
An Integrated Efficient Solution for
Computing Frequent and Top-k Elements in
Data Streams

AHMED METWALLY, DIVYAKANT AGRAWAL, and AMR EL ABBADI

University of California, Santa Barbara

We propose an approximate integrated approach for solving both problems of finding the most pop-

ular k elements, and finding frequent elements in a data stream coming from a large domain. Our

solution is space efficient and reports both frequent and top-k elements with tight guarantees on

errors. For general data distributions, our top-k algorithm returns k elements that have roughly the

highest frequencies; and it uses limited space for calculating frequent elements. For realistic Zip-

fian data, the space requirement of the proposed algorithm for solving the exact frequent elements

problem decreases dramatically with the parameter of the distribution; and for top-k queries, the

analysis ensures that only the top-k elements, in the correct order, are reported. The experiments,

using real and synthetic data sets, show space reductions with hardly any loss in accuracy. Having

proved the effectiveness of the proposed approach through both analysis and experiments, we ex-

tend it to be able to answer continuous queries about frequent and top-k elements. Although the

problems of incremental reporting of frequent and top-k elements are useful in many applications,

to the best of our knowledge, no solution has been proposed.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications—

Data mining; F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Al-

gorithms and Problems; C.2.3 [Computer-Communication Networks]: Network Operations—

Network monitoring

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Data streams, advertising networks, frequent elements, top-k
elements, Zipfian data, exact queries, continuous queries, approximate queries

1. INTRODUCTION

More than a decade ago, both industry and research communities realized the
benefit of statistically analyzing vast amounts of historical data in order to

This work was supported in part by the NSF under grants EIA 00-80134, NSF 02-9112, and CNF

04-23336.

Part of this work was done while A. Metwally was at ValueClick, Inc.

Authors’ addresses: Department of Computer Science, University of California, Santa Barbara,

Santa Barbara, CA 93106; email: {mewally,agrawal,amr}@cs.ucsb.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 0362-5915/06/0900-1095 $5.00

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006, Pages 1095–1133.

1096 • A. Metwally et al.

discover useful information. Data mining emerged as a very active research field
that offered scalable data analysis techniques for large volumes of historical
data. Data mining, a well-established key research area, has its foundations and
applications in many domains, including databases, algorithms, networking,
theory, and statistics.

However, new challenges have emerged as the data acquisition technology
has evolved aggressively. For some applications, data is being generated at
a rate high enough to make its long-term storage cost outweigh its benefits.
Hence, such streams of data are stored temporarily, and should be mined quickly
before they are lost forever. The data mining community adapted by devising
novel approximate stream handling algorithms that incrementally analyze ar-
riving data in one pass, answer approximate queries, and store summaries for
future usage [Babcock et al. 2002].

There is a growing need to develop new techniques to cope with high-speed
streams and to answer online queries. Currently, data stream management
systems are used for monitoring click streams [Gunduz and Ozsu 2003], stock
tickers [Chen et al. 2000; Zhu and Shasha 2002], sensor readings [Bonnet
et al. 2001], telephone call records [Cortes et al. 2000], network packet traces
[Demaine et al. 2002], auction bidding patterns [Arasu et al. 2003a], traffic
management [Arasu et al. 2003b], network-aware clustering [Cormode et al.
2003], and security against DoS [Cormode et al. 2003]. Golab and Ozsu [2003]
reviewed the literature.

Complying with this restricted environment, and motivated by the above ap-
plications, researchers started working on novel algorithms for analyzing data
streams. Problems studied in this context include approximate frequency mo-
ments [Alon et al. 1996], differences [Feigenbaum et al. 1999], distinct values
estimation [Flajolet and Martin 1985; Haas et al. 1995; Whang et al. 1990], bit
counting [Datar et al. 2002], duplicate detection [Metwally et al. 2005a], approx-
imate quantiles [Greenwald and Khanna 2001; Lin et al. 2004; Manku et al.
1999], histograms [Guha et al. 2001, 2002], wavelet-based aggregate queries
[Gilbert et al. 2001; Matias et al. 2000], correlated aggregate queries [Gehrke
et al. 2001], elements classification [Gupta and McKeown 1999], frequent el-
ements [Bose et al. 2003; Cormode et al. 2004; Cormode and Muthukrishnan
2003; Demaine et al. 2002; Estan and Varghese 2003; Fang et al. 1998; Golab
et al. 2003; Jin et al. 2003; Karp et al. 2003; Manku and Motwani 2002; Metwally
et al. 2005b], and top-k queries [Babcock and Olston 2003; Charikar et al. 2002;
Demaine et al. 2002; Gibbons and Matias 1998; Metwally et al. 2005b]. Earlier
results on data streams were presented in Boyer and Moore [1981] and Fischer
and Salzberg [1982].

This work is primarily motivated by the setting of Internet advertising. As
the Internet continues to grow, the Internet advertising industry flourishes as
a means of reaching focused market segments. The main coordinators in this
setting are the Internet advertising commissioners, who are positioned as the
brokers between Internet publishers and Internet advertisers. In a standard
setting, an advertiser provides the advertising commissioner with its adver-
tisements, and they agree on a commission for each action, for example, an im-
pression (advertisement rendering) to a Web surfer, clicking an advertisement,

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Computing Frequent and Top-k Elements in Data Streams • 1097

bidding in an auction, or making a sale. The publishers, being motivated by the
commission paid by the advertisers, contract with the commissioner to display
advertisements on their Web sites. Every time a surfer visits a publisher’s Web
page, after loading the page on the surfer’s browser, the publisher’s Web page
has a script that refers the browser to the commissioner’s server, which loads the
advertisements and logs the advertisement impression. Whenever a Web surfer
clicks an advertisement on a publisher’s Web page, the surfer is referred again
to the servers of the commissioner, who logs the click for accounting purposes,
and clicks-through the surfer to the Web site of the advertiser, which loads its
own Web page on the surfer’s Browser. A commissioner earns a commission on
the advertisers’ payments to the publishers. Therefore, commissioners are gen-
erally motivated to show advertisements on publishers’ Web pages that would
maximize publishers’ earnings. To achieve this goal, the commissioners have to
analyze the traffic, and make use of prevalent trends. One way to optimize the
rendering of advertisements is to show the right advertisements for the right
type of surfers.

Since publishers prefer to be paid according to the advertising load on their
servers, there are two main types of paying publishers, Pay-Per-Impression, and
Pay-Per-Click. The revenue generated by Pay-Per-Impression advertisements
is proportional to the number of times the advertisements are rendered. On
the other hand, rendering Pay-Per-Click advertisements does not generate any
revenue. They generate revenue according to the number of times Web surfers
click them. On average, one click on a Pay-Per-Click advertisement generates
500 times as much revenue as Pay-Per-Impression renderings. Hence, to max-
imize the revenue of impressions and clicks, the commissioners should render
a Pay-Per-Click advertisement when it is expected to be clicked. Otherwise, it
should use the chance to display a Pay-Per-Impression advertisement that will
generate small but guaranteed revenue.

To know when advertisements are more likely to be clicked, the commissioner
has to know whether the surfer, to whom the advertisement is displayed, is a
frequent “clicker” or not. To identify surfers, commissioners assign unique IDs
in cookies set in the surfers’ browsers. Before rendering an advertisement for
a surfer, the summarization of the clicks stream should be queried to see if the
surfer is a frequent “clicker” or not. If the surfer’s is not found to be among
the frequent “clickers,” then (s)he will probably not click any displayed adver-
tisement. Thus, it can be more profitable to show Pay-Per-Impression adver-
tisements. On the other hand, if the surfer is found to be one of the frequent
profiles, then, there is a good chance that (s)he will click some of the advertise-
ments shown. In this case, Pay-Per-Click advertisements should be displayed.
Keeping in mind the limited number of advertisements that can be displayed
on a Web page, choosing what advertisements to display entails retrieving the
top advertisements in terms of clicking.

This is one scenario that motivates solving two famous problems simultane-
ously. The commissioner should be able to query the click stream for frequent
users and top-k advertisements before every impression. Exact queries about
frequent and top-k elements are not scalable enough to handle this problem. An
average-sized commissioner has around 120M unique monthly surfers, 50, 000

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

1098 • A. Metwally et al.

publisher sites, and 30, 000 advertisers’ campaigns, each of which has numerous
advertisements. Storing only the unique IDs assigned to the surfers requires 2
to 8 GB of main memory, since the IDs used are between 128 and 512 bits.

The size of the motivating problem poses challenges for answering exact
queries about frequent and top-k elements in streams. The domains under con-
sideration are too large to keep track of the exact frequencies of all the surfers
or the advertisements. This motivated us to devise an approximate integrated
approach for solving both problems. Approximately solving the queries would
require less space than solving the queries exactly, and hence would be more
feasible. However, the traffic rate entails performing an update and a query
every 50 μs, since an average-sized commissioner receives around 70M records
every hour. The already existing approximate solutions for frequent and top-k
elements could be relatively slow for online decision making. To allow for on-
line decisions on what advertisements should be displayed, we propose that the
commissioner should keep a cache of the frequent users and the top-k adver-
tisements. The set of frequent users and the top-k advertisements can change
after every impression, depending on how the user reacts to the advertisements
displayed. Therefore, the cache has to be updated efficiently after every user
response to an impression. We propose updating the cache only whenever neces-
sary. That is, the cache should serve as a materialization of the queries’ answer
sets, which is updated continuously.

The problems of approximately finding frequent1 and top-k elements are
closely related, yet, to the best of our knowledge, no integrated solution has been
proposed. In this article, we propose an integrated online streaming algorithm,
called Space-Saving, for solving both the problem of finding the top-k elements
and that of finding frequent elements in a data stream. Our Space-Saving al-
gorithm reports both frequent and top-k elements with tight guarantees on
errors. For general data distributions, Space-Saving answers top-k queries by
returning k elements with roughly the highest frequencies in the stream; and
it uses limited space for calculating frequent elements. For realistic Zipfian
data, our space requirement for the exact frequent elements problem decreases
dramatically with the parameter of the distribution; and for top-k queries, we
ensure that only the top-k elements, in the correct order, are reported. We are
not aware of any other algorithms that solve the exact problems of finding fre-
quent and top-k elements under any constraints. In addition, we slightly modify
our baseline algorithm to answer continuous queries about frequent and top-
k elements. Although answering such queries continuously is useful in many
applications, we are not aware of any other existing solution.

The rest of the article is organized as follows. Section 2 highlights the related
work. In Section 3, we introduce the Space-Saving algorithm, and its associated
data structure, followed by a discussion of query processing in Section 4. We
report the results of our experimental evaluation in Section 5. We describe
how the proposed scheme can be extended to handle continuous queries about
frequent and top-k elements in Section 6, and finally conclude the article in
Section 7.

1The term Heavy Hitters was also used by Cormode et al. [2003].

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Computing Frequent and Top-k Elements in Data Streams • 1099

2. BACKGROUND AND RELATED WORK

Formally, given an alphabet A, a frequent element Ei is an element whose fre-
quency, or number of hits Fi, in a stream S whose current size is N , exceeds
a user-specified support �φN�, where 0 ≤ φ ≤ 1; the top-k elements are the k
elements with highest frequencies. The exact solutions of these problems re-
quire complete knowledge about the frequencies of all the elements [Charikar
et al. 2002; Demaine et al. 2002], and hence are impractical for applications
with large alphabets. Thus, several relaxations of the original problems were
proposed.

