Algorithms for data streams

Irene Finocchi
finocchi@di.uniroma1.it
http://www.dsi.uniroma1.it/~finocchi/

May 16, 2012

Outline

(1) Introduction

- Stream sources
- Data stream model
(2) Data stream challenges
- Puzzle 1: missing number
- Puzzle 2: fishing
- Puzzle 3: pointer \& chaser
- Lessons
(3) Sampling
- Reservoir sampling
- Heavy hitters
- Sticky sampling
(4) Sketches
- Distinct items
- Probabilistic counting
- Frequency moments
- AMS sketches
(5) Mining graphs
- Triangle counting
- Semi-streaming model
- Maximum matching
(6) Lower bounds
- Communication complexity
(7) Summing up
- More streaming algorithms
- What's next?

Warnings

Goals:

- give a flavor of the theoretical results and techniques of data stream algorithmics
- only a representative sample of each topic: many other problems, algorithms, and techniques not covered in these lectures (non-exhaustive overview at the end of the talk)

Warnings

Goals:

- give a flavor of the theoretical results and techniques of data stream algorithmics
- only a representative sample of each topic: many other problems, algorithms, and techniques not covered in these lectures (non-exhaustive overview at the end of the talk)

Math contents: some probability ahead (e.g., Chernoff bounds). Will introduce basic tools along the way.

Warnings

Goals:

- give a flavor of the theoretical results and techniques of data stream algorithmics
- only a representative sample of each topic: many other problems, algorithms, and techniques not covered in these lectures (non-exhaustive overview at the end of the talk)

Math contents: some probability ahead (e.g., Chernoff bounds). Will introduce basic tools along the way.

Request

- If you get bored, ask questions

Warnings

Goals:

- give a flavor of the theoretical results and techniques of data stream algorithmics
- only a representative sample of each topic: many other problems, algorithms, and techniques not covered in these lectures (non-exhaustive overview at the end of the talk)

Math contents: some probability ahead (e.g., Chernoff bounds). Will introduce basic tools along the way.

Request

- If you get bored, ask questions
- If you get lost, ask questions

Warnings

Goals:

- give a flavor of the theoretical results and techniques of data stream algorithmics
- only a representative sample of each topic: many other problems, algorithms, and techniques not covered in these lectures (non-exhaustive overview at the end of the talk)

Math contents: some probability ahead (e.g., Chernoff bounds). Will introduce basic tools along the way.

Request

- If you get bored, ask questions
- If you get lost, ask questions
- If you'd like to ask questions, ask questions

Massive data

Data is growing faster than our ability to store and index it:

- networking: phone call networks, Internet, social networks
- scientific data: astronomical data, genome sequences, GIS geo-spatial data
- economic transactions: credit cards, online auctions
- ...

Network management

Monitoring flow of IP packets through the routers (Internet traffic):

- how many IP addresses used a given link in the last month?
- which are the top 100 IP addresses in terms of traffic?
- which destinations use most bandwidth?
- what's the average duration of an IP session?
- which hosts have similar usage patterns (clusters)?
- does traffic distribution change in different periods of time?

Network management

Monitoring flow of IP packets through the routers (Internet traffic):

- how many IP addresses used a given link in the last month?
- which are the top 100 IP addresses in terms of traffic?
- which destinations use most bandwidth?
- what's the average duration of an IP session?
- which hosts have similar usage patterns (clusters)?
- does traffic distribution change in different periods of time?

Up to 1 Billion packets per hour per router Many hundreds of routers per ISP

Many terabytes of data per hour!

Sensor data

Sensors with GPS unit deployed in the ocean:

- Each sensor reports surface height (4-byte real number) every tenth of second
- Base station receives 3.5 MB per day per sensor

Sensor data

Sensors with GPS unit deployed in the ocean:

- Each sensor reports surface height (4-byte real number) every tenth of second
- Base station receives 3.5 MB per day per sensor

What about a million sensors?

3.5 TB of data per day, coming at a high rate

A million sensors isn't very many: roughly one sensor per 150 square miles of ocean...

More streams...

Image data

- satellites send down to earth many TBs of images per day
- surveillance cameras produce roughly one image per second: London has about six millions such cameras

More streams...

Image data

- satellites send down to earth many TBs of images per day
- surveillance cameras produce roughly one image per second: London has about six millions such cameras

Web traffic
Google receives several hundreds million search queries per day

More streams...

Image data

- satellites send down to earth many TBs of images per day
- surveillance cameras produce roughly one image per second: London has about six millions such cameras

Economic trend analysis

- in online auction systems, users continuously submit bids for items and items for auction

Web traffic
Google receives several hundreds million search queries per day

Issues in data stream processing

Some features common to all these applications:

- huge volumes of data (terabytes, even petabytes)
- records arrive at a rapid rate
- need to monitor data continuously to support exploratory analyses and to detect correlations, patterns, rare events, fraud, intrusion, unusual activities

Issues in data stream processing

Some features common to all these applications:

- huge volumes of data (terabytes, even petabytes)
- records arrive at a rapid rate
- need to monitor data continuously to support exploratory analyses and to detect correlations, patterns, rare events, fraud, intrusion, unusual activities

Many problems about streaming data would be easy to solve if we had enough memory, but require new techniques for realistic data rates and sizes

What can be computed without even storing the input?

Basic data stream model

> Data stream $=$ sequence $\sigma=\left\langle a_{1}, a_{2}, \ldots a_{m}\right\rangle$ of tokens drawn from universe $[n]=\{1,2, \ldots n\}$

Basic data stream model

> Data stream $=$ sequence $\sigma=\left\langle a_{1}, a_{2}, \ldots a_{m}\right\rangle$ of tokens drawn from universe $[n]=\{1,2, \ldots n\}$

Input parameters: m and n
(1) Stream σ is massively long. Stream length m is:

- typically unknown
- possibly infinite

Basic data stream model

> Data stream $=$ sequence $\sigma=\left\langle a_{1}, a_{2}, \ldots a_{m}\right\rangle$ of tokens drawn from universe $[n]=\{1,2, \ldots n\}$

Input parameters: m and n
(1) Stream σ is massively long. Stream length m is:

- typically unknown
- possibly infinite
(2) Universe size n is also typically very large (e.g., IP addresses, URLs, item prices)

Performance metrics

Minimize space, passes, and processing time upon token arrivals

Performance metrics

Minimize space, passes, and processing time upon token arrivals
(1) Use a sublinear amount of space s :

$$
s=o(\min \{n, m\})
$$

where $s=$ bits of random-access working memory

Performance metrics

Minimize space, passes, and processing time upon token arrivals
(1) Use a sublinear amount of space s :

$$
s=o(\min \{n, m\})
$$

where $s=$ bits of random-access working memory
(2) Make p passes over the data, for some small integer p (no random access to tokens)

Performance metrics

Minimize space, passes, and processing time upon token arrivals
(1) Use a sublinear amount of space s :

$$
s=o(\min \{n, m\})
$$

where $s=$ bits of random-access working memory
(2) Make p passes over the data, for some small integer p (no random access to tokens)
(3) Use small per-item processing time t

Performance metrics

Minimize space, passes, and processing time upon token arrivals
(1) Use a sublinear amount of space s :

$$
s=o(\min \{n, m\})
$$

where $s=$ bits of random-access working memory
(2) Make p passes over the data, for some small integer p (no random access to tokens)
(3) Use small per-item processing time t

"You're looking for the Holy Grail?
Have you tried Ebay?"

Performance metrics

Minimize space, passes, and processing time upon token arrivals
(1) Use a sublinear amount of space s :

$$
s=o(\min \{n, m\})
$$

where $s=$ bits of random-access working memory
(2) Make p passes over the data, for some small integer p (no random access to tokens)
(3) Use small per-item processing time t

$$
\left\{\begin{array}{l}
s=O(\log m+\log n) \\
\text { Happy if } s=O(\text { polylog }(\min \{n, m\}) \\
p=1 \\
t=O(1)
\end{array}\right.
$$

Token frequencies

> Data stream $=$ sequence $\sigma=\left\langle a_{1}, a_{2}, \ldots a_{m}\right\rangle$ of tokens drawn from universe $[n]=\{1,2, \ldots n\}$

Token frequencies

$$
\begin{gathered}
\text { Data stream }=\text { sequence } \sigma=\left\langle a_{1}, a_{2}, \ldots a_{m}\right\rangle \\
\text { of tokens drawn from universe }[n]=\{1,2, \ldots n\}
\end{gathered}
$$

σ represents a multiset of items and implicitly defines a frequency vector

$$
f=\left\langle f_{1}, f_{2}, \ldots f_{n}\right\rangle
$$

where $f_{i}=$ number of occurrences of item $i \in[n]$ in σ

> Example
> If $\sigma=\langle 2,1,2,1,5,2,3,2\rangle$ and $n=5$, then $f=\langle 2,4,1,0,1\rangle$

Token frequencies

$$
\begin{gathered}
\text { Data stream }=\text { sequence } \sigma=\left\langle a_{1}, a_{2}, \ldots a_{m}\right\rangle \\
\text { of tokens drawn from universe }[n]=\{1,2, \ldots n\}
\end{gathered}
$$

