 c
o

e
ff

ic
ie

n
t

co
e

ff
ic

ie
n

t

Web−BerkStan
MovieActor1000

Figure 6: Pearson correlation coefficient for a vary-
ing number of parallel copies for the two graphs.

We expect that certain heuristics can improve the run-
ning time performance of our algorithm. For example, for
many vertices we sample more than two neighbors and we
can check for more 2-paths whether they are involved in a
triangle. However, one should not consider 2-paths sharing
an edge since this will increase the variance of the estimates
and the bounds in Theorem 2 will not hold any more.

Also, the advantages of monochromatic sampling com-
pared to näıve sampling of edges become more pronounced
if one wants to count the number of k-cliques or more gener-
ally dense subgraphs of fixed size, both locally and globally,
for k > 3. For example, inspired by concrete applications
in Web mining, Bordino et al. [7] present an extension of
the approach by Buriol et al. [9] to counting graph minors
of fixed size. Many of the graph minors are dense, thus it is
interesting to study whether using monochromatic sampling
one can design better algorithms.

An interesting direction is to study whether one can com-
bine our approach with ideas from Lp sampling in order to
obtain an algorithm for the more general problem of pro-
cessing dynamic graph streams, where edge deletions are
also allowed, see e.g. [1, 17].

Acknowledgements.
We thank Paolo Boldi for useful discussions in the early

stage of this work.

684

50 100 150 200 250 300 350 400
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Parallel copies

S
p

e
a

rm
a

n
 r

a
n

k
co

rr
e

la
tio

n

Web−BerkStan
MovieActor1000

Figure 7: Spearman rank correlation for a varying
number of parallel copies for the two graphs.

7. REFERENCES
[1] K. J. Ahn, S. Guha, A. McGregor. Graph sketches:

sparsification, spanners, and subgraphs. PODS 2012:
5–14

[2] R. Albert, A.-L. Barabási. Statistical mechanics of
complex networks. Rev. Mod. Phys. 74, 47–97 (2002)

[3] N. Alon, R. Yuster, U. Zwick. Finding and Counting
Given Length Cycles. Algorithmica 17(3): 209–223
(1997)

[4] H. Avron. Counting triangles in large graphs using
randomized matrix trace estimation. Large-Scale Data
Mining: Theory and Applications (KDD Workshop),
2010.

[5] Z. Bar-Yossef, R. Kumar, D. Sivakumar. Reductions in
streaming algorithms, with an application to counting
triangles in graphs. SODA 2002: 623–632

[6] L. Becchetti, P. Boldi, C. Castillo, A. Gionis. Efficient
algorithms for large-scale local triangle counting.
TKDD 4(3): (2010)

[7] I. Bordino, D. Donato, A. Gionis, S. Leonardi. Mining
Large Networks with Subgraph Counting. ICDM 2008:
737–742

[8] A. Z. Broder, M. Charikar, A. M. Frieze,
M. Mitzenmacher. Min-Wise Independent
Permutations. STOC 1998: 327–336

[9] L. S. Buriol, G. Frahling, S. Leonardi, A.
Marchetti-Spaccamela, C. Sohler. Counting triangles in
data streams. PODS 2006: 253–262

[10] L. S. Buriol, G. Frahling, S. Leonardi, C. Sohler.
Estimating Clustering Indexes in Data Streams. ESA
2007: 618–632

[11] J. S. Coleman. Social capital in the creation of human
capital. American Journal of Sociology, 94: 95–120,
1988

[12] D. Coppersmith, R. Kumar. An improved data stream
algorithm for frequency moments. SODA 2004: 151–156

[13] J.-P. Eckmann and E. Moses. Curvature of co-links
uncovers hidden thematic layers in the world wide web.
PNAS, 99(9):5825–5829, 2002.

[14] P. Erdös, and A. Rényi. On the evolution of random
graphs. Publ. Math. Inst. Hungar. Acad. Sci. 5 17–61,
1960

[15] G. Feigenblat, E. Porat, A. Shiftan. Exponential time

improvement for min-wise based algorithms. Inf.
Comput. 209(4): 737–747 (2011)

[16] H. Jowhari, M. Ghodsi. New Streaming Algorithms
for Counting Triangles in Graphs. COCOON 2005:
710–716

[17] H. Jowhari, M. Saglam, G. Tardos. Tight bounds for
Lp samplers, finding duplicates in streams, and related
problems. PODS 2011: 49–58

[18] M. Kaiser. Mean clustering coefficients: the role of
isolated nodes and leafs on clustering measures for
small-world networks. New J. Phys. 10, 2008.

[19] B. Kalyanasundaram, G. Schnitger. The Probabilistic
Communication Complexity of Set Intersection. SIAM
J. Discrete Math. 5(4): 545–557 (1992)

[20] R. M. Karp, S. Shenker, C. H. Papadimitriou. A
simple algorithm for finding frequent elements in
streams and bags. ACM Trans. Database Syst. 28:
51–55 (2003)

[21] M. N. Kolountzakis, G. L. Miller, R. Peng, C. E.
Tsourakakis. Efficient Triangle Counting in Large
Graphs via Degree-based Vertex Partitioning. Internet
Mathematics, to appear

[22] R. Kumar, P. Raghavan, S. Rajagopalan, A. Tomkins.
Trawling the Web for Emerging Cyber-Communities.
Computer Networks 31(11-16): 1481–1493 (1999)

[23] M. E. J. Newman. The structure and function of
complex networks. SIAM Review, 45(2):167–256, 2003

[24] R. Pagh, C. E. Tsourakakis. Colorful triangle counting
and a MapReduce implementation. Inf. Process. Lett.
112(7): 277–281 (2012)

[25] A. Portes. Social capital: Its origins and applications
in modern sociology. Annual Review of Sociology,
24(1):1–24, 1998.

[26] T. Schank, D. Wagner. Approximating Clustering
Coefficient and Transitivity. J. Graph Algorithms Appl.
9(2): 265–275 (2005)

[27] C. E. Tsourakakis. Fast Counting of Triangles in
Large Real Networks without Counting: Algorithms
and Laws. ICDM 2008: 608–617

[28] C. E. Tsourakakis, U. Kang, G. L. Miller, C.
Faloutsos. DOULION: counting triangles in massive
graphs with a coin. KDD 2009: 837–846

[29] C. E. Tsourakakis, M. N. Kolountzakis, G. L. Miller.
Triangle Sparsifiers. J. of Graph Algorithms and Appl.
15(6): 703–726 (2011)

[30] V. Vassilevska Williams. Multiplying matrices faster
than Coppersmith-Winograd. STOC 2012, 887–898

[31] J. S. Vitter. Random Sampling with a Reservoir. ACM
Trans. Math. Softw. 11(1): 37–57 (1985)

[32] D. J. Watts, S. H. Strogatz. Collective dynamics of
“small world” networks. Nature, 393: 440–442, 1998.

[33] S. Zhang. Streaming Algorithms Measured in Terms of
the Computed Quantity. COCOON 2007: 338–348

685