2.1 Variations of the Problems

The FindCandidateTop(S, k, l) problem was proposed by Charikar et al.
[2002] to ask for l elements among which the top-k elements are concealed,
with no guarantees on the rank of the remaining (l − k) elements. The
FindApproxTop(S, k, ε) [Charikar et al. 2002] is a more practical approxima-
tion for the top-k problem. The user asks for a list of k elements such that every
element Ei in the list has Fi > (1 − ε)Fk , where ε is a user-defined error, and
F1 ≥ F2 ≥ · · · ≥ F|A|, such that Ek is the element with the kth rank. That is,
all the reported k elements are almost at least as frequent as the kth element.
The Hot Items2 problem is a special case of the frequent elements problem,
proposed by Misra and Gries [1982], which asks for at most k elements, each of
which has frequency more than N

k+1
. This extends the early work done in Boyer

and Moore [1981] and Fischer and Salzberg [1982] for identifying a majority
element. The most popular variation of the frequent-elements problem, finding
the ε-Deficient Frequent Elements [Manku and Motwani 2002], asks for all the
elements with frequencies more than �φN�, such that no element reported can
have a frequency of less than �(φ − ε)N�.

Several algorithms [Charikar et al. 2002; Cormode and Muthukrishnan
2003; Demaine et al. 2002; Estan and Varghese 2003; Jin et al. 2003; Karp
et al. 2003; Manku and Motwani 2002] have been proposed to handle the top-k,
the frequent elements problems, and their variations. In addition, a prelimi-
nary version of this work has been published in Metwally et al. [2005b]. These
techniques can be classified into counter-based and sketch-based techniques.

2.2 Counter-Based Techniques

Counter-based techniques keep an individual counter for each element in the
monitored set, a subset of A. The counter of a monitored element, Ei, is in-
cremented every time Ei is observed in the stream. If the observed element is
not monitored, that is, if there is no counter kept for this element, it is either
disregarded, or some algorithm-dependent action is taken.

The Sticky Sampling algorithm [Manku and Motwani 2002] slices S into
rounds of nondecreasing length. The probability an element is added to the list
of counters, that is, that it is being monitored, decreases as the round length
increases. At rounds’ boundaries, for every monitored element, a coin is tossed

2The term Hot Items was coined later by Cormode and Muthukrishnan [2003].

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

1100 • A. Metwally et al.

until a success occurs. The counter is decremented for every unsuccessful toss,
and is deleted if it reaches 0. Thus, the probability of adding undeleted elements
is constant throughout S. The simpler, and more famous Lossy Counting algo-
rithm [Manku and Motwani 2002] breaks S up into equal rounds of length 1

ε
.

Throughout every round, nonmonitored elements are added to the list. At the
end of each round, r, every element, Ei, whose estimated frequency is less than
r is deleted. When a new element is added in round r, it is given the benefit of
doubt, its initial count is set to r −1, and the maximum possible overestimation,
r −1, is recorded for the new element. Both algorithms are simple and intuitive,
though they zero too many counters at rounds’ boundaries. In addition, answer-
ing a frequent elements query entails scanning all counters and reporting all
elements whose estimated frequency is greater than �(φ − ε)N�.

Demaine et al. [2002] proposed the Frequent algorithm to solve the Hot Items
problem, which asks for a maximum of k elements, each of which has frequency
more than N

k+1
. Frequent, a rediscovery of the algorithm proposed by Misra and

Gries [1982], outputs a list of exactly k elements with no guarantee on which el-
ements, if any, have frequency more than N

k+1
. The same algorithm was proposed

independently by Karp et al. [2003]. Frequent extends the early work done in
Boyer and Moore [1981] and Fischer and Salzberg [1982] for finding a majority
element using only one counter. The algorithm in Boyer and Moore [1981] and
Fischer and Salzberg [1982] monitors the first element in the stream. For each
observation, the counter is incremented if the observed element is the moni-
tored one, and is decremented otherwise. If the counter reaches 0, it is assigned
the next observed element, and the algorithm is then repeated. When the al-
gorithm terminates, the monitored element is the candidate majority element.
A second pass is required to verify the result. Frequent [Demaine et al. 2002]
keeps k counters to monitor k elements. If a monitored element is observed, its
counter is incremented, else all counters are decremented in an O(1) operation,
using a lightweight data structure. In case any counter reaches 0, it is assigned
the next observed element. The sampling algorithm Probabilistic-InPlace [De-
maine et al. 2002] solves FindCandidateTop(S, k, m

2
) by using m counters. The

stream is divided into rounds of increasing length. At the beginning of each
round, it assigns all empty counters to the first distinct elements. At the end of
each round, it deletes the least m

2
counters. The algorithm returns the largest

m
2

counters, in the hope that they contain the correct top-k. Although the algo-
rithm is simple, deleting half the counters at rounds’ boundaries is �(|distinct
values of the deleted counters)|.

In general, counter-based techniques have fast per-element processing, and
provable error bounds.

2.3 Sketch-Based Techniques

Sketch-based techniques do not monitor a subset of elements, but rather pro-
vide, with less stringent guarantees, frequency estimation for all elements by
using arrays of counters. Usually each element is hashed into the space of coun-
ters using a family of hash functions, and the hashed-to counters are updated
for every hit of this element. The “representative” counters are then queried for
the element frequency with expected loss of accuracy due to hashing collisions.

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Computing Frequent and Top-k Elements in Data Streams • 1101

The probabilistic CountSketch algorithm, proposed by Charikar et al. [2002],
solves the FindApproxTop(S, k, ε) problem. The space requirements of CountS-
ketch decrease as the data skew increases. The algorithm keeps a sketch struc-
ture to approximate, with probability 1 − δ, the count of any element up to
an additive quantity of γ , where γ is a function of Fk+1 · · · F|A|. The family of
hash functions employed hashes every element to its representative counters,
such that some counters are incremented and the others are decremented for
every occurrence of this element. The approximate frequency of the element is
estimated by finding the median from its representative counters. A heap of
the top-k elements is maintained. If the estimated frequency of the observed
element exceeds the smallest estimated counter in the heap, the least frequent
element is replaced by the observed element.

The GroupTest algorithm, proposed by Cormode and Muthukrishnan [2003],
answers queries about Hot Items, with a constant probability of failure, δ. A
novel algorithm, FindMajority, was first devised to detect the majority element,
by keeping a system of a global counter and �log(|A|)� counters. Elements’ IDs
are assumed to be 1 · · · |A|. A hit to element E is handled by updating the
global counter, and all counters whose index corresponds to a 1 in the binary
representation of E. At any time, counters whose value are more than half the
global counter correspond to the 1s in the binary representation of the candi-
date majority element, if it exists. A deterministic generalization for the Hot
k elements keeps �log

(|A|
k

)� counters, with elements’ IDs mapped to superim-
posed codes. A simpler generalized solution, GroupTest, is proposed that keeps
only O(k

δ
ln k) of such systems, and uses a family of hash functions to map each

element to O(log k
δ

) FindMajority systems that monitor the occurrences of the
element. When queried, the algorithm discards systems with more than one, or
with no Hot Items. Also proposed was an elegant scheme for suppressing false
positives by checking that all the systems a Hot Item belongs to are hot. Thus,
GroupTest is, in general, accurate. However, its space complexity is large, and
it offers no information about elements’ frequencies or order.

The Multistage filters approach, proposed by Estan and Varghese [2003],
which was also independently proposed by Jin et al. [2003], is similar to
GroupTest. Using the idea of Bloom’s Filters [Bloom 1970], the Multistage filters
algorithm hashes every element to a number of counters that are incremented
every time the element is observed in the stream. The element is considered
to be frequent if the smallest of its representative counters satisfies the user-
required support. The algorithm by Estan and Varghese [2003] judges an ele-
ment to be frequent or not while updating its counters. If a counter is estimated
to be frequent, it is added to a specialized set of counters for monitoring fre-
quent elements, the Flow Memory. To decrease the false positives, Estan and
Varghese [2003] proposed some techniques to reduce the overestimation errors
in counters. Once an element is added to the Flow Memory, its counters are
not monitored anymore by Multistage filters. In addition, Estan and Varghese
[2003] proposed incrementing only the counter(s) of the minimum value.

The hCount algorithm [Jin et al. 2003], does not employ the error reduction
techniques employed by Estan and Varghese [2003]. However, it keeps a number
of imaginary elements, which have no hits. At the end of the algorithm, all

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

1102 • A. Metwally et al.

the elements in the alphabet are checked for being frequent, and the over-
estimation error for each of the elements is estimated to be the average number
of hits for the imaginary elements.

Sketch-based techniques monitor all elements. They are less affected by the
ordering of elements in the stream. On the other hand, they are more expensive
than the counter-based techniques. A hit or a query entails calculations across
several counters. They do not offer guarantees about frequency estimation er-
rors, and thus, can answer only a limited number of query types.

3. SUMMARIZING THE DATA STREAM

The algorithms described in Section 2 handle individual problems. The main
difficulty in devising an integrated solution is that queries of one type cannot
serve as a preprocessing step for the other type of queries, given no informa-
tion about the data distribution. For instance, for general data distribution,
the frequent elements receiving 1% or more of the total hits might constitute
the top-100 elements, some of them, or none. In order to use frequent elements
queries to preprocess the stream for a top-k query, several frequent elements
queries have to be issued to reach a lower bound on the frequency of the kth el-
ement; and in order to use top-k queries to preprocess the stream for a frequent
elements query, several top-k queries have to be issued to reach an upper bound
on the number of frequent elements. To offer an integrated solution, we have
generalized both problems to accurately estimate the frequencies of significant3

elements and store these frequencies in an always-sorted structure. We then
devised a generalized algorithm for the generalized problem.

The integrated problem of finding significant element is intriguing. In addi-
tion to applications like advertising networks, where both the frequent elements
and the top-k problems need to be solved, the integrated problem serves the
purpose of exploratory data management. The user may not have a panoramic
understanding of the application data to issue meaningful queries. Often, the
user issues queries about top-k elements, and then discovers that the returned
elements have insignificant frequencies. Sometimes a query for frequent ele-
ments above a specific threshold returns very few or no elements. Having one
algorithm that solves the integrated problem of significant elements using only
one underlying data structure facilitates exploring the data samples and un-
derstanding prevalent properties.

3.1 The Space-Saving Algorithm

In this section, we describe counter-based Space-Saving algorithm and its as-
sociated Stream-Summary data structure. The underlying idea is to maintain
partial information of interest; that is, only m elements are monitored. The
counters are updated in a way that accurately estimates the frequencies of the
significant elements, and a lightweight data structure is utilized to keep the
elements sorted by their estimated frequencies.

3The significant elements are interesting elements that can be output in realistic queries about

top-k or frequent elements.

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Computing Frequent and Top-k Elements in Data Streams • 1103

Fig. 1. The Space-Saving algorithm.

In an ideal situation, any significant element, Ei, with rank i, that has re-
ceived Fi hits, should be accommodated in the ith counter. However, due to
errors in estimating the frequencies of the elements, the order of the elements
in the data structure might not reflect their exact ranks. For this reason, we de-
note the counter at the ith position in the data structure as counti. The counter
counti estimates the frequency fi, of some element ei. Since m elements are
monitored, the element estimated to be the least frequent is denoted em. Its
frequency is estimated by countm, which has a value of min. If the ith position
in the data structure has the right element, that is, the element with the ith
rank, Ei, then ei = Ei, and counti is an estimation of Fi.

The algorithm is straightforward. If a monitored element is observed, the
corresponding counter is incremented. If the observed element e is not moni-
tored, give it the benefit of doubt, and replace em, the element that currently
has the least estimated hits, min, with e. Increment countm to min +1, since
the new element e could have actually occurred between 1 and min +1 times.

For each monitored element ei, we keep track of its maximum overestimation,
εi, resulting from the initialization of its counter when it was inserted into the
list. That is, when starting to monitor e by counter countm, set its maximum
overestimation error εm to the counter value that was evicted. Keeping track
of the overestimation error for each elements is mainly useful for giving some
guarantees about the output of the algorithm, as will become clear in Section 4.
The algorithm is depicted in Figure 1.

We choose never to underestimate frequencies, since the algorithm is de-
signed to err only on the positive side, that is, to never miss a frequent element.
The intuition behind replacing em with the observed element e is sacrificing in-
formation about the element with the least estimated frequency. Hence, the al-
gorithm looses the least possible amount of information about the history of the
stream, while retaining information about possibly more significant elements.