σ represents a multiset of items and implicitly defines a frequency vector

$$
f=\left\langle f_{1}, f_{2}, \ldots f_{n}\right\rangle
$$

where $f_{i}=$ number of occurrences of item $i \in[n]$ in σ

Example

If $\sigma=\langle 2,1,2,1,5,2,3,2\rangle$ and $n=5$, then $f=\langle 2,4,1,0,1\rangle$

In many streaming problems, wish to compute some statistical properties of the multiset: e.g., majority token (if any), most frequent items, or number of distinct items

Variations of the basic setup

Data stream $=$

sequence of tuples $\sigma=\left\langle\left(a_{1}, c_{1}\right),\left(a_{2}, c_{2}\right), \ldots\right\rangle$ where $\left(a_{i}, c_{i}\right) \in[n] \times\{-F, \ldots, F\}$

Upon arrival of $\left.\left(a_{i}, c_{i}\right)\right)$, update frequency $f_{a_{i}}=f_{a_{i}}+c_{i}$
New role for m : $m=\sum_{j=1}^{n} f_{j}$

Variations of the basic setup

Data stream $=$

sequence of tuples $\sigma=\left\langle\left(a_{1}, c_{1}\right),\left(a_{2}, c_{2}\right), \ldots\right\rangle$ where $\left(a_{i}, c_{i}\right) \in[n] \times\{-F, \ldots, F\}$

Upon arrival of $\left.\left(a_{i}, c_{i}\right)\right)$, update frequency $f_{a_{i}}=f_{a_{i}}+c_{i}$
New role for m : $m=\sum_{j=1}^{n} f_{j}$
Basic data stream model: $c_{i}=1$ ($m=$ stream length $)$

Variations of the basic setup

$$
\begin{gathered}
\text { Data stream }= \\
\text { sequence of tuples } \sigma=\left\langle\left(a_{1}, c_{1}\right),\left(a_{2}, c_{2}\right), \ldots\right\rangle \\
\text { where }\left(a_{i}, c_{i}\right) \in[n] \times\{-F, \ldots, F\}
\end{gathered}
$$

Upon arrival of $\left.\left(a_{i}, c_{i}\right)\right)$, update frequency $f_{a_{i}}=f_{a_{i}}+c_{i}$ New role for m : $m=\sum_{j=1}^{n} f_{j}$

Basic data stream model: $c_{i}=1(m=$ stream length $)$
Cash register model: $c_{i}>0$ (items can only arrive, their frequencies can be incremented by variable amounts)

Variations of the basic setup

$$
\begin{gathered}
\text { Data stream }= \\
\text { sequence of tuples } \sigma=\left\langle\left(a_{1}, c_{1}\right),\left(a_{2}, c_{2}\right), \ldots\right\rangle \\
\text { where }\left(a_{i}, c_{i}\right) \in[n] \times\{-F, \ldots, F\}
\end{gathered}
$$

Upon arrival of $\left(a_{i}, c_{i}\right)$), update frequency $f_{a_{i}}=f_{a_{i}}+c_{i}$
New role for m : $m=\sum_{j=1}^{n} f_{j}$
Basic data stream model: $c_{i}=1$ ($m=$ stream length)
Cash register model: $c_{i}>0$ (items can only arrive, their frequencies can be incremented by variable amounts)

Turnstile model: generic c_{i} (items can arrive and depart from the multiset)

Historical remarks

Origin in the 70s (seminal paper by Munro \& Paterson, STOC'78)

Historical remarks

Origin in the 70s (seminal paper by Munro \& Paterson, STOC'78)

Gained popularity in the last fifteen years:

- theoretical interest:
- easy-to-state, but hard-to-solve problems
- links to other theory areas and to novel computing paradigms (MapReduce)

Historical remarks

Origin in the 70s (seminal paper by Munro \& Paterson, STOC'78)

Gained popularity in the last fifteen years:

- theoretical interest:
- easy-to-state, but hard-to-solve problems
- links to other theory areas and to novel computing paradigms (MapReduce)
- practical appeal: fast and effective solutions, wide applicability

Historical remarks

Origin in the 70s (seminal paper by Munro \& Paterson, STOC'78)

Gained popularity in the last fifteen years:

- theoretical interest:
- easy-to-state, but hard-to-solve problems
- links to other theory areas and to novel computing paradigms (MapReduce)
- practical appeal: fast and effective solutions, wide applicability

Alon, Matias \& Szegedy: Gödel prize (2005) for their paper on frequency moments approximation (STOC'96, JCSS'99), foundational work for streaming and sketching algorithms

Three puzzles
 Data stream challenges

The missing number puzzle

$$
\pi=\left\langle\pi_{1}, \pi_{2}, \ldots \pi_{n-1}\right\rangle
$$

is a permutation of $[1, n]$ with one number missing

The missing number puzzle

$$
\pi=\left\langle\pi_{1}, \pi_{2}, \ldots \pi_{n-1}\right\rangle
$$

is a permutation of $[1, n]$ with one number missing

What's the missing number?

The missing number puzzle

$$
\pi=\left\langle\pi_{1}, \pi_{2}, \ldots \pi_{n-1}\right\rangle
$$

is a permutation of $[1, n]$ with one number missing

What's the missing number?
Constraint: Carole has limited memory: she can only use $O(\log n)$ bits

The missing number puzzle

$$
\pi=\left\langle\pi_{1}, \pi_{2}, \ldots \pi_{n-1}\right\rangle
$$

is a permutation of $[1, n]$ with one number missing

What's the missing number?
Constraint: Carole has limited memory: she can only use $O(\log n)$ bits

$$
\frac{n(n-1)}{2}-\sum_{i=1}^{n-1} \pi_{i}
$$

Two missing numbers

Now π has two missing numbers, x and y : find them, but use only $O(\log n)$ bits!

Two missing numbers

Now π has two missing numbers, x and y : find them, but use only $O(\log n)$ bits!

$$
\text { Track }\left\{\begin{array}{l}
S=\frac{n(n+1)}{2}-\sum_{i=1}^{n-2} \pi_{i} \\
P=n!-\Pi_{i=1}^{n-2} \pi_{i}
\end{array}\right.
$$

Solve equations $x+y=S$ and $x y=P$

Two missing numbers

Now π has two missing numbers, x and y : find them, but use only $O(\log n)$ bits!

$$
\text { Track }\left\{\begin{array}{l}
S=\frac{n(n+1)}{2}-\sum_{i=1}^{n-2} \pi_{i} \\
P=n!-\Pi_{i=1}^{n-2} \pi_{i}
\end{array}\right.
$$

Solve equations $x+y=S$ and $x y=P$

How many bits? $\Omega(\log n!)=\Omega(n \log n)$

Two missing numbers

Now π has two missing numbers, x and y : find them, but use only $O(\log n)$ bits!

Two missing numbers

Now π has two missing numbers, x and y : find them, but use only $O(\log n)$ bits!

$$
\text { Track }\left\{\begin{array}{l}
S_{1}=\frac{n(n-1)}{2}-\sum_{i=1}^{n-2} \pi_{i} \\
S_{2}=\frac{n(n+1)(2 n+1)}{6}-\sum_{i=1}^{n-2} \pi_{i}^{2}
\end{array}\right.
$$

Solve equations $x+y=S_{1}$ and $x^{2}+y^{2}=S_{2}$

Two missing numbers

Now π has two missing numbers, x and y : find them, but use only $O(\log n)$ bits!

$$
\text { Track }\left\{\begin{array}{l}
S_{1}=\frac{n(n-1)}{2}-\sum_{i=1}^{n-2} \pi_{i} \\
S_{2}=\frac{n(n+1)(2 n+1)}{6}-\sum_{i=1}^{n-2} \pi_{i}^{2}
\end{array}\right.
$$

Solve equations $x+y=S_{1}$ and $x^{2}+y^{2}=S_{2}$

How many bits? $O\left(\log n^{3}\right)=O(\log n)$

Lesson 1

Some problems can be deterministically solved in:

- logarithmic space
- one pass

Lesson 1

Some problems can be deterministically solved in:

- logarithmic space
- one pass

Most of the times, we're not so lucky

SATLIRDAY THE 14TH...

Fishing

$$
U=\{1, \ldots u\} \text { fish species in the universe }
$$

Fishing

$$
\begin{aligned}
& U=\{1, \ldots u\} \text { fish species in the universe } \\
& a_{t} \in U \text { fish species caught at time } t
\end{aligned}
$$

Fishing

$$
\begin{aligned}
& U=\{1, \ldots u\} \text { fish species in the universe } \\
& a_{t} \in U \text { fish species caught at time } t \\
& f_{t}[j]=\left|\left\{a_{i} \mid a_{i}=j, i \leq t\right\}\right| \text { frequency of } \\
& \quad \text { species } j \text { up to time } t
\end{aligned}
$$

Fishing

$U=\{1, \ldots u\}$ fish species in the universe
$a_{t} \in U$ fish species caught at time t
$f_{t}[j]=\left|\left\{a_{i} \mid a_{i}=j, i \leq t\right\}\right|$ frequency of species j up to time t
j is rare iff $f_{t}[j]=1$

Fishing

$U=\{1, \ldots u\}$ fish species in the universe
$a_{t} \in U$ fish species caught at time t
$f_{t}[j]=\left|\left\{a_{i} \mid a_{i}=j, i \leq t\right\}\right|$ frequency of species j up to time t
j is rare iff $f_{t}[j]=1$

Rarity of catch at time $t: \rho_{t}=\frac{\left|\left\{j \mid f_{t}[j]=1\right\}\right|}{u}=\frac{R_{t}}{u}$

Fishing

$U=\{1, \ldots u\}$ fish species in the universe
$a_{t} \in U$ fish species caught at time t
$f_{t}[j]=\left|\left\{a_{i} \mid a_{i}=j, i \leq t\right\}\right|$ frequency of species j up to time t
j is rare iff $f_{t}[j]=1$

Rarity of catch at time $t: \rho_{t}=\frac{\left|\left\{j \mid f_{t}[j]=1\right\}\right|}{u}=\frac{R_{t}}{u}$

- George is curious and wants to compute rarity

Fishing

$U=\{1, \ldots u\}$ fish species in the universe
$a_{t} \in U$ fish species caught at time t
$f_{t}[j]=\left|\left\{a_{i} \mid a_{i}=j, i \leq t\right\}\right|$ frequency of species j up to time t
j is rare iff $f_{t}[j]=1$

Rarity of catch at time $t: \rho_{t}=\frac{\left|\left\{j \mid f_{t}[j]=1\right\}\right|}{u}=\frac{R_{t}}{u}$

- George is curious and wants to compute rarity
- $2 u$-bit vector would suffice
- ... but George's suitcase has $o(u)$ size

Deterministic fish rarity

George cannot compute ρ_{t} precisely with a deterministic algorithm using only o(u) bits

By contradiction

Deterministic fish rarity

George cannot compute ρ_{t} precisely with a deterministic algorithm using only o(u) bits

By contradiction

Let $S \subseteq U$ be a set of species: no duplicates, $|S|=\Theta(u)$
Need $\Omega(|S|)=\Omega(u)$ bits to represent S
If claim is false, could break information theoretic lower bound

Deterministic fish rarity

George cannot compute ρ_{t} precisely with a deterministic algorithm using only o(u) bits

By contradiction

Let $S \subseteq U$ be a set of species: no duplicates, $|S|=\Theta(u)$
Need $\Omega(|S|)=\Omega(u)$ bits to represent S
If claim is false, could break information theoretic lower bound
To retrieve S, for each $i \in U$, stream $\langle S, i\rangle$ to George and compare ρ_{t} and ρ_{t+1} :

Deterministic fish rarity

George cannot compute ρ_{t} precisely with a deterministic algorithm using only o(u) bits

By contradiction

Let $S \subseteq U$ be a set of species: no duplicates, $|S|=\Theta(u)$
Need $\Omega(|S|)=\Omega(u)$ bits to represent S
If claim is false, could break information theoretic lower bound
To retrieve S, for each $i \in U$, stream $\langle S, i\rangle$ to George and compare ρ_{t} and ρ_{t+1} :

- if $i \notin S$, then $R_{t+1}=R_{t}+1$ and $\rho_{t+1}>\rho_{t}$

Deterministic fish rarity

George cannot compute ρ_{t} precisely with a deterministic algorithm using only o(u) bits

By contradiction

Let $S \subseteq U$ be a set of species: no duplicates, $|S|=\Theta(u)$
Need $\Omega(|S|)=\Omega(u)$ bits to represent S
If claim is false, could break information theoretic lower bound
To retrieve S, for each $i \in U$, stream $\langle S, i\rangle$ to George and compare ρ_{t} and ρ_{t+1} :

- if $i \notin S$, then $R_{t+1}=R_{t}+1$ and $\rho_{t+1}>\rho_{t}$
- if $i \in S$, then $R_{t+1}=R_{t}-1$ and $\rho_{t+1}<\rho_{t}$

Deterministic fish rarity

George cannot compute ρ_{t} precisely with a deterministic algorithm using only o(u) bits

By contradiction

Let $S \subseteq U$ be a set of species: no duplicates, $|S|=\Theta(u)$
Need $\Omega(|S|)=\Omega(u)$ bits to represent S
If claim is false, could break information theoretic lower bound
To retrieve S, for each $i \in U$, stream $\langle S, i\rangle$ to George and compare ρ_{t} and ρ_{t+1} :

- if $i \notin S$, then $R_{t+1}=R_{t}+1$ and $\rho_{t+1}>\rho_{t}$
- if $i \in S$, then $R_{t+1}=R_{t}-1$ and $\rho_{t+1}<\rho_{t}$

Hence ρ decreases $\Leftrightarrow i \in S$

Randomized fish rarity (1/2)

George can approximate ρ_{t} using $2 k=o(u)$ bits
Sampling:

- pick k random fish species
- maintain rarity $c_{1}[t], \ldots c_{k}[t]$ of each sampled species (2 bits)
- Return $\widetilde{\rho_{t}}=\frac{\left|\left\{i \in[1, k] \mid c_{i}[t]=1\right\}\right|}{k}=\frac{\widetilde{R_{t}}}{k}$

Randomized fish rarity (1/2)

George can approximate ρ_{t} using $2 k=o(u)$ bits
Sampling:

- pick k random fish species
- maintain rarity $c_{1}[t], \ldots c_{k}[t]$ of each sampled species (2 bits)
- Return $\widetilde{\rho_{t}}=\frac{\left|\left\{i \in[1, k] \mid c_{i}[t]=1\right\}\right|}{k}=\frac{\widetilde{R_{t}}}{k}$

$$
\text { Claim: } E\left[\widetilde{\rho_{t}}\right]=\rho_{t}
$$

Randomized fish rarity (1/2)

George can approximate ρ_{t} using $2 k=o(u)$ bits
Sampling:

- pick k random fish species
- maintain rarity $c_{1}[t], \ldots c_{k}[t]$ of each sampled species (2 bits)
- Return $\widetilde{\rho_{t}}=\frac{\left|\left\{i \in[1, k] \mid c_{i}[t]=1\right\}\right|}{k}=\frac{\widetilde{R_{t}}}{k}$

Claim: $E\left[\widetilde{\rho_{t}}\right]=\rho_{t}$

- If ρ_{t} large enough, $\widetilde{\rho}_{t}$ is a good estimate for ρ_{t} with arbitrarily small precision and good probability
- Requires more advanced probabilistic tools: examples later

Randomized fish rarity (2/2)

$$
\widetilde{\rho_{t}}=\frac{\left|\left\{i \in[1, k] \mid c_{i}[t]=1\right\}\right|}{k}=\frac{\widetilde{R_{t}}}{k}
$$

$$
E\left[\widetilde{\rho}_{t}\right]=\rho_{t}
$$

Randomized fish rarity (2/2)

$$
\widetilde{\rho}_{t}=\frac{\left|\left\{i \in[1, k] \mid c_{i}[t]=1\right\}\right|}{k}=\frac{\widetilde{R_{t}}}{k}
$$

$$
E\left[\tilde{\rho}_{t}\right]=\rho_{t}
$$

Y_{i} indicator variable: $\begin{cases}Y_{i}=1 & \text { if } c_{i}[t]=1 \\ Y_{i}=0 & \text { otherwise }\end{cases}$

Randomized fish rarity (2/2)

$$
\widetilde{\rho_{t}}=\frac{\left|\left\{i \in[1, k] \mid c_{i}[t]=1\right\}\right|}{k}=\frac{\widetilde{R_{t}}}{k}
$$

$$
E\left[\tilde{\rho}_{t}\right]=\rho_{t}
$$

$$
Y_{i} \text { indicator variable: } \begin{cases}Y_{i}=1 & \text { if } c_{i}[t]=1 \\ Y_{i}=0 & \text { otherwise }\end{cases}
$$

$\operatorname{Pr}\left\{Y_{i}=1\right\}=\operatorname{Pr}\{$ the i-th sampled species is rare $\}=\frac{R_{t}}{u}=\rho_{t}$

Randomized fish rarity (2/2)

$$
\widetilde{\rho_{t}}=\frac{\left|\left\{i \in[1, k] \mid c_{i}[t]=1\right\}\right|}{k}=\frac{\widetilde{R_{t}}}{k}
$$

$$
E\left[\tilde{\rho}_{t}\right]=\rho_{t}
$$

Y_{i} indicator variable: $\begin{cases}Y_{i}=1 & \text { if } c_{i}[t]=1 \\ Y_{i}=0 & \text { otherwise }\end{cases}$

$$
\begin{aligned}
\operatorname{Pr}\left\{Y_{i}=1\right\} & =\operatorname{Pr}\{\text { the } i-\text { th sampled species is rare }\}=\frac{R_{t}}{u}=\rho_{t} \\
& \Rightarrow E\left[Y_{i}\right]=\rho_{t}
\end{aligned}
$$

Randomized fish rarity (2/2)

$$
\widetilde{\rho_{t}}=\frac{\left|\left\{i \in[1, k] \mid c_{i}[t]=1\right\}\right|}{k}=\frac{\widetilde{R_{t}}}{k}
$$

$$
E\left[\tilde{\rho}_{t}\right]=\rho_{t}
$$

Y_{i} indicator variable: $\begin{cases}Y_{i}=1 & \text { if } c_{i}[t]=1 \\ Y_{i}=0 & \text { otherwise }\end{cases}$

$$
\begin{aligned}
\operatorname{Pr}\left\{Y_{i}=1\right\} & =\operatorname{Pr}\{\text { the } i \text {-th sampled species is rare }\}=\frac{R_{t}}{u}=\rho_{t} \\
& \Rightarrow E\left[Y_{i}\right]=\rho_{t} \\
& \Rightarrow E\left[\widetilde{R}_{t}\right]=\sum_{i=1}^{k} E\left[Y_{i}\right]=k \rho_{t}
\end{aligned}
$$