In general, the top elements among nonskewed data are of no great signif-
icance. Hence, we concentrate on skewed data sets, where a minority of the
elements, the more frequent ones, get the majority of the hits. The basic intu-
ition is to make use of the skewed property of the data by assigning counters to

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

1104 • A. Metwally et al.

distinct elements, and keep monitoring the fast-growing elements. If we keep
a sufficient number of counters, frequent elements will reside in the counters
of bigger values and will not be distorted by the ineffective hits of the infre-
quent elements; thus they will never be replaced out of the monitored coun-
ters. Meanwhile, the numerous infrequent elements will be striving to reside
in the smaller counters, whose values grow slower than those of the frequent
elements.

In addition, if the skew remains, but the popular elements change over time,
the algorithm adapts automatically. The elements that are growing more pop-
ular will gradually be pushed to the top of the list as they receive more hits. If
one of the previously popular elements loses its popularity, it will receive fewer
hits. Thus its relative position will decline as other counters get incremented,
and it might eventually get dropped from the list.

Even if the data is not skewed, the errors in the counters are inversely pro-
portional to the number of counters, as shown later. Keeping only a moderate
number of counters guarantees very small errors, since as proved later and il-
lustrated through experiments, Space-Saving is among the most efficient tech-
niques in terms of space. The reason is that, the more counters are kept, the
less it is probable to replace elements, and thus the smaller the overestimation
errors in counters’ values.

To implement this algorithm, we need a data structure that cheaply incre-
ments counters without violating their order, and that ensures constant time
retrieval. We propose the Stream-Summary data structure for these purposes.

In Stream-Summary, all elements with the same counter value are linked
together in a linked list. They all point to a parent bucket. The value of the
parent bucket is the same as the counters’ value of all of its elements. Every
bucket points to exactly one element among its child list, and buckets are kept
in a doubly linked list, sorted by their values. Initially, all counters are empty,
and are attached to a single parent bucket with value 0.

The elements can be stored in a hash table for constant amortized access
cost, or in an associative memory for constant worst-case access cost. Stream-
Summary can be sequentially traversed as a sorted list, since the buckets’ list
is sorted.

The algorithm for counting elements’ hits using Stream-Summary is
straightforward. When an element’s counter is updated, its bucket’s neighbor
with the larger value is checked. If it has a value equal to the new value of the
element, then the element is detached from its current list, and is inserted in
the child list of this neighbor. Otherwise, a new bucket with the correct value
is created, and is attached to the bucket list in the right position; then this
element is attached to this new bucket. The old bucket is deleted if it points
to an empty child list. With some optimization, the worst case scenario costs
10 pointer assignments, and one heap operation. The Increment-Counter algo-
rithm is sketched in Figure 2.

Example 3.1. Assuming m = 2, and A = {X , Y , Z }. The stream S =“X , Y ”
will yield the Stream-Summary data structure shown in Figure 3(a), after the
two counters accommodate the observed elements. When another Y arrives,

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Computing Frequent and Top-k Elements in Data Streams • 1105

Fig. 2. The Increment-Counter algorithm.

Fig. 3. Example of updates to Stream-Summary with m = 2.

a new bucket is created with value 2, and Y gets attached to it, as shown in
Figure 3(b). When Z arrives, the element with the minimum counter, X , is
replaced by Z . Z has εZ = 1, since that was the count of X when evicted. The
final Stream-Summary is shown in Figure 3(c).

Stream-Summary is motivated by the work done by Demaine et al. [2002].
However, to look up a value of a counter using the data structure proposed by
Demaine et al. [2002], it takes O(m), while Stream-Summary lookups are in
�(1) for online queries about specific elements. Online queries about specific
elements is crucial for our motivating application, to check whether an element
is frequent or not. Moreover, looking up the frequencies of specific elements in
constant time makes Space-Saving more efficient when answering continuous
queries, as shown later in Section 6.

3.2 Properties of the Space-Saving Algorithm

To prove the space bounds in Section 4, we analyze some properties of Space-
Saving, which will help establish its space bounds. The strength behind the sim-
plicity of the algorithm is that it keeps information until the space is absolutely

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

1106 • A. Metwally et al.

needed, and that it does not initialize counters in batches like other counter-
based algorithms. These characteristics are key to proving the space saving
properties of the proposed algorithm.

LEMMA 3.2. The length, N, of the stream is equal to the sum of all the coun-
ters in the Stream-Summary data structure. That is, N = ∑

i≤m(counti)

PROOF. Every hit in S increments only one counter among the m counters.
This is true even when a replacement happens, that is, the observed hit e was
not previously monitored, and it replaces another counter em. This is because
countm gets incremented. Therefore, at any time, the sum of all counters is
equal to the length of the stream observed so far.

A pivotal factor in the analysis is the value of min. The value of min is highly
dynamic since it is dependent on the permutation of elements in S. We give
an illustrative example. If m = 2, and N = 4, a stream of S =“X , Z , Y , Y ”
yields min = 1, while S =“X , Y , Y , Z ” yields min = 2. Although it would be
very useful to quantify min, we do not want to involve the order in which hits
were received in our analysis, because predicating the analysis on all possible
stream permutations will be intractable. Thus, we establish an upper bound on
min.

We assume the number of distinct elements in S is more than m. Thus, all
m counters are occupied. Otherwise, all counts are exact, and the problem is
trivial. Hence, from Lemma 3.2 we deduce the following.

LEMMA 3.3. The minimum counter value, min, is no greater than � N
m �.

PROOF. Lemma 3.2 can be rewritten as

min = N − ∑
i≤m(counti − min)

m
. (1)

All the terms in the summation of Equation (1) are nonnegative, that is, all
counters are no smaller than min; hence min ≤ � N

m �.

We are interested in min since it represents an upper bound on the overesti-
mation error in any counter in Stream-Summary. This relation is established
in Lemma 3.4.

LEMMA 3.4. For any element ei in the Stream-Summary, 0 ≤ εi ≤ min, that
is, fi ≤ (fi + εi) = counti ≤ fi + min.

PROOF. From the algorithm, the overestimation of ei, εi, is nonnegative, be-
cause any observed element is always given the benefit of doubt. The overes-
timation εi is always assigned the value of the evicted counter, which is the
minimum counter just before ei started being monitored. Since the value of
the minimum counter monotonically increases over time until it reaches the
current min, then for all monitored elements εi ≤ min.

Therefore, the overestimation error cannot exceed � N
m �. Moreover, any ele-

ment Ei, with frequency Fi > min, is guaranteed to be monitored, as shown
next.

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Computing Frequent and Top-k Elements in Data Streams • 1107

THEOREM 3.5. Any element, Ei, with Fi > min is present in Stream-
Summary.

PROOF. The proof is by contradiction. Assume Ei is not in the Stream-
Summary. Then, it was evicted previously. Since Fi > min, then Fi is more
than the minimum counter value at any previous time, because the minimum
counter value increases monotonically. Therefore, from Lemma 3.4, when Ei

was last evicted, its estimated frequency was greater than the minimum counter
value at that time. This contradicts the Space-Saving algorithm that evicts the
element with the least counter to accommodate a new element.

From Theorem 3.5 and Lemma 3.3, any element ei that has occurred more
than once every m observations throughout the stream must have always been
monitored. Since ei was never evicted, εi = 0. Keeping other factors constant,
this holds better as fi increases, since ei has less chance of not being monitored.
This inverse proportion between fi and εi ensures that more frequent elements
are less susceptible to overestimation.

From Theorem 3.5 and Lemma 3.4, we can infer an interesting general rule
about the overestimation of elements’ counters. For any element Ei, with rank
i ≤ m, the frequency of Ei, Fi, is no more than counti, the counter occupying
the ith position in the Stream-Summary. For instance, count10, the counter at
position 10 of the Stream-Summary, is an upper bound on F10, even if the tenth
position of the Stream-Summary is not occupied by E10.

THEOREM 3.6. Fi ≤ counti.

PROOF. There are four possibilities for the position of Ei.

—The element Ei is not monitored. Thus, from Theorem 3.5, Fi ≤ min. Thus
any counter in the Stream-Summary is no smaller than Fi.

—The element Ei is at position j , such that j > i. From Lemma 3.4, the
estimated frequency of Ei is no smaller than than Fi. Since j is greater than
i, then the estimated frequency of ei is no smaller than count j , the estimated
frequency of Ei. Thus, counti ≥ Fi.

—The element Ei is at position i. From Lemma 3.4, counti ≥ fi = Fi.

—The element Ei is at position j , such that j < i. Thus, at least one element
Ex with rank x < i is located in some position y , such that y ≥ i. Since
the estimated frequency of Ex is no smaller than its frequency, Fx , from
Lemma 3.4, and x < i, then the estimated frequency of Ex is no smaller
than Fi. Since y ≥ i, then counti ≥ county , which is equal to the estimated
frequency of Ex . Therefore, counti ≥ Fi.

Therefore, in all cases, counti ≥ Fi.

Theorem 3.6 establishes bounds on the rank of an element. The rank of an
element ei has to be less than j if the guaranteed hits of ei are less than the
counter at position j . That is, count j < (counti −εi) ⇒ rank(ei) < j . Conversely,
the rank of an element ei is greater than the number of elements having guar-
anteed hits more than counti. That is, rank(ei) > Count(e j |(count j − ε j) >

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

1108 • A. Metwally et al.

Fig. 4. Reporting frequent elements.

counti). Thus, Theorem 3.6 helps establishing the order-preservation property
among the top-k, as discussed later.

In the next section, we use these properties to derive a bound on the space
requirements for solving the frequent elements and the top-k problems.

4. PROCESSING QUERIES

In this section, we discuss query processing using the Stream-Summary data
structure. We also analyze the space requirements for both the general case,
where no data distribution is assumed, and the more interesting Zipfian case.

4.1 Frequent Elements

In order to answer queries about the frequent elements, the algorithm sequen-
tially traverses Stream-Summary as a sorted list until an element with fre-
quency less than the user support is reached. Thus, frequent elements are
reported in �(|frequent elements|). An element, ei, is guaranteed to be a fre-
quent element if its guaranteed number of hits, counti − εi, exceeds �φN�, the
minimum support. If for each reported element ei, counti − εi > �φN�, then
the algorithm guarantees that all, and only the frequent elements are reported.
This guarantee is conveyed through the Boolean parameter guaranteed. The
number of counters, m, should be specified by the user according to the data
properties, the required error rate and/or the available memory. The QueryFre-
quent algorithm is given in Figure 4.

4.1.1 The General Case. In the general case, Space-Saving solves the ε-
Deficient Frequent Elements problem, for a user-specified ε, by reporting all
the elements with frequencies more than �φN�, such that no reported element
has frequency less than �(φ − ε)N�. We will analyze the space requirements
assuming no specific data distribution.

THEOREM 4.1. Assuming no specific data distribution, Space-Saving uses a
number of counters of min(|A|, � 1

ε
�) to find all ε-Deficient Frequent Elements.

Any element, Ei, with frequency Fi > �φN� is guaranteed to be reported.

PROOF. Since, for any monitored element, the upper bound of εi is min, from
Lemma 3.3, it follows that εi ≤ min ≤ � N

m �. If we set min = �εN� in this

inequality, then m ≥ � 1
ε
� guarantees an error rate of ε. From Theorem 3.5, any

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Computing Frequent and Top-k Elements in Data Streams • 1109

element Ei whose Fi > min is guaranteed to be in the Stream-Summary. Since
φ ≥ ε, from Theorem 3.5, any element with frequency greater than �φN� is
monitored in the Stream-Summary, and hence is guaranteed to be reported.