Randomized fish rarity (2/2)

$$
\widetilde{\rho_{t}}=\frac{\left|\left\{i \in[1, k] \mid c_{i}[t]=1\right\}\right|}{k}=\frac{\widetilde{R_{t}}}{k}
$$

$$
E\left[\tilde{\rho}_{t}\right]=\rho_{t}
$$

Y_{i} indicator variable: $\begin{cases}Y_{i}=1 & \text { if } c_{i}[t]=1 \\ Y_{i}=0 & \text { otherwise }\end{cases}$

$$
\begin{aligned}
\operatorname{Pr}\left\{Y_{i}=1\right\} & =\operatorname{Pr}\{\text { the } i \text {-th sampled species is rare }\}=\frac{R_{t}}{u}=\rho_{t} \\
& \Rightarrow E\left[Y_{i}\right]=\rho_{t} \\
& \Rightarrow E\left[\widetilde{\widetilde{R}_{t}}\right]=\sum_{i=1}^{k} E\left[Y_{i}\right]=k \rho_{t} \\
& \Rightarrow E\left[\widetilde{\rho_{t}}\right]=\frac{E\left[\widetilde{R_{t}}\right]}{k}=\rho_{t}
\end{aligned}
$$

Lesson 2

It is often impossible to solve problems precisely and deterministically in small (sublinear) space

Randomization and approximation greatly help:

- find an answer correct within some factor (guarantee that $\widetilde{\rho}$ is within 10% of ρ)
- allow a small probability of failure (answer is correct, except with probability 1 in 10,000)

Pointer and chaser

Paul has $n+1$ pointers

For each pointer i, he points to a position $P[i] \in[1, n]$

Pointer and chaser

Paul has $n+1$ pointers

For each pointer i, he points to a position $P[i] \in[1, n]$

Carole has to guess any duplicate pointer
Constraints:

- $O(\log n)$ bits

- $O(n)$ queries
- cannot move items

Repeated scans

(1) Trivial solution

- for each i , count how many j are such that $\mathrm{P}[\mathrm{j}]=\mathrm{i}$
- $O(\log n)$ bits, but $O\left(n^{2}\right)$ queries

Repeated scans

(1) Trivial solution

- for each i , count how many j are such that $\mathrm{P}[\mathrm{j}]=\mathrm{i}$
- $O(\log n)$ bits, but $O\left(n^{2}\right)$ queries
(2) Better solution
- if \# of items below $n / 2>\#$ of items above $n / 2$ then search for duplicates $<n / 2$ else search for duplicates $\geq n / 2$
- $O(\log n)$ bits and passes, $O(n \log n)$ queries
(3) With $O(\log n)$ bits, $\Omega(\log n / \log \log n)$ passes are needed

Random access helps

- Chase pointers, starting from position $n+1$
- Problem equivalent to finding a loop in a linked list
- Can be solved in $O(n)$ time with just 2 pointers!

Random access helps

- Chase pointers, starting from position $n+1$
- Problem equivalent to finding a loop in a linked list
- Can be solved in $O(n)$ time with just 2 pointers!

Random access helps

- Chase pointers, starting from position $n+1$
- Problem equivalent to finding a loop in a linked list
- Can be solved in $O(n)$ time with just 2 pointers!

Random access helps

- Chase pointers, starting from position $n+1$
- Problem equivalent to finding a loop in a linked list
- Can be solved in $O(n)$ time with just 2 pointers!

Random access helps

- Chase pointers, starting from position $n+1$
- Problem equivalent to finding a loop in a linked list
- Can be solved in $O(n)$ time with just 2 pointers!

Random access helps

- Chase pointers, starting from position $n+1$
- Problem equivalent to finding a loop in a linked list
- Can be solved in $O(n)$ time with just 2 pointers!

Random access helps

- Chase pointers, starting from
 position $n+1$
- Problem equivalent to finding a loop in a linked list
- Can be solved in $O(n)$ time with just 2 pointers!

$$
\left\{\begin{array}{l}
a+b=t \\
a+k(b+c)+b=2 t
\end{array}\right.
$$

$$
t \text { and } k \text { known }
$$

Random access helps

- Chase pointers, starting from
 position $n+1$
- Problem equivalent to finding a loop in a linked list
- Can be solved in $O(n)$ time with just 2 pointers!

$$
\left\{\begin{array} { l }
{ a + b = t } \\
{ a + k (b + c) + b = 2 t }
\end{array} \Rightarrow \left\{\begin{array}{l}
a+b=t \\
b+c=t / k
\end{array}\right.\right.
$$

t and k known

Random access helps

- Chase pointers, starting from
 position $n+1$
- Problem equivalent to finding a loop in a linked list
- Can be solved in $O(n)$ time with just 2 pointers!

$$
\left\{\begin{array} { l }
{ a + b = t } \\
{ a + k (b + c) + b = 2 t }
\end{array} \Rightarrow \left\{\begin{array}{l}
a+b=t \\
b+c=t / k
\end{array} \Rightarrow a=c+\frac{k-1}{k} t\right.\right.
$$

t and k known

Random access helps

- Chase pointers, starting from position $n+1$
- Problem equivalent to finding a loop in a linked list
- Can be solved in $O(n)$ time with just 2 pointers!

$\left\{\begin{array}{l}a+b=t \\ a+k(b+c)+b=2 t\end{array} \Rightarrow\left\{\begin{array}{l}a+b=t \\ b+c=t / k\end{array} \Rightarrow a=c+\frac{k-1}{k} t\right.\right.$
t and k known

Lesson 3

Tokens come as a stream: no random access

Sequential access

Sometimes impossible to achieve the same bounds as in the RAM model

Recap on lessons

Typically impossible to solve problems precisely and deterministically in small (sublinear) space

Randomize and approximate!

Sequential access

Random access

Sequential data access makes things harder

Sampling
 Working with less

Why sampling?

- Basic problem: sample s items uniformly from a stream
- Answer queries (e.g., compute fish species rarity) on the sample
- Utility depends on the problem: in some cases, sampling-based approaches not effective unless taking large (almost linear) samples

Why sampling?

- Basic problem: sample s items uniformly from a stream
- Answer queries (e.g., compute fish species rarity) on the sample
- Utility depends on the problem: in some cases, sampling-based approaches not effective unless taking large (almost linear) samples

How can we sample uniformly
if we don't know in advance how long is the stream?
When do we sample a stream token?

Reservoir sampling

(1) Add to S the first s stream items
(2) Upon seeing x_{i} at time, sample x_{i} with probability s / i
(3) If x_{i} added to S, evict a random item from S (other than x_{i})

Sample is uniform

At any time t and for each $i \leq t$, it holds: $\operatorname{Pr}\left\{x_{i} \in_{t} S\right\}=\frac{s}{t}$

Reservoir sampling

(1) Add to S the first s stream items
(2) Upon seeing x_{i} at time, sample x_{i} with probability s / i
(3) If x_{i} added to S, evict a random item from S (other than x_{i})

Sample is uniform

At any time t and for each $i \leq t$, it holds: $\operatorname{Pr}\left\{x_{i} \in_{t} S\right\}=\frac{s}{t}$

Warmup analysis: $s=1$

$$
\operatorname{Pr}\left\{x_{i} \in_{t} S\right\}=
$$

$=\operatorname{Pr}\left\{x_{i}\right.$ sampled at time $\left.i\right\} \times \operatorname{Pr}\left\{x_{i}\right.$ survives up to time $\left.t\right\}=$

$$
=\frac{1}{i} \times \frac{i}{i+1} \times \frac{i+1}{i+2} \times \ldots \times \frac{t-2}{t-1} \times \frac{t-1}{t}=\frac{1}{t}
$$

Arbitrary sample size s: analysis

Sample is uniform: $\operatorname{Pr}\left\{x_{i} \in_{t} S\right\}=\frac{s}{t}$

Arbitrary sample size s : analysis

Sample is uniform: $\operatorname{Pr}\left\{x_{i} \in_{t} S\right\}=\frac{s}{t}$

By induction on t (base step: $t \leq s$)

Arbitrary sample size s : analysis

Sample is uniform: $\operatorname{Pr}\left\{x_{i} \epsilon_{t} S\right\}=\frac{s}{t}$

By induction on t (base step: $t \leq s$)
How does S change at time t when x_{t} arrives?

Arbitrary sample size s : analysis

Sample is uniform: $\operatorname{Pr}\left\{x_{i} \in_{t} S\right\}=\frac{s}{t}$

By induction on t (base step: $t \leq s$)
How does S change at time t when x_{t} arrives?
(1) $\operatorname{Pr}\left\{x_{t}\right.$ added to $\left.S\right\}=\frac{s}{t}$

Arbitrary sample size s : analysis

Sample is uniform: $\operatorname{Pr}\left\{x_{i} \in_{t} S\right\}=\frac{s}{t}$

By induction on t (base step: $t \leq s$)
How does S change at time t when x_{t} arrives?
(1) $\operatorname{Pr}\left\{x_{t}\right.$ added to $\left.S\right\}=\frac{s}{t}$
(2) Inductive hypothesis: $\operatorname{Pr}\left\{x_{i} \in_{t-1} S\right\}=\frac{s}{t-1}$

Arbitrary sample size s : analysis

Sample is uniform: $\operatorname{Pr}\left\{x_{i} \in_{t} S\right\}=\frac{s}{t}$

By induction on t (base step: $t \leq s$)
How does S change at time t when x_{t} arrives?
(1) $\operatorname{Pr}\left\{x_{t}\right.$ added to $\left.S\right\}=\frac{s}{t}$
(2) Inductive hypothesis: $\operatorname{Pr}\left\{x_{i} \in_{t-1} S\right\}=\frac{s}{t-1}$
(3) $\operatorname{Pr}\left\{x_{i} \in_{t} S \mid x_{t}\right.$ added to $\left.S\right\}=\operatorname{Pr}\left\{x_{i} \in_{t-1} S\right.$ and not evicted $\}=$ $=\frac{s}{t-1}\left(1-\frac{1}{s}\right)$

Arbitrary sample size s : analysis

Sample is uniform: $\operatorname{Pr}\left\{x_{i} \in_{t} S\right\}=\frac{s}{t}$

By induction on t (base step: $t \leq s$)
How does S change at time t when x_{t} arrives?
(1) $\operatorname{Pr}\left\{x_{t}\right.$ added to $\left.S\right\}=\frac{s}{t}$
(2) Inductive hypothesis: $\operatorname{Pr}\left\{x_{i} \in_{t-1} S\right\}=\frac{s}{t-1}$
(3) $\operatorname{Pr}\left\{x_{i} \in_{t} S \mid x_{t}\right.$ added to $\left.S\right\}=\operatorname{Pr}\left\{x_{i} \in_{t-1} S\right.$ and not evicted $\}=$ $=\frac{s}{t-1}\left(1-\frac{1}{s}\right)$
(4) $\operatorname{Pr}\left\{x_{i} \in_{t} S \mid x_{t}\right.$ not added to $\left.S\right\}=\operatorname{Pr}\left\{x_{i} \in_{t-1} S\right\}=\frac{s}{t-1}$

Arbitrary sample size s : analysis

Sample is uniform: $\operatorname{Pr}\left\{x_{i} \in_{t} S\right\}=\frac{s}{t}$

By induction on t (base step: $t \leq s$)
How does S change at time t when x_{t} arrives?
(1) $\operatorname{Pr}\left\{x_{t}\right.$ added to $\left.S\right\}=\frac{s}{t}$
(2) Inductive hypothesis: $\operatorname{Pr}\left\{x_{i} \in_{t-1} S\right\}=\frac{s}{t-1}$
(3) $\operatorname{Pr}\left\{x_{i} \in_{t} S \mid x_{t}\right.$ added to $\left.S\right\}=\operatorname{Pr}\left\{x_{i} \in_{t-1} S\right.$ and not evicted $\}=$ $=\frac{s}{t-1}\left(1-\frac{1}{s}\right)$
(4) $\operatorname{Pr}\left\{x_{i} \in_{t} S \mid x_{t}\right.$ not added to $\left.S\right\}=\operatorname{Pr}\left\{x_{i} \in_{t-1} S\right\}=\frac{s}{t-1}$

By combining conditional probabilities:

$$
\operatorname{Pr}\left\{x_{i} \in_{t} S\right\}=\frac{s}{t} \frac{s}{t-1}\left(1-\frac{1}{s}\right)+\left(1-\frac{s}{t}\right) \frac{s}{t-1}=\frac{s}{t}
$$

Optimizations and drawbacks

Skip numbers

Instead of flipping a coin at each stream element, generate number of elements to be skipped before the next element is added to S [Vitter 85]

Optimizations and drawbacks

Skip numbers

Instead of flipping a coin at each stream element, generate number of elements to be skipped before the next element is added to S [Vitter 85]

Other issues:

- Frequently occurring values are a wasteful use of the available sample space: concise sampling [Gibbons and Matias '98]
- Runs into difficulties in the presence of data deletions: [Babcock et al. '02]
- Hard to parallelize on multiple streams: how do we sample if more than one item comes at any time? Min-wise sampling [Nath et al. '04]

The Britney Spears problem...

MY AMERICAN SCIENTIST email \square LOG IN REGISTER
 AMERICAN Scientist
 Pizza Lunch
 Take your scif
 Current Issue

raise font size A A A
COMPUTING SCIENCE

The Britney Spears Problem

Tracking who's hot and who's not presents an algorithmic challenge

Brian Hayes

Back in 1999, the operators of the Lycos Internet portal began publishing a weekly list of the 50 most popular queries submitted to their Web search engine. Britney Spears-initially tagged a "teen songstress," later a "pop tart"-was No. 2 on that first weekly tabulation. She has never fallen off the list since then-440 consecutive appearances when I last checked. Other perennials include Pamela Anderson and Paris Hilton. What explains the enduring popularity of these celebrities, so famous for being famous? That's a fascinating question, and the answer would doubtless tell us something deep about modern culture. But it's not the question I'm going to take up here. What l'm trying to understand is how we can know Britney's ranking from week to week. How are all those queries counted and categorized? What algorithm tallies them up to see which terms are the most frequent?

IN THIS SECTION

American Scientist Classics
Authors
Purchase a Back Issue

This Article from Issue

July-August 2008
Volume 96, Number 4

Page: 274
DOI: $10.1511 / 2008.73 .3822$

```
AVAILABLE IN PDF
PRINTER - FRIENDLY VERSION
I SAVE TO LIBRARY
EMAIL TO A FRIEND:
    FRIEND'SEMAILADDRESS
```


... tracking who's hot and who's not

"... can't just pay attention to a few popular subjects, because you can't know in advance which ones are going to rank near the top. To be certain of catching every new trend as it unfolds, you have to monitor all the incoming queries - and their variety is unbounded.

Heavy hitters

Given a stream of n items, find those that appear "most frequently"

E.g., items occurring more than 1% of the time

- Formally "hard" in small space, so allow approximation
- No false negatives: return all items with count $\geq \varphi n$
- "Good" false positives: no item with count $<(\varphi-\varepsilon) n$ is returned (error $\varepsilon \in(0,1), \varepsilon \ll \varphi)$
- Related problem: estimate each frequency with error $\pm \varepsilon n$

Why heavy hitters?

- Many practical applications: mining of search logs, analysis of network data, DBMS optimization...
- Core streaming problem: connections with entropy estimation, itemsets mining, compressed sensing
- Extensive research: scores of streaming papers on frequent items and its variations

We'll see a counter-based algorithm named Sticky sampling:
(1) probabilistic, sampling-based approach
(2) correct with probability $\geq 1-\delta$, with $\delta \in(0,1)$ user-specified probability of failure

Sticky sampling

Intuition

It should be possible to estimate frequent items by a good sample

Data structure S : set of pairs $\left\langle x, f_{e}(x)\right\rangle$, where

- $f_{e}(x)$ estimated frequency of x
- $f(x)$ true frequency

Query algorithm: at time n report items $x \in S$ such that $f_{e}(x) \geq(\varphi-\varepsilon) n$

Update algorithm works in rounds:

- each round distinguished by a (fixed) sampling rate r
- sampling rate adjusted between rounds so that probability of sampling a stream item decreases as stream gets longer

Update algorithm

Structure of r-rate round

For each stream item x :
(1) if $x \in S$, then increase $f_{e}(x)$ by 1
(2) if $x \notin S$, sample x with probability $\frac{1}{r}$: if x sampled, add pair $\langle x, 1\rangle$ to S

At the end of a round:
(1) double sampling rate r (r increases geometrically)
(2) adjust estimated frequencies so that S is transformed into exactly the state it would have been in, if new rate $2 r$ had been used from the beginning

Adjusting frequencies

Assume x sampled at time k with probability $\frac{1}{r}$:

- $f_{e}(x)=$ exact number of occurrences of x after time k
- with smaller sampling probability $\left(\frac{1}{2 r}\right), x$ will be sampled at one of the later occurrences
- simulate all coin tosses not done with sampling rate r

For each $\left\langle x, f_{e}(x)\right\rangle \in S$ repeatedly toss a coin:
(1) first coin toss unbiased ($\frac{1}{2}$, makes probability of sampling x at time $k=\frac{1}{2 r}$)
(2) next coin tosses biased with probability $\frac{1}{2 r}$
(3) for each unsuccessful coin toss, decrease $f_{e}(x)$ by 1
(9) stop when coin toss successful or $f_{e}(x)=0$ (in this case remove x from S)

Round length

$$
\text { Recall: }\left\{\begin{array}{l}
\varphi=\text { frequency threshold } \\
\varepsilon=\text { frequency error } \\
\delta=\text { algorithm failure probability }
\end{array}\right.
$$

$$
\text { Let } t=\frac{1}{\varepsilon} \log \frac{1}{\varphi \delta}
$$

rate | 2 t | 2 t | 4 t | 8 t | \ldots |
| :---: | :---: | :---: | :---: | :---: |

r-rate round has length $r t$ (except for $r=1$)
expected sample size: $2 t$ (we'll prove)