The bound of Theorem 4.1 is tight. For instance, this can happen if all the
elements in the stream are distinct. In addition, Theorem 4.1 shows that the
space consumption of Space-Saving is within a constant factor of the lower
bound on the space of any deterministic counter-based algorithm, as shown in
Theorem 4.2.

THEOREM 4.2. Any deterministic counter-based algorithm uses a number of
counters of at least min(|A|, � 1

2ε
�) to find all ε-Deficient Frequent Elements.

PROOF. The proof is similar to that given by Bose et al. [2003]. Given two
streams S1 and S2, of length L(m+1)+1 for an arbitrary large multiple L. The
two streams have the same first L(m+1) elements, where m+1 elements occur
L times each. After observing the L(m+1) stream elements, any counter-based
algorithm with m counters will be monitoring only m elements. The last element
is the only difference between S1 and S2. S1 ends with an element e1 that was
never observed before, and S2 ends with an element e2 that has occurred before
but is not monitored by the algorithm. Any deterministic algorithm should
handle the last element of S1 and S2 in the same manner, since it has no record
of its previous hits. If the algorithm estimated the previous hits of the last
element to be 1, then the algorithm will have an error rate of 1

m+1
in the case

of S2. On the other hand, if the algorithm estimated the previous hits of the
last element to be L, then the algorithm will have an error rate of 1

m+1
in the

case of S1. The estimation that results in the least error in both cases is 1
2(m+1)

.

Therefore, the least number of counters to guarantee an error rate of ε is � 1
2ε

�.

4.1.2 Zipf Distribution Analysis. A Zipfian [Zipf 1949] data set, with pa-
rameter α, has the frequency, Fi, of an element, Ei, with the ith rank, such that
Fi = N

iαζ (α)
, where

ζ (α) =
|A|∑
i=1

1

iα
.

ζ (α) converges to a small constant inversely proportional to α, except for
α ≤ 1. For instance, ζ (1) ≈ ln(1.78|A|). As |A| grows to infinity, ζ (2) ≈ 1.645,
and ζ (3) ≈ 1.202. We assume α ≥ 1, to ensure that the data is skewed, and
hence that it is worth analyzing. As noted before, we do not expect the popular
elements to be of great importance if the data is uniform or weakly skewed.

To analyze the Zipfian case, we need to introduce some new notation. Among
all the possible permutations of S, the maximum possible min is denoted
minmax, and among all the elements with hits more than minmax, the ele-
ment with least hits is denoted Er , for some rank r. Thus, we can deduce from
Theorem 3.5 that

LEMMA 4.3. Any element, Ei, whose Fi > minmax, is guaranteed to be mon-
itored, if and only if i ≤ r, regardless of the ordering of S.

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

1110 • A. Metwally et al.

Now, minmax, and Er can be used to establish an upper bound on the space
requirements for processing Zipfian data.

THEOREM 4.4. Assuming noiseless Zipfian data with parameter α, to find all
ε-Deficient Frequent Elements, the number of counters used by Space-Saving is
bounded by

min

(
|A|,

⌈(
1

ε

) 1
α

⌉
,

⌈
1

ε

⌉)
.

This is regardless of the stream permutation.

PROOF. From Equation (1), and Lemma 3.4, minmax ≥ N−∑
i≤m fi

m , from which
it can be ascertained that

minmax ≥ N − ∑
i≤m Fi

m
.

From Lemma 4.3, substitute Fr > minmax. Rewriting frequencies in their
Zipfian form yields

1

rα
>

1

m
∗

|A|∑
i=m+1

1

iα
.

This can be approximated to 1
rα > 1

mα ∗
|A|/m∑
i=2

1
iα , which can be simplified to

m > r ∗
(|A|/m∑

i=2

1

iα

) 1
α

.

Since

(
|A|/m∑
i=2

1
iα

) 1
α

has no closed form, m is set to satisfy the stronger constraint

m > r(ζ (α) − 1)
1
α .

Since Fr+1 = N
(r+1)αζ (α)

< minmax < εN , then the smaller the error bound ε,

the smaller the value of minmax, the larger r should be, and the larger m should
be. Therefore, r is chosen to satisfy

r ≥
(

1

εζ (α)

) 1
α

.

Combining this result with the relation between m and r established above
implies that to guarantee an error that is bound by ε, m should satisfy

m >

(
ζ (α) − 1

εζ (α)

) 1
α

.

If α > 1, the upper bound on ε will be enforced by satisfying m = �(1
ε
)

1
α �.

Otherwise, the bound of m ≥ � 1
ε
� will apply from the general case discussed

previously in Theorem 4.1.

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Computing Frequent and Top-k Elements in Data Streams • 1111

Having established the bounds of Space-Saving for both the general and the
Zipf distributions, we compare these bounds to other algorithms. In addition,
we comment on some practical issues, which can not be directly inferred from
the theoretical bounds.

4.1.3 Comparison with Similar Work. The bound of Theorem 4.1 is tighter
than those guaranteed by the algorithms in Estan and Varghese [2003], Jin
et al. [2003], and Manku and Motwani [2002]. Sticky Sampling [Manku and
Motwani 2002] has a space bound of 2

ε
ln(1

φδ
), where δ is the failure probabil-

ity. Lossy Counting [Manku and Motwani 2002] has a bound of 1
ε

ln(εN). Both
the hCount algorithm [Jin et al. 2003], and the Multistage filters [Estan and
Varghese 2003] require a number of counters bounded by e

ε
∗ ln (−|A|

ln δ
). Fur-

thermore, Space-Saving has a tighter bound than GroupTest [Cormode and
Muthukrishnan 2003], whose bound is O(1

φ
ln(1

δφ
) ln(|A|)), for a large range of

practical values of the parameters |A|, ε, and φ. For example, for N = 1010,
|A| = 107, φ = 10−1, ε = 10−2, and δ = 10−1, and making no assumptions about
the data distribution, Space-Saving needs only 100 counters, while Sticky Sam-
pling needs 922 counters, Lossy Counting needs 1843 counters, hCount and
Multistage filters need 4155 counters, and GroupTest needs C ∗ 743 counters,
where C ≥ 1.

Frequent [Demaine et al. 2002] has a similar space bound to Space-Saving
in the general case. Using m counters, the elements’ under-estimation error in
Frequent is bounded by N−1

m . This is close to the theoretical underestimation
error bound, as proved by Bose et al. [2003]. However, there is no straightfor-
ward feasible extension of the algorithm to track the underestimation error
for each counter, since the current form of the algorithm does not support es-
timating the missed hits for an element that is starting being monitored. In
addition, every observation of a nonmonitored element increases the errors for
all the monitored elements, since their counters get decremented. Therefore,
elements of high frequency are highly error prone, and thus, it is still difficult
to guess the frequent elements, which is not the case for Space-Saving. Even
more, the structure proposed by Demaine et al. [2002] is built and queried in
a way that does not allow the user to specify an error threshold, ε. Thus, the
algorithm has only one parameter, the support φ, which increases the number
of false positives dramatically, as will be clear in Section 5.

The number of counters used in GroupTest [Cormode and Muthukrishnan
2003] depends on the failure probability, δ, as well as the support, φ. Thus, it
does not suffer from the single-threshold drawback of Frequent. However, it
does not output frequencies at all, and does not reveal the relative order of the
elements. In addition, its assumption that elememts’ IDs are 1 · · · |A| can only
be enforced by building an indexed lookup table that maps every element to a
unique number in the range 1 · · · |A|. Thus, in practice, GroupTest needs O(|A|)
space, which is infeasible in most cases. The hCount algorithm makes a similar
assumption about the alphabet. In addition, it has to scan the entire alphabet
domain for identifying the frequent elements. This is true even if a small portion
of the elements’ IDs were observed in the stream. This is in contrast to Space-
Saving, which only requires the m elements’ IDs to fit in memory.

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

1112 • A. Metwally et al.

For the Zipfian case, we are not aware of a similar analysis. For the numerical
example given above, if the data is Zipfian with α = 2, Space-Saving would need
only 10 counters, instead of 100, to guarantee the same error of 10−2.

4.2 Top-k Elements

For the top-k elements, the algorithm can output the first k elements. From
Theorem 3.6, countk+1, the overestimated number of hits for the element in
position k + 1, is an upper bound on Fk+1, the hits of the element Ek+1, which
is of rank k + 1. Therefore, an element, ei, is guaranteed to be among the top-k
if its guaranteed number of hits, counti − εi, exceeds countk+1.

We call the results to have guaranteed top-k, if by simply inspecting the re-
sults, the algorithm can determine that the reported top-k elements are correct.
Space-Saving reports a guaranteed top-k if, for all i, (counti − εi) ≥ countk+1,
where i ≤ k. That is, all the reported k elements are guaranteed to be among
the top-k elements.

All guaranteed top-i subsets, for all i, can be reported in �(m), by iterating
on all the counters 1 · · · m − 1. During each iteration, i, the first i elements are
guaranteed to be the top-i elements if the minimum value of (count j −ε j) found
so far is no smaller than counti+1, where j ≤ i. The algorithm guarantees the
top-m if, in addition to this condition, εm = 0, which is only true if the number
of distinct elements in the stream is at most m.

Similarly, we call the top-k to have guaranteed order if, for all i, where i ≤ k,
counti −εi ≥ counti+1. That is, in addition to having guaranteed top-k, the order
of elements among the top-k elements are guaranteed to hold if the guaranteed
hits for every element in the top-k are more than the overestimated hits of the
next element. Thus, the order is guaranteed if the algorithm guarantees the
top-i, for all i ≤ k. The algorithm QueryTop-k is given in Figure 5.

The algorithm consists of two loops. The first loop outputs the top-k candi-
dates. At each iteration the order of the elements reported so far is checked.
If the order is violated, order is set to false. At the end of the loop, the top-k
candidates are checked to be the guaranteed top-k, by checking that all of these
candidates have guaranteed hits that exceed the overestimated counter of the
k + 1 element, countk+1. If this does not hold, the second loop is executed for as
many iterations such that the total inspected elements k′ are guaranteed to be
the top-k′, where k′ > k.

The algorithm can also be implemented in a way that only outputs the first
k elements, or that outputs k′ elements, such that k′ is the closest possible to
k, regardless of whether k′ is greater than k, or vice versa. Throughout the rest
of the article, we assume that the algorithm outputs only the first k elements,
that is, the second loop is not executed. Next, we look at the space requirements
of the algorithm.

4.2.1 The General Case. For the guaranteed top-k case, it is widely ac-
cepted that the space requirements are �(|A|) [Charikar et al. 2002; Demaine
et al. 2002] for solving the exact problem, with no assumptions on the data dis-
tribution. Since, for general data distribution, we are not able to solve the exact
problem, we restrict the discussion to the relaxed version, FindApproxTop(S,

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Computing Frequent and Top-k Elements in Data Streams • 1113

Fig. 5. Reporting top-k.

k, ε) [Charikar et al. 2002], which is to find a list of k elements, each of which
has frequency more than (1 − ε)Fk .

We deal with skewed data later, in Section 4.2.2, where we provide the first
proven space bound for the guaranteed solution of the exact top-k problem, for
Zipfian data distribution.

THEOREM 4.5. Regardless of the data distribution, to solve the
FindApproxTop(S, k, ε) problem, Space-Saving uses only min(|A|, � N

εFk
�)

counters. Any element with frequency more than (1 − ε)Fk is guaranteed to be
monitored.

PROOF. This is another form of Theorem 4.1, but min = �εFk�, instead of
min = �εN�. By the same token, we set m = � 1

ε
∗ N

Fk
� so that εi ≤ εFk is

guaranteed.

4.2.2 Zipf Distribution Analysis. To answer exact top-k queries for Zipf
distribution, ε can be automatically set to less than Fk − Fk+1. Thus, Space-
Saving guarantees correctness, and order.

THEOREM 4.6. Assuming noiseless Zipfian data with parameter α > 1, to cal-
culate the exact top-k, the number of counters used by Space-Saving is bounded
by

min

(
|A|, O

((
k
α

) 1
α

k

))
.