For each rate $r \geq 2$, let n be the number of stream items considered up to the r-rate round. It holds:

$$
\frac{1}{r} \geq \frac{t}{n}
$$

A technical lemma

For each rate $r \geq 2$, let n be the number of stream items considered up to the r-rate round. It holds:

$$
\frac{1}{r} \geq \frac{t}{n}
$$

By induction, at the beginning of r-rate round $n=r t$:

Hence during the round $n \geq r t$

A technical lemma

For each rate $r \geq 2$, let n be the number of stream items considered up to the r-rate round. It holds:

$$
\frac{1}{r} \geq \frac{t}{n}
$$

By induction, at the beginning of r-rate round $n=r t$:

Hence during the round $n \geq r t$
|IIII Expected sample size at the end of r-rate round $=\frac{n^{\prime}}{r}=2 t$

For any $\varphi, \varepsilon, \delta \in(0,1)$, with $\varepsilon<\varphi$, Sticky Sampling computes the heavy hitters with probability $\geq 1-\delta$

For any $\varphi, \varepsilon, \delta \in(0,1)$, with $\varepsilon<\varphi$, Sticky Sampling computes the heavy hitters with probability $\geq 1-\delta$
(1) Good false positives: items with frequency $<(\varphi-\varepsilon) n$ are not returned

$$
f(x)<(\varphi-\varepsilon) n \Rightarrow f_{e}(x)<(\varphi-\varepsilon) n, \text { since } f_{e}(x) \leq f(x)
$$

Analysis (1/2)

For any $\varphi, \varepsilon, \delta \in(0,1)$, with $\varepsilon<\varphi$, Sticky Sampling computes the heavy hitters with probability $\geq 1-\delta$
(1) Good false positives: items with frequency $<(\varphi-\varepsilon) n$ are not returned

$$
f(x)<(\varphi-\varepsilon) n \Rightarrow f_{e}(x)<(\varphi-\varepsilon) n, \text { since } f_{e}(x) \leq f(x)
$$

(2) No false negatives: all items with frequency $\geq \varphi n$ are returned

Analysis (1/2)

For any $\varphi, \varepsilon, \delta \in(0,1)$, with $\varepsilon<\varphi$, Sticky Sampling computes the heavy hitters with probability $\geq 1-\delta$
(1) Good false positives: items with frequency $<(\varphi-\varepsilon) n$ are not returned

$$
f(x)<(\varphi-\varepsilon) n \Rightarrow f_{e}(x)<(\varphi-\varepsilon) n, \text { since } f_{e}(x) \leq f(x)
$$

(2) No false negatives: all items with frequency $\geq \varphi n$ are returned
$\begin{array}{ll}y_{1} \ldots y_{k} \text { frequent items: } & f\left(y_{i}\right) \geq \varphi n \quad \forall i \\ & \Rightarrow k \leq \frac{1}{\varphi}\end{array}$
$\operatorname{Pr}\{\exists$ false negative $\}=\quad \operatorname{Pr}\left\{\exists y_{i}: y_{i}\right.$ not returned $\} \leq$
$\sum_{i=1}^{k} \operatorname{Pr}\left\{y_{i}\right.$ not returned $\}$
$\operatorname{Pr}\left\{y_{i}\right.$ not returned $\}=\operatorname{Pr}\left\{f_{e}\left(y_{i}\right)<(\varphi-\varepsilon) n\right\}=$

$$
\operatorname{Pr}\{\text { at least } \varepsilon n \text { unsuccessful coin tosses }\} \leq
$$

$$
\left(1-\frac{1}{r}\right)^{\varepsilon n} \leq\left(1-\frac{t}{n}\right)^{\varepsilon n} \leq e^{-t \varepsilon}
$$

Analysis (2/2)

$\operatorname{Pr}\left\{y_{i}\right.$ not returned $\}=\operatorname{Pr}\left\{f_{e}\left(y_{i}\right)<(\varphi-\varepsilon) n\right\}=$

$$
\begin{aligned}
& \operatorname{Pr}\{\text { at least } \varepsilon n \text { unsuccessful coin tosses }\} \leq \\
& \left(1-\frac{1}{r}\right)^{\varepsilon n} \leq\left(1-\frac{t}{n}\right)^{\varepsilon n} \leq e^{-t \varepsilon}
\end{aligned}
$$

Hence:

$$
\begin{aligned}
\operatorname{Pr}\{\exists \text { false negative }\} & \leq \sum_{i=1}^{k} \operatorname{Pr}\left\{y_{i} \text { not returned }\right\} \leq \\
& \leq k e^{-t \varepsilon} \leq \frac{e^{-t \varepsilon}}{\varphi}=\delta \quad \text { by definition of } t
\end{aligned}
$$

Sketching streams

Sketches

- Not every problem can be solved with sampling E.g., counting distinct items in a stream: need to sample a large fraction of items to know if they are all same or different
- Sketches take advantage that the algorithm can "see" all the data even if it can't "remember" it all

Sketch $=$ linear transform of the input (exploit hashing)

Sampling and sketching ideas at the heart of stream mining:

- A sample is a quite general representative of the data set
- Sketches tend to be tailored to a specific problem (e.g., distinct items)

Warmup example

Problem: test if two asynchronous binary streams are equal

To test in small space: pick a random hash function h and test $h\left(\sigma_{1}\right)=h\left(\sigma_{2}\right)$:

- no false negatives: if $\sigma_{1}=\sigma_{2}$ then $h\left(\sigma_{1}\right)=h\left(\sigma_{2}\right)$
- small chance of false positive: it may be $h\left(\sigma_{1}\right)=h\left(\sigma_{2}\right)$ for $\sigma_{1} \neq \sigma_{2}$ with very small probability

Compute $h\left(\sigma_{1}\right)$ and $h\left(\sigma_{2}\right)$ incrementally as new bits arrive (Karp-Rabin fingerprints)

Distinct items

Count of the number of distinct items seen in the stream

Trivial solution: maintain set of encountered items through its characteristic vector
$O(1)$ processing time but $\Theta(u)$ space, where $u=$ universe size

- Exact/deterministic algorithms need $\Omega(u)$ bits of space
- Approximate randomized algorithms use $O(\log u)$ bits of space

> FM-sketch [Flajolet \& Martin '85]

Sampling not appropriate here: we'll build a data summary (sketch)

Universal hashing

- Idea: select a hash function at random from a family \mathcal{H} of hash functions with a certain mathematical property
- Guarantee: low number of collisions in expectation, even if the data is chosen by an adversary

2-universal hashing

\mathcal{H} is a 2-universal family (set) of hash functions $h: U \rightsquigarrow D$ if, for all $x, y \in U, x \neq y$:

$$
\operatorname{Pr}_{h \in \mathcal{H}}\{h(x)=h(y)\} \leq \frac{1}{|D|}
$$

Strongly 2-universal hashing

\mathcal{H} is strongly 2-universal if, for all $x \neq y \in U$ and $a, b \in D$:

$$
\operatorname{Pr}_{h \in \mathcal{H}}\{h(x)=a \& h(y)=b\}=\frac{1}{|D|^{2}}
$$

FM skecth: probabilistic counter

Two useful functions:

- $h: U \rightsquigarrow[0, u-1]$ drawn from a family of strongly 2-universal hash functions

Transforms values of the universe into integers uniformly distributed over the set of binary strings of length $\log u$

- $t:[0, u-1] \rightsquigarrow[1, \log u]$ gives the number $t(i)$ in the binary representation of i
E.g., $t\left(5_{10}\right)=t\left(00101_{2}\right)=2$

FM sketch: counter C of $\log u$ bits
Counter update: upon seeing stream item x, set $C[t(h(x))]=1$
Query algorithm: return 2^{R}, where $R \in[1, \log u]$ is the position of the rightmost 1 in C
E.g., if $C=1110100$, then $R=5$: returns 32

Intuition

h distributes items of the universe U uniformly on $[0, u-1]$: important to avoid adversarial streams

- How many values in $[0, u-1]$ have exactly 0 trailing $0 s ? u / 2$
- How many values have exactly 1 trailing 0 ? u/4
- How many values have exactly 2 trailing $0 s$? $u / 8 \ldots$

Hence, if the stream contains D distinct values:

- $D / 2$ will be mapped to the first bit of C
- $D / 4$ to the second bit
- $D / 8$ to the third bit ...

We expect the first $\log D$ counter bits will be set to 1 Hence $R \approx \log D$ and $2^{R} \approx D$

Geometric distribution over counter bits

- \mid values with exactly j trailing $0 s \left\lvert\,=\frac{u}{2^{j+1}}\right.$
- \mid values with $\geq j$ trailing $0 \mathrm{~s} \left\lvert\,=1+\sum_{i=j}^{\log u-1} \frac{u}{2^{j+1}}=2^{\log u-j}\right.$
- W_{x} indicator random variable: $W_{x}=1$ iff $t(h(x)) \geq j$

$$
\operatorname{Pr}\left\{W_{x}=1\right\}=\operatorname{Pr}\{t(h(x)) \geq j\}=\frac{2^{\log u-j}}{u}=2^{-j}
$$

since h distributes items uniformly over $[0, u-1]$

- $E\left[W_{x}\right]=2^{-j}$
- $\operatorname{Var}\left[W_{x}\right]=E\left[W_{x}^{2}\right]-E\left[W_{x}\right]^{2}=2^{-j}-2^{-2 j}<2^{-j}=E\left[W_{x}\right]$

$$
E\left[W_{x}\right]=2^{-j} \quad \text { and } \quad \operatorname{Var}\left[W_{x}\right]<E\left[W_{x}\right]
$$

Geometric distribution over counter bits

- $Z_{j}=$ number of stream items x s.t. $t(h(x)) \geq j$
$=\sum_{x \in U \cap \Sigma} W_{x}$
- $E\left[Z_{j}\right]=\sum_{x \in U \cap \Sigma} E\left[W_{x}\right]=\sum_{x \in U \cap \Sigma} 2^{-j}=\frac{D}{2^{j}}$
- Due to pairwise independence of W_{x} and W_{y}, $\operatorname{Var}\left[W_{x}+W_{y}\right]=\operatorname{Var}\left[W_{x}\right]+\operatorname{Var}\left[W_{y}\right]$
- $\operatorname{Var}\left[Z_{j}\right]=\sum_{x \in U \cap \Sigma} \operatorname{Var}\left[W_{x}\right]<\sum_{x \in U \cap \Sigma} E\left[W_{x}\right]=E\left[Z_{j}\right]$

$$
E\left[Z_{j}\right]=\frac{D}{2^{j}} \quad \text { and } \quad \operatorname{Var}\left[Z_{j}\right]<E\left[Z_{j}\right]
$$

- $R=\max j$ such that $Z_{j}>0$

Probability of overestimating

Let $c>$ 2. $\operatorname{Pr}\left\{2^{R}>c D\right\}=$?
By Markov's inequality (Z_{j} takes only non-negative values):

$$
\begin{aligned}
& \operatorname{Pr}\left\{Z_{j} \geq 1\right\} \leq \frac{E\left[Z_{j}\right]}{1}=\frac{D}{2^{j}} \\
2^{R}>c D & \Rightarrow \exists j \text { such that } C[j]=1 \& 2^{j}>c D \\
& \Rightarrow C[j]=1 \& j>\log _{2}(c D) \\
& \Rightarrow Z_{\log _{2}(c D) \geq 1}
\end{aligned}
$$

Thus:

$$
\operatorname{Pr}\left\{2^{R}>c D\right\} \leq \operatorname{Pr}\left\{Z_{\log _{2}(c D)} \geq 1\right\} \leq_{(1)} \frac{D}{2^{\log _{2}(c D)}}=\frac{1}{c}
$$

Probability of underestimating

Let $c>2 . \operatorname{Pr}\left\{2^{R}<\frac{D}{c}\right\}=$?
By Chebyshev inequality (Z_{j} takes only non-negative values):

$$
\begin{align*}
\operatorname{Pr}\left\{Z_{j}=0\right\} & =\operatorname{Pr}\left\{\left|Z_{j}-E\left[Z_{j}\right]\right| \geq E\left[Z_{j}\right]\right\} \\
& \leq \frac{\operatorname{Var}\left[Z_{j}\right]}{E\left[Z_{j}\right]^{2}}<\frac{1}{E\left[Z_{j}\right]}=\frac{2^{j}}{D} \tag{2}\\
2^{R}<\frac{D}{c} \Rightarrow & C[p]=0 \quad \forall p \geq \log _{2}(D / c) \\
& \Rightarrow Z_{\log _{2}(D / c)}=0
\end{align*}
$$

Thus:

$$
\operatorname{Pr}\left\{2^{R}<\frac{D}{c}\right\} \leq \operatorname{Pr}\left\{Z_{\log _{2}(D / c)}=0\right\} \leq(2) \frac{2^{\log _{2}(D / c)}}{D}=\frac{1}{c}
$$

Distinct items: summing up

Let D be the exact number of distinct values and let 2^{R} be the output of the probabilistic counter.

For any $c>2$, the probability that 2^{R} is not between D / c and $c D$ is at most $2 / c$.

Frequency moments

Stream $\Sigma=\left\langle x_{1}, x_{2}, \ldots x_{n}\right\rangle$ of tokens drawn from universe U $f_{i}=\left|\left\{j: x_{j}=i\right\}\right|$

k-th frequency moment F_{k} of Σ

$$
F_{k}=\sum_{i \in U} f_{i}^{k}
$$

Useful statistical information:

- $F_{0}=$ distinct items
- $F_{1}=$ stream length
- $F_{2}=$ Gini's index (skew of the data)
- F_{∞} related to maximum frequency element, i.e., $\max _{i \in U} f_{i}$

AMS sketch for F_{2}

Fundamental technique introduced by Alon, Matias, and Szegedy

AMS sketches $=$ randomized linear projections

Define a random variable Z such that $E\left[Z^{2}\right]=F_{2}$:

- select at random a hash function $\xi: U \rightsquigarrow\{-1,+1\}$ from a family of 4 -wise independent hash functions
- $Z=\sum_{u \in U} f_{u} \xi(u)$
random linear projection (inner product) of frequency vector $\left\langle f_{1}, f_{2}, \ldots f_{u}\right\rangle$ with random vector $\{-1,+1\}^{u}$
- Z incrementally updated upon arrival of x_{t} by adding $\xi\left(x_{t}\right)$

AMS sketch: expectation

$$
\begin{aligned}
& Z=\sum_{u \in U} f_{u} \xi(u) \\
& \xi: U \rightsquigarrow\{-1,+1\} \text { 4-wise independent } \\
& E[\xi(i)]=(-1) \frac{1}{2}+(1) \frac{1}{2}=0 \\
E\left[Z^{2}\right]= & E\left[\left(\sum_{i \in U} f_{i} \xi(i)\right)^{2}\right] \\
= & E\left[\sum_{i \in U} f_{i}^{2}(\xi(i))^{2}+2 \sum_{i \neq j \in U} f_{i} f_{j} \xi(i) \xi(j)\right] \\
= & \sum_{i \in U} f_{i}^{2} E\left[(\xi(i))^{2}\right]+2 \sum_{i \neq j \in U} f_{i} f_{j} E[\xi(i) \xi(j)] \\
= & \sum_{i \in U} f_{i}^{2}=F_{2}
\end{aligned}
$$

since $(\xi(i))^{2}=1$ and by pair-wise independence

$$
E[\xi(i) \xi(j)]=E[\xi(i)] E[\xi(j)]=0 \cdot 0=0
$$

Median of the averages

Still need small variance and good confidence:

- Compute μ random variables Y_{1}, \ldots, Y_{μ} and output their median Y as the estimator for F_{2}
- Each Y_{i} is the average of α independent, identically distributed random variables $X_{i j}$ computed as random linear projections

Averaging $X_{i j}$ implies each Y_{i} has small variance
Computing Y as the median of the Y_{i} allows it to boost confidence using Chernoff bounds

F_{2} : summing up

For every $\lambda, \delta>0$, there exists a randomized algorithm that computes a number Y that deviates from F_{2} by more than λF_{2} with probability at most δ.

The algorithm uses only

$$
O\left(\frac{\log (1 / \delta)}{\lambda^{2}}(\log u+\log n)\right)
$$

memory bits and performs one pass over the data.

Similar results for frequency moments F_{k}, with $k>2$

Mining graphs

Models for graph streams

- $G=(V, E)$ graph with $|V|=n$ nodes and $|E|=m$ edges, possibly weighted
- Observe edges of G in a stream, one by one
- What order do we see the edges in?
- Arbitrary (adversarial) order
- Incidence streams: all edges incident to one vertex appear sequentially (easier, stronger bounds)

- How many passes over the data can we take (one or many?)
- How much space?

Counting triangles

- Finding frequent graph patterns and dense subgraphs are basic tools in the analysis of the structure of large networks (e.g., social networks, Web graph)
- Exact triangle counting reduces to matrix multiplication: unfeasible even for networks of medium size
- Resort to random sampling
- We'll present an algorithm for the arbitrary order model

A 3-pass algorithm

Algorithm SampleTriangle

1st pass. Count number of edges m in the stream
2nd pass. Sample an edge $e=(a, b)$ uniformly from E and a node v uniformly from $V \backslash\{a, b\}$

3rd pass. If $(a, v) \in E$ and $(b, v) \in E$ then $\beta=1$, else $\beta=0$

Excluded by the algorithm

$\beta=0$

$\beta=0$

$\beta=1$

A useful property

$$
T_{i}=\text { triples with } i \text { edges, } 0 \leq i \leq 3
$$

$$
E[\beta]=\frac{3\left|T_{3}\right|}{m \cdot(n-2)}=\frac{3\left|T_{3}\right|}{\left|T_{1}\right|+2\left|T_{2}\right|+3\left|T_{3}\right|}
$$

- $m \cdot(n-2)$ ways to select an edge (a, b) and a node $v \neq a, b$
- $i\left|T_{i}\right|$ ways to select a triple with i edges, $i>0$

The complete 3-pass algorithm

- Start s parallel instances of algorithm SampleTriangle, where

$$
s \geq \frac{3}{\varepsilon^{2}} \frac{\left|T_{1}\right|+2\left|T_{2}\right|+3\left|T_{3}\right|}{\left|T_{3}\right|} \ln \left(\frac{2}{\delta}\right)
$$

- Each instance returns a value β_{i}
- Return $\widetilde{T_{3}}=\left(\frac{1}{s} \sum_{i=1}^{s} \beta_{i}\right) \frac{m \cdot(n-2)}{3}$ as an estimation for T_{3}

$$
E\left[\widetilde{T_{3}}\right]=\left|T_{3}\right| \text { because } E\left[\beta_{i}\right]=\frac{3\left|T_{3}\right|}{m \cdot(n-2)}
$$

OK, but how far from the mean?