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

1114 • A. Metwally et al.

When α = 1, the space complexity is

min(|A|, O(k2 ln(|A|))).
This is regardless of the stream permutation. Also, the order among the top-k

elements is preserved.

PROOF. From Equation (1), Lemma 3.4, and Lemma 4.3, we can deduce that
for the maximum possible value of min, minmax, and the least frequent element
that is guaranteed to be monitored, Er , it is true that

minmax ≤ N − ∑
i≤r (Fi − minmax)

m
.

With some simplification, and substituting Fr+1 ≤ minmax, from Lemma 4.3,

it follows Fr+1 ≤ N−∑
i≤r Fi

m−r . Rewriting frequencies in their Zipfian form yields

m − r ≤ (r + 1)α
|A|∑

i=r+1

1

iα
.

This can be approximated to m − r < (r + 1) ∗
|A|/(r+1)∑

i=1

1
iα , which simplifies to

1

r
<

ζ (α) + 1

m − ζ (α)
.

To guarantee that the first k slots are occupied by the top-k, we have to
make sure that the difference between Fk and Fk+1 is more than minmax, since
from Lemma 3.4, 0 ≤ εi ≤ minmax for all monitored elements. That is, the
condition minmax < Fk − Fk+1 has to be enforced. Thus, minmax < N

ζ (α)
∗ (k+1)α−kα

(k+1)αkα .

Enforcing a tighter condition, Fr is set to satisfy Fr < N
ζ (α)

∗ α
(k+1)αk . Enforcing

an even tighter condition by combining this with the relation between m and r
established above, it is sufficient to satisfy

N
ζ (α)

∗
(

ζ (α) + 1

m − ζ (α)

)α

<
N

ζ (α)
∗ α

(k + 1)αk
.

After some manipulation, a lower bound is reached on m to guarantee top-k
correctness: [(ζ (α) + 1)(k

α
)

1
α (k + 1)] + ζ (α) < m.

If α = 1, then ζ (α) = ζ (1) ≈ ln(1.78|A|), and the complexity reduces to

min(|A|, O(k2 ln(|A|))).
If α > 1, then ζ (α) converges to a small constant inversely proportional to α,

and the complexity reduces to

min

(
|A|, O

((
k
α

) 1
α

k

))
.

This establishes the space bound. We now prove the order-preserving prop-
erty. If the data distribution is Zipfian, then, (Fi − Fi+1) > (Fi+1 − Fi+2). Since
minmax < (Fk − Fk+1), then, ∀i≤k , minmax < (Fi − Fi+1). Since ∀i≤m, εi ≤ minmax,

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Computing Frequent and Top-k Elements in Data Streams • 1115

then, the over-estimation errors are not effective enough to change the order
among the top-k elements.

In addition to solving the ε-Deficient Frequent Elements problem in
Section 4.1.2, from Theorem 4.6 we can establish a bound on the space needed
for the exact solution of the frequent elements problem in case of Zipfian data.
Given noise-free Zipfian data with parameter α ≥ 1, Space-Saving can report
the elements that satisfy the user support �φN�, with very small errors in their
frequencies.

COROLLARY 4.7. Assuming noiseless Zipfian data with parameter α > 1, to
calculate the exact frequent elements, the number of counters used by Space-
Saving is bounded by

min

(
|A|, O

((
1

φ

) α+1

α2

))
.

When α = 1, the space complexity is

min
(

|A|, O
(

1

φ2 ln (|A|) + ln (|A|)
))

.

This is regardless of the stream permutation.

PROOF. Assuming Zipf distribution, it is possible to map a frequent elements
query into a top-k elements query. Since the support is known, it is possible to
know the rank of the least frequent element that satisfies the support. That is,
if �φN� < N

iαζ (α)
, where i is the rank of the least frequent element that satisfies

the support, then

i >

⌊(
1

ζ (α)φ

) 1
α

⌋
.

From Theorem 4.6, the number of counters, m, needed to calculate the exact

top-i elements is m > [(ζ (α) + 1)(i
α
)

1
α (i + 1)] + ζ (α). Substituting i = � 1

ζ (α)φ

1
α �+ 1

yields

m >

⎡
⎢⎢⎢⎢⎣(ζ (α) + 1)

⎛
⎜⎜⎝

⌊(
1

ζ (α)φ

) 1
α

⌋
+ 1

α

⎞
⎟⎟⎠

1
α (⌊(

1

ζ (α)φ

) 1
α

⌋
+ 2

)⎤
⎥⎥⎥⎥⎦ + ζ (α).

If α = 1, then ζ (α) = ζ (1) ≈ ln(1.78|A|), and the space complexity reduces to

min
(

|A|, O
(

1

φ2 ln (|A|) + ln (|A|)
))

.

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

1116 • A. Metwally et al.

If α > 1, then ζ (α) converges to a small constant inversely proportional to α,
and the space complexity reduces to

min

(
|A|, O

((
1

φ

) α+1

α2

))
.

This establishes the space bound.

To the best of our knowledge, this is the first work to look at the space bounds
for answering exact queries, in the case of Zipfian data, with guaranteed results.
Having established the bounds of Space-Saving for both the general and the
Zipf distributions, we compare these bounds to other algorithms.

4.2.3 Comparison with Similar Work. These bounds are tighter than the
bounds guaranteed by the best known algorithm, CountSketch [Charikar et al.
2002], for a large range of practical values of the parameters |A|, ε, and k.
CountSketch solves the relaxed version of the problem, FindApproxTop(S, k, ε),

with failure probability δ, using space of O (log(N
δ

)(k + 1
(εFk)2

∑|A|
i=k+1 Fi

2)), with a

large constant hidden in the big-O notation [Charikar et al. 2002; Cormode and
Muthukrishnan 2003]. The bound of Space-Saving for the relaxed problem is
� N

εFk
�, with a 0-failure probability. For instance, assuming no specific data distri-

bution, for N = 1010, |A| = 107, k = 100, and ε = δ = 10−1, Space-Saving requires
106 counters, while CountSketch needs C ∗ 3.6 ∗ 1010 counters, where C � 1,
which is more than the entire stream. In addition, Space-Saving guarantees
that any element, ei, whose fi > (1 − ε)Fk belongs to the Stream-Summary,
and does not simply output a random k of such elements.

In the case of a non-Zipf distribution, or a weakly skewed Zipf distribution
with α < 1, for all i ≥ k, we will assume that Fi ≥ N

ζ (1)
∗ 1

i . This assumption is

justified. Since we are assuming a nonskewed distribution, the top few elements
have a less significant share in the stream than in the case of Zipf(1), and less
frequent elements will have a higher share in S than they would have had
if the distribution is Zipf(1). Using this assumption, we rewrite the bound of
Space-Saving as O(k∗ln(N)

ε
); while the bound in [Charikar et al. 2002] can be

rewritten as

O
(

log

(
N
δ

)
∗

(
k + k2

ε2

(
1

k + 1
− 1

|A|
)))

≈ O
(

k
ε2

log

(
N
δ

))
.

Even more, depending on the data distribution, Space-Saving can guarantee
the reported top-k, or a subset of them, to be correct, with weak data skew;
while CountSketch does not offer any guarantees.

In the case of Zipf Distribution, the bound of Charikar et al. [2002] is O
(k log(N

δ
)). For α > 1, the bound of Space-Saving is O ((k

α
)

1
α k). Only when α = 1,

the space complexity is O (k2 ln(|A|)), and thus Space-Saving requires less space
for cases of skewed data, long streams/windows, and has a 0-failure probability.
In addition, Space-Saving preserves the order of the top-k elements.

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Computing Frequent and Top-k Elements in Data Streams • 1117

To show the difference in space requirements, consider the following exam-
ple. For N = 1010, |A| = 107, k = 100, α = 2, and δ = 10−1, Space-Saving’s
space requirements are only 708 counters, while CountSketch needs C ∗ 3655
counters, where C � 1.

This is the first algorithm that can give guarantees about its output. For top-
k queries, Space-Saving specifies the guaranteed elements among the top-k.
Even if it cannot guarantee all the top-k elements, it can guarantee the top-k′

elements.

5. EXPERIMENTAL RESULTS

To evaluate the capabilities of Space-Saving, we conducted a comprehensive set
of experiments, using both real and synthetic data. We tested the performance
of Space-Saving for finding both the frequent and the top-k elements under dif-
ferent parameter settings. We compared the results to those of the algorithms
whose theoretical bounds are not worse than those of Space-Saving. We were
interested in the recall, the number of correct elements found as a percentage
of the number of correct elements; and the precision, the number of correct ele-
ments found as a percentage of the entire output [Cormode and Muthukrishnan
2003]. It is worth noting that an algorithm will have a recall and a precision
of 1, if it outputs all and nothing but the correct set of elements. Superfluous
output reduces precision, while failing to identify all correct elements reduces
recall.

We also measured the run time and space used by each algorithm, which are
good indicators of its capability to handle high-speed streams, and to reside on
servers with limited memories. Notice that we included the size of the hash
tables used in the algorithms for fair comparisons of the space usages.

For the frequent elements problem, we compared Space-Saving to GroupTest
[Cormode and Muthukrishnan 2003], and Frequent [Demaine et al. 2002]. For
GroupTest and Frequent, we used the C code available on the Web site of the
first author of Cormode and Muthukrishnan [2003]. For the top-k problem,
we implemented Probabilistic-InPlace [Demaine et al. 2002], and CountSketch
[Charikar et al. 2002]. For CountSketch [Charikar et al. 2002], we implemented
the median algorithm by Hoare [Hoare 1961] with Median-of-three partition,
which has a linear run time, in the average case [Kirschenhofer et al. 1997].
Instead of maintaining a heap as suggested by Charikar et al. [2002], we kept
a Stream-Summary of fixed length k. This guarantees constant time update
for elements that are in the Stream-Summary, while a heap would entail
O (log(k)) operations. The difference in space usage between a heap and a
Stream-Summary of size k is negligible, when compared to the size of the hash
space used by CountSketch. For the hidden constant of the space bounds given
in Charikar et al. [2002], we ran CountSketch several times, and estimated
that a factor of 16 would enable CountSketch to give results comparable to
Space-Saving in terms of precision and recall. For the probabilistic algorithms,
GroupTest and CountSketch, we set the probability of failure, δ, to 0.01, which is
a typical value for δ. All the algorithms were compiled using the same compiler,

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

1118 • A. Metwally et al.

and were run on a Pentium IV 2.66-GHz PC, with 1.0 GB of RAM, and 80 GB
of hard disk.

5.1 Synthetic Data

We generated several synthetic Zipfian data sets with the Zipf parameter vary-
ing from 0.5, which is very slightly skewed, to 3.0, which is highly skewed, with
a fixed increment of 1

2
. The size of each data set, N , is 108 hits, and the alpha-

bet was of size 5 ∗ 106. We conducted two sets of experiments. In the first set,
we varied the Zipf parameter, α, and measured how the performances of the
algorithms change for the same set of queries. In the second set of experiments,
we used a data set with a realistic skew (α = 1.5), and compared the results of
the algorithms as we varied the parameters of the queries.

5.1.1 Varying the Data Skew. In this set of experiments, we varied the Zipf
parameter, α, and measured how the performances of the algorithms change,
for the same set of queries. This set of experiments measure how the algorithms
adapt to, and make use of the data skew.

5.1.1.1 The Frequent Elements Problem. The query issued for Space-Saving,
GroupTest, and Frequent was to find all elements with frequency at least N

102 .
For Space-Saving, we assigned enough counters to guarantee correct results
from Corollary 4.7. When the Zipf parameter was 0.5, we assigned the same
number of counters as in the case when the Zipf parameter was 1.0. The results
comparing the recall, precision, time, and space used by the algorithms are
summarized in Figure 6.

Although Frequent ran up to six times faster than Space-Saving and had
a constant recall of 1, as reported in Figures 6(a) and 6(c), its results were
not competitive in terms of precision. Since it is not possible to specify an ε

parameter for the algorithm, its precision was very low in all the runs. When
the Zipf parameter was 0.5, the algorithm reported 16 elements, and actually
there were no elements satisfying the support. For the rest of the experiments
in Figure 6(b), the precision achieved by Frequent ranged from 0.049 to 0.158.
The space used ranged from one-tenth to four times the space of Space-Saving,
as shown in Figure 6(d). It is interesting to note that, as the data became more
skewed, the space advantage of Space-Saving increased, while Frequent was
not able to exploit the data skew to reduce its space requirements. Frequent
did not always output exactly 100 elements for each experiment, since when
it decrements the lowest counter, more than one element sharing that counter
could potentially be deleted if it reaches 0.

From Figure 6(a), the ratio in run time between Space-Saving and GroupTest
changed from 1:0.73, when the Zipf parameter was 0.5, to 1:1.9, when the
data was highly skewed. When the Zipf parameter was 0.5, there were no fre-
quent elements, and both algorithms identified none. We report this fact for
both algorithms as having a precision and recall of 1 in Figures 6(b) and 6(c),
respectively. However, when the Zipf parameter was 1, the difference in pre-
cision between the two algorithms was 14%, since GroupTest was not able to
prune out all the false positives due to the weak data skew. For values of the

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Computing Frequent and Top-k Elements in Data Streams • 1119

Fig. 6. Performance comparison for the frequent elements problem using synthetic Zipfian data—

varying data skew.

Zipf parameter larger than 1.0, the precisions of both algorithms were constant
at 1, as reported in Figure 6(b). The recalls of both algorithms were constant at
1 for all values of the Zipf parameter, as is clear from Figure 6(c). The advan-
tage of Space-Saving is evident in Figure 6(d), which shows that Space-Saving
achieved a reduction in the space used by a factor ranging from 8 when the Zipf
parameter was 0.5 up to 200 when the Zipf parameter was 3.0. This shows that
Space-Saving adapts well to the data skew.

5.1.1.2 The Top-k Problem. Space-Saving, CountSketch, and Probabilistic-
InPlace were used to identify the top-50 elements. Space-Saving monitored
enough elements to guarantee that the top-50 elements are correct and reported
in the right order, as illustrated in Theorem 4.6. For α = 0.5, the same number
of counters were monitored as in the case of α = 1.0. Both Space-Saving and
Probabilistic-InPlace were allowed the same number of counters. We were not
able to make Probabilistic-InPlace produce results comparable to the quality
of the results of Space-Saving. If Probabilistic-InPlace is given 2k counters so
that it outputs only k elements, its recall is unsatisfactory. If it is allowed a
large number of counters, its recall increases, due to tighter estimation; but the
precision drops dramatically, since a lot of superfluous elements are output.
Thus, we allowed it to run using the same number of counters as Space-Saving,

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

1120 • A. Metwally et al.

Fig. 7. Performance comparison for the top-k problem using synthetic Zipfian data—varying data

skew.

and the time, precision, and recall were measured. The results are summarized
in Figure 7.

From Figure 7(b), the outputs of Space-Saving and CountSketch were much
better than Probabilistic-InPlace, in terms of precision. On the contrary, from
Figure 7(c), the recall of Probabilistic-InPlace was constant at 1 throughout
the entire range of α. On the whole, the run time and space usages of both
Probabilistic-InPlace and Space-Saving were comparable. Nevertheless, from
Figure 7(a), we notice that the run time of Probabilistic-InPlace was longer
than that of Space-Saving for α ≥ 1.5, due to the unnecessary deletions at the
boundaries of rounds.

Although we used a hidden factor of 16, as indicated earlier, CountSketch
failed to attain a recall and precision of 1 for all the experiments.4 CountS-
ketch had precision and recall varying between 0.98 and 1.0, as is clear from
Figures 7(b) and 7(c). From Figure 7(d), the space reductions of Space-Saving
become clear only for skewed data. The ratio in space used by Space-Saving
and CountSketch ranged from 10:1 when the data was weakly skewed, to 1:10
when the data was highly skewed. This is because Space-Saving takes advan-
tage of the skew of the data to minimize the number of counters it needs to

4CountSketch and Space-Saving have the precision equal to recall, for any query, since exactly k
elements are output.

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Computing Frequent and Top-k Elements in Data Streams • 1121

keep, while the proved bound on the space used by CountSketch is fixed for
α > 1

2
[Charikar et al. 2002]. The reductions of Space-Saving in time, when

compared with CountSketch, are significant. From Figure 7(a), Space-Saving
run-time, though almost constant, was 22 times smaller when the data was
weakly skewed, and 33 times smaller when the data was highly skewed. The
run-time of CountSketch decreased as α increased, since the number of times
CountSketch estimated the frequency of an element decreased, which is the bot-
tleneck in CountSketch. However, the run-time of Space-Saving dropped faster
as the data became more skewed, since the gap between the significant buck-
ets’ values increased, and it grew less likely that any two elements in the top-k
shared the same bucket. This reduced the work to increment the top-k elements.

We can easily see that running on a 2.66-GHz machine enables CountSketch
to handle streams with a rate not higher than 5 hits/ms, since when the data
was almost uniform, CountSketch took 219 μs, on average, to process each
observation in the stream. Since, in real life, the traffic rate entails processing
each data entry in at most 50 μs, CountSketch is rendered unsuitable for our
application.

5.1.2 Varying the Query Parameters. This set of experiments measured
how the algorithms perform under different realistic query parameters, keeping
the data skew parameter constant at a realistic value. The data set with the
Zipf parameter 1.5 was used for this purpose.

5.1.2.1 The Frequent Elements Problem. The query issued for Space-Saving,
GroupTest, and Frequent was to find all elements with frequency at least � N

φ
�.

The support φ was varied from 0.001 to 0.01. The results are summarized in
Figure 8.

From Figure 8(c), Frequent was able to attain a recall of 1, for all the queries
issued. From Figure 8(a), Frequent’s run time was up to five times faster than
Space-Saving. In addition, the space usage of Frequent dropped to 2

5
that of

Space-Saving, as is clear from Figure 8(d). However, Frequent has a precision
ranging from 0.087 to 0.115, as indicated by Figure 8(b), which is a signifi-
cant drawback of this algorithm. This is due to its inability to prune out false
positives.

Both GroupTest and Space-Saving were able to attain a value of 1 for recall for
all the values of support, as is clear from Figure 8(c). However, from Figure 8(b),
the precision of GroupTest dropped to 0.952 when φ was 1

250
. Figure 8(d) shows

that Space-Saving used space ranging from 8 to 18 times less than that of
GroupTest, and ran twice as fast, as shown in Figure 8(a).

In conclusion, we can see that Space-Saving combined the lightweight ad-
vantage of Frequent and the precision advantage of GroupTest.

5.1.2.2 The Top-k Problem. Space-Saving, CountSketch, and Probabilistic-
InPlace were used to identify the top-k elements in the stream. The parameter
k was varied, and the results are shown in Figure 9.

Probabilistic-InPlace had run-time and space usage that were very close to
Space-Saving, as illustrated in Figures 9(a) and 9(d). Probabilistic-InPlace was

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

1122 • A. Metwally et al.

Fig. 8. Performance comparison for the frequent elements problem using synthetic Zipf(1.5) data—

varying the support.

able to attain a recall of 1 throughout this set of experiments, as is clear from
Figure 9(c). However, it had very low precision, as shown in Figure 9(b). Its
highest precision was 0.133, and thus the algorithm seems impractical for real-
life applications.

Space-Saving has a precision and recall of 1 for the entire range of k, as is
clear from Figures 9(b) and 9(c). Meanwhile, CountSketch had recall/precision
values ranging from 0.987 for top-75 to 1 for top-10, top-25, and top-50, which
is satisfactory for real-life applications. However, Figures 9(a) and 9(d) show
that Space-Saving’s run-time was 28 to 31 times less than that of CountSketch,
while Space-Saving’s space was up to five times smaller.

Again, Space-Saving combined the lightweight property of Probabilistic-
InPlace, and had better precision than CountSketch.

5.2 Real Data

For real data experiments, we used a click stream from Anonymous.com. The
stream size was 25,000,000 hits, and the alphabet size was 4,235,870. The data
was fairly skewed, but it was difficult to estimate the Zipf parameter. The sum
of the counts of the frequent elements was small when compared to the length
of the stream. For instance, the most frequent element, the top-10, the top-50,
and the top-100 elements occurred 619,310, 1,726,609, 2,596,833, and 3,130,639

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Computing Frequent and Top-k Elements in Data Streams • 1123

Fig. 9. Performance comparison for the top-k problem using synthetic Zipf(1.5) data—varying the

k parameter.

times, respectively. Thus, it was very difficult to estimate the α from which we
can a priori calculate a bound on the number of counters to be used. We made
use of this set of experiments to evaluate the performance of Space-Saving on
real data that has no known distribution. We varied the number of counters,
m, with the query parameters. Surprisingly, in very restricted space, Space-
Saving achieved substantial gains in run time and space with hardly any loss
in precision and recall. On the whole, the results were very similar to those
of the synthetic data experiments when the query parameters were varied.
We will start by comparing the results of the algorithms when varying the
query parameters, and will then comment on how Space-Saving guarantees its
output.

5.2.1 Varying the Query Parameters. This set of experiments measured
how the algorithms perform under different realistic query parameters.

5.2.1.1 The Frequent Elements Problem. For the frequent elements, the al-
gorithms were used to find elements with minimum frequency �φN�. The pa-
rameter φ was varied from 0.001 to 0.01, and the number of elements monitored
by space saving was fixed at 10

φ
. The results are summarized in Figure 10.

From Figure 10(a), the run time of Frequent was consistently faster than
Space-Saving, and Space-Saving used five times more space than Frequent, as

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

1124 • A. Metwally et al.

Fig. 10. Performance comparison for the frequent elements problem using a real click stream.

is clear from Figure 10(d). However, because of the excessive number of false
positives reported by Frequent, its precision ranged from 0.011 to 0.035, as
indicated by Figure 10(b).

For GroupTest, all the IDs of the alphabet were mapped to the range
1 · · · 4, 235, 870 so as to be able to compare it with Space-Saving, though we
did not count the mapping lookup table as part of GroupTest’s space require-
ments. Despite the restricted space condition we imposed on Space-Saving, the
algorithm was able to attain a value of 1 for precision and recall for all support
levels, as is clear from Figures 10(b), and 10(c). However, GroupTest had a
precision ranging from 0.486 to 1. On the other hand, from Figure 10(d), Space-
Saving used space up to five times less than GroupTest, and ran faster most of
the time, as shown in Figure 10(a).

5.2.1.2 The Top-k Problem. Space-Saving, CountSketch, and Probabilistic-
InPlace were used to identify the top-k elements in the stream. The pa-
rameter k was varied, and the number of elements monitored by Space-
Saving and Probabilistic-InPlace was fixed at 100k. The results are shown in
Figure 11.

Although Probabilistic-InPlace had good recall, as shown in Figures 11(c),
its precision, as is clear from Figure 11(b), was worse than the two other

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Computing Frequent and Top-k Elements in Data Streams • 1125

Fig. 11. Performance comparison for the top-k problem using a real click stream.

algorithms, since its highest precision was 0.02. The run-time of Probabilistic-
InPlace was four to five times less than that of Space-Saving, and their space
usages were close.

Interestingly, Figures 11(b) and 11(c) show that Space-Saving and CountS-
ketch had very close recall and precision. The average precision and recall
of Space-Saving and CountSketch were 0.96 and 0.97, respectively. However,
Figure 11(a) shows that Space-Saving’s run-time was 25 times less than that of
CountSketch. Space-Saving’s space requirements were 1.1 to 1.6 times larger,
as shown in Figure 11(d).

5.2.2 Measuring the Guarantee of Space-Saving. We now introduce a new
measure, guarantee. The guarantee metric is very close to precision, but is
only measurable for algorithms that can offer guarantees about their output.
Guarantee is the number of guaranteed correct elements as a percentage of
the entire output, that is, the percentage of the output whose correctness is
guaranteed. For instance, if an algorithm outputs 50 elements, from which it
guarantees 42 to be correct, then the guarantee of this algorithm is 84%, even
though some of the remaining eight elements might still be correct. Thus, the
guarantee of a specific answer set is no greater than the precision, which is
based on the number of correct, and not necessarily guaranteed, elements in
the output.

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

1126 • A. Metwally et al.

Table I. Space-Saving Guarantee for the Frequent Elements Problem Using a Real Click Stream

Number of Size of Number of Guaranteed

Support Frequent Elements Output Frequent Elements Guarantee Precision

1/1000 18 18 18 1.0 1.0

1/750 11 11 11 1.0 1.0

1/500 10 10 10 1.0 1.0

1/250 2 2 2 1.0 1.0

1/100 2 2 2 1.0 1.0

Table II. Space-Saving Guarantee for the Top-k Problem Using a Real Click Stream

Number of Guaranteed

Number of Top-k Size of Output Top-k Elements Guarantee Precision

10 10 10 1.0 1.0

25 25 20 0.80 0.84

50 50 46 0.92 0.98

75 75 72 0.96 0.9867

100 100 98 0.98 0.99

In the context of the frequent elements problem, the guarantee of Space-
Saving is the number of elements whose guaranteed hits exceeds the user sup-
port, as a percentage of the entire output. Formally, this is equal to

Count(ei|(counti − εi) > �φN�)

Count(ei|counti > �φN�))
.

In the context of the top-k problem, the guarantee of Space-Saving is the
number of elements that are guaranteed to be in the top-k, that is, those whose
guaranteed hits exceed countk+1, as a percentage of the top-k. Formally, this is
equal to

Count(ei|(counti − εi) > countk+1)

k
.

It is worth noting that, throughout the set of experiments on synthetic data,
the guarantee of Space-Saving was always constant at 1. That is, Space-Saving
always guaranteed all its output to be correct.

Since it was not possible to estimate the α parameter of the real data set,
we ran Space-Saving in a restricted space, and thus some of the experimental
runs did not have a precision of 1. For this reason, we report both the guarantee
and the precision of Space-Saving for both the frequent elements and the top-k
problems in Tables I and II, respectively.

5.2.2.1 The Frequent Elements Problem. For the Frequent Elements prob-
lem, both the guarantee and the precision of Space-Saving were constant at 1.0,
as is clear from Table I. That is, Space-Saving outputs only the correct elements,
nothing but the correct elements, and guarantees its output to be correct.

5.2.2.2 The Top-k Problem. For the Top-k problem, the guarantee of Space-
Saving ranged from 0.80 to 1.0, and the precision of Space-Saving ranged from
0.84 to 1.0, as is clear from Table II. In other words, Space-Saving was able to

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Computing Frequent and Top-k Elements in Data Streams • 1127

guarantee 80% to 100% of its output to be correct. Throughout the experimental
runs, the number of nonguaranteed elements was at most five.

6. ANSWERING CONTINUOUS QUERIES

After validating the theoretical analysis by experimental evaluation using both
real and synthetic data, we extend the proposed algorithm to answer contin-
uous queries about both frequent and top-k elements. Although incremental
reporting of the answer is useful in many applications for monitoring inter-
esting elements, we are not aware of any proposed solution for this problem.
The main goal is to incrementally report any changes taking place in the an-
swer set, without scanning all the monitored elements. Since these changes
can take place after any stream observation, the Increment-Counter algorithm
has to be modified to check for changes in the answer set, so that the cache is
updated before it is used for the next advertisement rendering. The extensions
to Increment-Counter are discussed below.

6.1 Continuous Queries for Frequent Elements

Incremental reporting of frequent elements can be classified into two types of
reporting. The first type is reporting an infrequent element that has become fre-
quent. This can happen when an element receives a hit that makes its frequency
satisfy the minimum support �φN�. This can only happen for the observed ele-
ment. The second type of updates is reporting that a group of frequent elements
have become infrequent. This can happen because the minimum support �φN�
has increased as N gets incremented. Several elements may become infrequent
after the last stream observation. Moreover, one stream observation can result
in both types of updates.

Checking for updates of both types is more effective than running the
QueryFrequent algorithms after every observation, that is, after the call to
Increment-Counter. The subroutine ContinuousQueryFrequent that should be
called at the end of each call to Increment-Counter and before the cleanup step
is sketched in Figure 12.

ContinuousQueryFrequent should maintain a pointer, ptrφ , to Bucketφ , the
bucket of minimum value that satisfies the support. Initially, this pointer points
to the initial bucket of the Stream-Summary. At the end of each call to the
Increment-Counter algorithm and before deleting the empty bucket, it should
invoke ContinuousQueryFrequent. ContinuousQueryFrequent should check if
Bucketφ still satisfies the required support after the stream size N has been
incremented. If it does not satisfy the support any more, all the elements in the
child list of Bucketφ should be reported as frequent elements that have become
infrequent, and ptrφ should be moved to Bucket+φ , the neighbor of Bucketφ with
larger value.

When the observed element ei has its counter counti incremented, Contin-
uousQueryFrequent should check the new bucket of counti, Bucket′i. If counti

has moved from an infrequent bucket to another infrequent bucket, or from a
frequent bucket to another frequent bucket, then there is no need to update the
set of frequent elements. Only if the new bucket of counti satisfies �φN� and the

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

1128 • A. Metwally et al.

Fig. 12. Incremental reporting of frequent elements.

old bucket did not, ei should be reported as an infrequent element that is now
frequent. In this case, ptrφ should be moved to point to Bucket′i, the new bucket
of counti, since we are sure then that this is the bucket of minimum value that
satisfies the support. The algorithm ContinuousQueryFrequent checks for this
condition by making sure that Bucket′i has a value which satisfies the support,
and its value is no greater than the value of the bucket pointed to by ptrφ .

Reporting an element that is becoming frequent is O (1); and reporting
a group of elements that are becoming infrequent is O (|elements becoming
infrequent|). Thus, ContinuousQueryFrequent takes O (|updated elements|) to
update the cache.

In the Increment-Counter algorithm, the old bucket of counti is deleted if its
child list is empty. The ContinuousQueryFrequent algorithm should be called
before deleting the old bucket of counti. Otherwise, ptrφ could be pointing to
a deleted bucket, and there would be no efficient way to know which bucket
is Bucket+φ , except by scanning all the buckets in the Stream-Summary data
structure, which is not a constant time operation.

6.2 Continuous Queries for Top-k Elements

Answering continuous queries about top-k is similar to answering continuous
queries about frequent elements. ContinuousQueryTop-k should maintain a
pointer, ptrk , to Bucketk , the bucket to which countk belongs, where countk is the
counter at the kth position in the Stream-Summary data structure. Hence, the
top-k elements should be elements that belong to all the buckets with values no
less than the value of Bucketk . However, there might be more than k elements
that belong to buckets with values no less than that of countk . For instance,
if k = 100, and the buckets with values more than countk have 95 elements,
and Bucketk has more than five elements, then some elements that belong to
Bucketk will not be reported among the top-k. In case Bucketk has more elements
than needed to report the top-k, ContinuousQueryTop-k should report a subset

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Computing Frequent and Top-k Elements in Data Streams • 1129

of the elements of Bucketk as being among the top-k. The rest of the Bucketk

elements, even though they have the same value as countk , are not reported as
being among the top-k. Thus, ContinuousQueryTop-k should maintain a set Setk

of elements that belong to Bucketk , and have been reported as Top-k. Initially,
Setk is set empty, and ptrk points to the initial bucket of the Stream-Summary.

The underlying idea is to keep track of boundary elements that lie on the
boundary between the top-k and the non-top-k elements. Such elements can
move from outside the top-k to inside the top-k, if their frequency increases.
Only an element that belong to Bucketk that is not a member of Setk can be
reported as an element which is entering the top-k set of elements, if it receives
a hit. Elements which belong to Setk will not change the top-k if they receive
hits. Other elements that belong to buckets other than Bucketk will not effect
the top-k if they receive hits.

The Stream-Summary data structure needs to be modified slightly, so that
it can tell if k distinct elements have been observed in the stream. This mod-
ification helps at the transient start, when all distinct elements observed are
among the top-k.

Telling whether or not k distinct elements have been observed in the stream
is an easy problem. It is enough to keep a counter that is incremented every
time an element is deleted from the initial bucket in the Stream-Summary, and
is inserted into a bucket of value 1. However, for simplicity, we will delete these
details from the algorithm, and assume an oracle exists, which will answer the
question for us.

After receiving more than k distinct elements, a new element reported as
being among the top-k implies that another element is no longer in the top-k.
The algorithm ContinuousQueryTop-k is responsible for this task, and should
be called at the end of each call to Increment-Counter and before the clean up
step, as sketched in Figure 13.

The first two cases in ContinuousQueryTop-k handle the special cases when
the distinct elements in the stream are no more than k. In Case 1, the algorithm
checks if the number of distinct elements observed is strictly less than k. If this
is true, then ei, the observed element, should be reported among the top-k if this
is the first occurrence of ei. In Case 2, if ei is the kth distinct element reported,
then the number of distinct elements has changed from k − 1 to k because of
the last observation, ei. Thus, in addition to reporting ei as being among the
top-k, ptrk has to be moved to Bucket1, the bucket of value 1. Since ei is the
kth distinct element, the top-k are all the elements in all the buckets with
values no less than 1. Thus Setk should include all the elements that belong to
Bucket1.

Case 3 is the general case. This case is executed only if ei moves from Bucketk

to Bucket+k , the neighbor of Bucketk with larger value. If ei was already among
the top-k, that is, it did belong to Setk , then the top-k elements did not change,
and it needs to be deleted from Setk , since it does not belong to Bucketk any
more. However, if ei is a boundary element, that is, it did not belong to Setk ,
then ei is moving from outside top-k to inside top-k. Thus ei has to be reported
as being among the top-k. In addition, an element has to be picked from Setk ,
deleted from Setk , and reported as a non-top-k element.

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

1130 • A. Metwally et al.

Fig. 13. Incremental reporting of top-k.

Whether ei belongs to Setk or not, the deletion of an element from Setk might
leave Setk empty. In this case, we are sure that there are exactly k elements in
the buckets with values more than that of Bucketk . Those are the top-k elements.
Hence ptrk should be moved to point to Bucket+k , the neighbor of Bucketk with
larger value, and Setk should be initialized to contain all the elements in the
child list of Bucket+k .

Since Setk can have at most k elements at a time, we assume it can be stored
in an associative memory, and thus, all the operation on Setk is O (1). Otherwise,
it can be stored in a hash table, and the amortized cost of any operation will
still be O (1). It is easy to see that the amortized cost of ContinuousQueryTop-k
is constant. Although the step of inserting all the elements of one bucket into
Setk is not O (1), this cost will be amortized since Setk will have exactly one
element deleted every time an element moves from Bucketk to Bucket+k . Thus, on
average, one element will be inserted and another will be deleted from Setk for
every element moving from Bucketk to Bucket+k , which is O (1) per observation.

Like ContinuousQueryFrequent, ContinuousQueryTop-k should be called be-
fore deleting the old bucket of counti. Otherwise, ptrk could be pointing to a
deleted bucket, and there would be no constant time method to know which
bucket is Bucket+k .

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Computing Frequent and Top-k Elements in Data Streams • 1131

7. DISCUSSION

This article has devised an integrated approach for solving an interesting fam-
ily of problems in data streams. The Stream-Summary data structure was pro-
posed, and utilized by the Space-Saving algorithm to guarantee strict bounds
on the error rate for approximate counts of elements, using very limited space.
We showed that Space-Saving can handle both the frequent elements and top-k
queries because it efficiently estimates the elements’ frequencies. The memory
requirements were analyzed with special attention to the case of skewed data.
Moreover, this article introduced and motivated the problem of answering con-
tinuous queries about top-k, and frequent elements, through incremental re-
porting of changes to the answer sets. Minor extensions were applied to use the
same set of algorithms to answer continuous queries. We conducted extensive
experiments using both synthetic and real data sets to validate the benefits of
the proposed algorithm.

This is the first algorithm, to the best of our knowledge, which guarantees
the correctness of the frequent elements as well as the correctness and the order
of the top-k elements, when the data is skewed.

In practice, if the alphabet is too large, like in the case of IP addresses, only a
subset of this alphabet is observed in the stream, and not all the 232 addresses.
Our space bounds are actually a function of the number of distinct elements
which have occurred in the stream. However, in our analysis, we have assumed
that the entire alphabet is observed in the stream, which is the worst case for
Space-Saving. Yet no other algorithm has better space bounds than those of
Space-Saving.

The main practical strengths of Space-Saving is that it can use whatever
space is available to estimate the elements’ frequencies, and provide guarantees
on its results whenever possible. Even when analysts are not sure about the
appropriate parameters, the algorithm can run in the available memory and
the results can be analyzed for further tuning. It is interesting that running
the algorithm on the available space ensures that more important elements are
less susceptible to noise.

ACKNOWLEDGMENT

The authors thank the associate editor, Prof. H. Mannila, and the anonymous
referees for insightful comments on the article.

REFERENCES

ALON, N., MATIAS, Y., AND SZEGEDY, M. 1996. The space complexity of approximating the frequency

moments. In Proceedings of the 28th ACM STOC Symposium on the Theory of Computing. 20–29.

ARASU, A., BABU, S., AND WIDOM, J. 2003a. CQL: A language for continuous queries over streams

and relations. In Proceedings of the 9th DBPL International Conference on Data Base and Pro-
gramming Languages. 1–11.

ARASU, A., BABU, S., AND WIDOM, J. 2003b. The CQL Continuous Query Language: Semantic foun-

dations and query execution. Tech. rep. 2002-67. Stanford University, Stanford, CA.

BABCOCK, B., BABU, S., DATAR, M., MOTWANI, R., AND WIDOM, J. 2002. Models and issues in data

stream systems. In Proceedings of the 21st ACM PODS Symposium on Principles of Database
Systems. 1–16.

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

1132 • A. Metwally et al.

BABCOCK, B. AND OLSTON, C. 2003. Distributed top-k monitoring. In Proceedings of the 22nd ACM
SIGMOD International Conference on Management of Data. 28–39.

BLOOM, B. H. 1970. Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13, 7, 422–426.

BONNET, P., GEHRKE, J., AND SESHADRI, P. 2001. Towards sensor database systems. In Proceedings
of the 2nd IEEE MDM International Conference on Mobile Data Management. 3–14.

BOSE, P., KRANAKIS, E., MORIN, P., AND TANG, Y. 2003. Bounds for frequency estimation of packet

streams. In Proceedings of the 10th SIROCCO International Colloquium on Structural Informa-
tion and Communication Complexity. 33–42.

BOYER, R. AND MOORE, J. 1981. A fast majority vote algorithm. Tech. rep. 1981-32. Institute for

Computing Science, University of Texas, Austin, Austin, TX.

CHARIKAR, M., CHEN, K., AND FARACH-COLTON, M. 2002. Finding frequent items in data streams.

In Proceedings of the 29th ICALP International Colloquium on Automata, Languages and Pro-
gramming. 693–703.

CHEN, J., DEWITT, D., TIAN, F., AND WANG, Y. 2000. NiagaraCQ: A scalable continuous query system

for Internet databases. In Proceedings of the 19th ACM SIGMOD International Conference on
Management of Data. 379–390.

CORMODE, G., KORN, F., MUTHUKRISHNAN, S., AND SRIVASTAVA, D. 2003. Finding hierarchical heavy

hitters in data streams. In Proceedings of the 29th VLDB International Conference on Very Large
Data Bases. 464–475.

CORMODE, G., KORN, F., MUTHUKRISHNAN, S., AND SRIVASTAVA, D. 2004. Diamond in the rough: Finding

hierarchical heavy hitters in multi-dimensional data. In Proceedings of the 23rd ACM SIGMOD
International Conference on Management of Data. 155–166.

CORMODE, G. AND MUTHUKRISHNAN, S. 2003. What’s hot and what’s not: Tracking most frequent

items dynamically. In Proceedings of the 22nd ACM PODS Symposium on Principles of Database
Systems. 296–306.

CORTES, C., FISHER, K., PREGIBON, D., ROGERS, A., AND SMITH, F. 2000. Hancock: A language for

extracting signatures from data streams. In Proceedings of the 6th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 9–17.

DATAR, M., GIONIS, A., INDYK, P., AND MOTWANI, R. 2002. Maintaining stream statistics over slid-

ing windows. In Proceedings of the 13th ACM SIAM Symposium on Discrete Algorithms. 635–

644.

DEMAINE, E., LÓPEZ-ORTIZ, A., AND MUNRO, J. 2002. Frequency estimation of internet packet

streams with limited space. In Proceedings of the 10th ESA Annual European Symposium on
Algorithms. 348–360.

ESTAN, C. AND VARGHESE, G. 2003. New directions in traffic measurement and accounting: Focusing

on the elephants, ignoring the mice. ACM Trans. Comput. Syst. 21, 3, 270–313.

FANG, M., SHIVAKUMAR, S., GARCIA-MOLINA, H., MOTWANI, R., AND ULLMAN, J. 1998. Computing ice-

berg queries efficiently. In Proceedings of the 24th VLDB International Conference on Very Large
Data Bases. 299–310.

FEIGENBAUM, J., KANNAN, S., STRAUSS, M., AND VISWANATHAN, M. 1999. An approximate L1-difference

algorithm for massive data streams. In Proceedings of 40th FOCS Annual Symposium on Foun-
dations of Computer Science. 501–511.

FISCHER, M. AND SALZBERG, S. 1982. Finding a majority among N votes: Solution to problem 81-5.

J. Algorith. 3, 376–379.

FLAJOLET, P. AND MARTIN, G. 1985. Probabilistic counting algorithms. J. Comput. Syst. Sci. 31,

182–209.

GEHRKE, J., KORN, F., AND SRIVASTAVA, D. 2001. On computing correlated aggregates over continual

data streams. In Proceedings of the 20th ACM SIGMOD International Conference on Management
of Data. 13–24.

GIBBONS, P. AND MATIAS, Y. 1998. New sampling-based susmary statistics for improving approx-

imate query answers. In Proceedings of the 17th ACM SIGMOD International Conference on
Management of Data. 331–342.

GILBERT, A., KOTIDIS, Y., MUTHUKRISHNAN, S., AND STRAUSS, M. 2001. Surfing wavelets on streams:

One-pass summaries for approximate aggregate queries. In Proceedings of the 27th VLDB Inter-
national Conference on Very Large Data Bases. 79–88.

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

Computing Frequent and Top-k Elements in Data Streams • 1133

GOLAB, L., DEHAAN, D., DEMAINE, E., LÓPEZ-ORTIZ, A., AND MUNRO, J. 2003. Identifying frequent

items in sliding windows over online packet streams. In Proceedings of the 1st ACM SIGCOMM
Internet Measurement Conference. 173–178.

GOLAB, L. AND OZSU, M. 2003. Issues in data stream management. ACM SIGMOD Rec. 32, 2,

5–14.

GREENWALD, M. AND KHANNA, S. 2001. Space-efficient online computation of quantile summaries.

In Proceedings of the 19th ACM SIGMOD International Conference on Management of Data.

58–66.

GUHA, S., INDYK, P., MUTHUKRISHNAN, M., AND STRAUSS, M. 2002. Histogramming data streams

with fast per-item processing. In Proceedings of the 29th ICALP International Colloquium on
Automata, Languages and Programming. 681–692.

GUHA, S., KOUDAS, N., AND SHIM, K. 2001. Data-streams and histograms. In Proceedings of the
33rd ACM STOC Symposium on the Theory of Computing. 471–475.

GUNDUZ, S. AND OZSU, M. 2003. A Web page prediction model based on click-stream tree repre-

sentation of user behavior. In Proceedings of the 9th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. 535–540.

GUPTA, P. AND MCKEOWN, N. 1999. Packet classification on multiple fields. In Proceedings of the
ACM SIGCOMM International Conference on Applications, Technologies, Architectures, and Pro-
tocols for Computer Communication. 147–160.

HAAS, P., NAUGHTON, J., SEHADRI, S., AND STOKES, L. 1995. Sampling-based estimation of the number

of distinct values of an attribute. In Proceedings of the 21st VLDB International Conference on
Very Large Data Bases. 311–322.

HOARE, C. 1961. Algorithm 65: Find. Commun. ACM 4, 7, 321–322.

JIN, C., QIAN, W., SHA, C., YU, J., AND ZHOU, A. 2003. Dynamically maintaining frequent items over

a data stream. In Proceedings of the 12th ACM CIKM International Conference on Information
and Knowledge Management. 287–294.

KARP, R., SHENKER, S., AND PAPADIMITRIOU, C. 2003. A simple algorithm for finding frequent ele-

ments in streams and bags. ACM Trans. Database Syst. 28, 1, 51–55.

KIRSCHENHOFER, P., PRODINGER, H., AND MARTINEZ, C. 1997. Analysis of Hoare’s FIND algorithm

with median-of-three partition. Random Struct. Algorith. 10, 1–2, 143–156.

LIN, X., LU, H., XU, J., AND YU, J. 2004. Continuously maintaining quantile summaries of the

most recent N elements over a data stream. In Proceedings of the 20th IEEE ICDE International
Conference on Data Engineering. 362–374.

MANKU, G. AND MOTWANI, R. 2002. Approximate frequency counts over data streams. In Proceed-
ings of the 28th VLDB International Conference on Very Large Data Bases. 346–357.

MANKU, G., RAJAGOPALAN, S., AND LINDSAY, B. 1999. random sampling techniques for space efficient

online computation of order statistics of large datasets. In Proceedings of the 18th ACM SIGMOD
International Conference on Management of Data. 251–262.

MATIAS, Y., VITTER, J., AND WANG, M. 2000. Dynamic maintenance of wavelet-based histograms.

In Proceedings of the 26th VLDB International Conference on Very Large Data Bases. 101–110.

METWALLY, A., AGRAWAL, D., AND EL ABBADI, A. 2005a. Duplicate detection in click streams. In

Proceedings of the 14th WWW International World Wide Web Conference. 12–21. An extended

version appears as a University of California, Santa Barbara, Department of Computer Science

Technical Report 2004-23.

METWALLY, A., AGRAWAL, D., AND EL ABBADI, A. 2005b. Efficient computation of frequent and top-k

elements in data streams. In Proceedings of the 10th ICDT International Conference on Database
Theory. 398–412. An extended version appears as a University of California, Santa Barbara,

Department of Computer Science, Technical Report 2005-23.

MISRA, J. AND GRIES, D. 1982. Finding repeated elements. Sci. Comput. Programm. 2, 143–152.

WHANG, K., VANDER-ZANDEN, B., AND TAYLOR, H. 1990. A linear-time probabilistic counting algo-

rithm for database applications. ACM Trans. Database Syst. 15, 208–229.

ZHU, Y. AND SHASHA, D. 2002. StatStream: Statistical monitoring of thousands of data streams in

real time. In Proceedings of the 28th VLDB International Conference on Very Large Data Bases.

358–369.

ZIPF, G. 1949. Human Behavior and The Principle of Least Effort. Addison-Wesley, Reading, MA.

Received January 2005; revised January 2006, May 2006; accepted June 2006

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