Chernoff bounds

- $X_{1}, X_{2}, \ldots X_{n}$ independent Bernoulli trials: X_{i} indicator random variable, $\operatorname{Pr}\left\{X_{i}=1\right\}=p, X_{i}$ all independent
- $X=\sum_{i=1}^{n} X_{i}$
- $E[X]=\mu=n p$

Lower tail bound

$$
\text { For any } \varepsilon \in(0,1] \quad \operatorname{Pr}\{X<(1-\varepsilon) \mu\}<e^{-\frac{\mu \varepsilon^{2}}{2}}
$$

Upper tail bound

For any $\varepsilon \in(0,1] \quad \operatorname{Pr}\{X>(1+\varepsilon) \mu\}<e^{-\frac{\mu \varepsilon^{2}}{3}}$

Triangle counting analysis

In triangle counting, $X=\sum_{i=1}^{s} \beta_{i}$ and $p=\frac{3\left|T_{3}\right|}{\left|T_{1}\right|+2\left|T_{2}\right|+3\left|T_{3}\right|}$

$$
\operatorname{Pr}\{X<(1-\varepsilon) p s \| X>(1+\varepsilon) p s\}<e^{-\frac{p s \varepsilon^{2}}{2}}+e^{-\frac{p s \varepsilon^{2}}{3}}
$$

Triangle counting analysis

In triangle counting, $X=\sum_{i=1}^{s} \beta_{i}$ and $p=\frac{3\left|T_{3}\right|}{\left|T_{1}\right|+2\left|T_{2}\right|+3\left|T_{3}\right|}$

$$
\begin{aligned}
\operatorname{Pr}\{X<(1-\varepsilon) p s \| X>(1+\varepsilon) p s\} & <e^{-\frac{p s \varepsilon^{2}}{2}}+e^{-\frac{p s \varepsilon^{2}}{3}} \\
& \leq 2 e^{-\frac{s p \varepsilon^{2}}{3}}
\end{aligned}
$$

Triangle counting analysis

In triangle counting, $X=\sum_{i=1}^{s} \beta_{i}$ and $p=\frac{3\left|T_{3}\right|}{\left|T_{1}\right|+2\left|T_{2}\right|+3\left|T_{3}\right|}$

$$
\begin{aligned}
\operatorname{Pr}\{X<(1-\varepsilon) p s \| X>(1+\varepsilon) p s\} & <e^{-\frac{p s \varepsilon^{2}}{2}}+e^{-\frac{p s \varepsilon^{2}}{3}} \\
& \leq 2 e^{-\frac{s p \varepsilon^{2}}{3}} \leq \delta
\end{aligned}
$$

$$
\text { as long as } s \geq \frac{3}{\varepsilon^{2}} \frac{\left|T_{1}\right|+2\left|T_{2}\right|+3\left|T_{3}\right|}{\left|T_{3}\right|} \ln \left(\frac{2}{\delta}\right)
$$

Triangle counting analysis

In triangle counting, $X=\sum_{i=1}^{s} \beta_{i}$ and $p=\frac{3\left|T_{3}\right|}{\left|T_{1}\right|+2\left|T_{2}\right|+3\left|T_{3}\right|}$

$$
\begin{aligned}
\operatorname{Pr}\{X<(1-\varepsilon) p s \| X>(1+\varepsilon) p s\} & <e^{-\frac{p s \varepsilon^{2}}{2}}+e^{-\frac{p s \varepsilon^{2}}{3}} \\
& \leq 2 e^{-\frac{s p \varepsilon^{2}}{3}} \leq \delta
\end{aligned}
$$

$$
\text { as long as } s \geq \frac{3}{\varepsilon^{2}} \frac{\left|T_{1}\right|+2\left|T_{2}\right|+3\left|T_{3}\right|}{\left|T_{3}\right|} \ln \left(\frac{2}{\delta}\right)
$$

$$
X<(1-\varepsilon) p s \Leftrightarrow \underbrace{\left(\frac{1}{s} \sum_{i=1}^{s} \beta_{i}\right) \frac{m \cdot(n-2)}{3}}_{\widetilde{T_{3}}}<(1-\varepsilon) \underbrace{p \frac{m(n-2)}{3}}_{T_{3}}
$$

Triangle counting analysis

In triangle counting, $X=\sum_{i=1}^{s} \beta_{i}$ and $p=\frac{3\left|T_{3}\right|}{\left|T_{1}\right|+2\left|T_{2}\right|+3\left|T_{3}\right|}$

$$
\begin{aligned}
\operatorname{Pr}\{X<(1-\varepsilon) p s \| X>(1+\varepsilon) p s\} & <e^{-\frac{p s \varepsilon^{2}}{2}}+e^{-\frac{p s \varepsilon^{2}}{3}} \\
& \leq 2 e^{-\frac{s p \varepsilon^{2}}{3}} \leq \delta
\end{aligned}
$$

$$
\text { as long as } s \geq \frac{3}{\varepsilon^{2}} \frac{\left|T_{1}\right|+2\left|T_{2}\right|+3\left|T_{3}\right|}{\left|T_{3}\right|} \ln \left(\frac{2}{\delta}\right)
$$

$$
X<(1-\varepsilon) p s \Leftrightarrow \underbrace{\left(\frac{1}{s} \sum_{i=1}^{s} \beta_{i}\right) \frac{m \cdot(n-2)}{3}}_{\widetilde{T_{3}}}<(1-\varepsilon) \underbrace{p \frac{m(n-2)}{3}}_{T_{3}}
$$

Similarly $X>(1+\varepsilon) p s \Leftrightarrow \widetilde{T_{3}}>(1+\varepsilon) T_{3}$

Improvements and extensions

- Expected constant time:
(1) when edge (a, b) and node v sampled, hash missing edges (a, v) and (b, v) to a set M
(2) in the third pass, lookup each edge (x, y) in M, and mark it if present
(3) triangles determined in a postprocessing step

Improvements and extensions

- Expected constant time:
(1) when edge (a, b) and node v sampled, hash missing edges (a, v) and (b, v) to a set M
(2) in the third pass, lookup each edge (x, y) in M, and mark it if present
(3) triangles determined in a postprocessing step
- 1-pass: exploit reservoir sampling

Improvements and extensions

- Expected constant time:
(1) when edge (a, b) and node v sampled, hash missing edges (a, v) and (b, v) to a set M
(2) in the third pass, lookup each edge (x, y) in M, and mark it if present
(3) triangles determined in a postprocessing step
- 1-pass: exploit reservoir sampling
- Other minors and cliques of size α

Improvements and extensions

- Expected constant time:
(1) when edge (a, b) and node v sampled, hash missing edges (a, v) and (b, v) to a set M
(2) in the third pass, lookup each edge (x, y) in M, and mark it if present
(3) triangles determined in a postprocessing step
- 1-pass: exploit reservoir sampling
- Other minors and cliques of size α
- Better space bounds for incidence streams

Semi-streaming model

- For many graph problems space \times passes $=\Omega(n)$, even using randomization and approximation
\Rightarrow Cannot achieve $O(1)$ passes and polylog working space
- Semi-streaming model: polylog space requirement is relaxed

> working memory size $O(n$ polylog $n)$ for input graph with n nodes enough space to store nodes, not enough for edges

- Problems solvable in semi-streaming: spanners, matching, diameter estimation...

Maximum weight matching

- Edge weighted, undirected graph $G(V, E, w)$
- No two edges in a matching have a common endpoint

Optimization problem: find a maximum weight matching M^{*}

1 -pass semi-streaming algorithm with approximation ratio $1 / 6$:

$$
w(M) \geq \frac{w\left(M^{*}\right)}{6}
$$

where M returned matching

Semi-streaming algorithm

Data structure: matching M maintained in main memory

Query algorithm: return M

Update algorithm: upon arrival of edge e, consider set $C \subseteq M$ of conflicting edges (edges in M that share an endpoint with e)

- if $w(e)>2 w(C)$, replace C with $\{e\}$ in M
- if $w(e) \leq 2 w(C)$), ignore e

Replacement forest

$$
\begin{aligned}
\Sigma=\langle & (c, f, 2)(b, e, 10)(h, i, 4)(e, f, 30)(h, f, 50) \\
& (e, g, 40)(d, e, 62)(a, d, 120)(d, g, 130)\rangle
\end{aligned}
$$

Every edge $e \in M$ is root of a replacement tree T_{e}

Replacement forest

$$
\begin{aligned}
\Sigma=\langle & (c, f, 2)(b, e, 10)(h, i, 4)(e, f, 30)(h, f, 50) \\
& (e, g, 40)(d, e, 62)(a, d, 120)(d, g, 130)\rangle
\end{aligned}
$$

Replacement forest

Every edge $e \in M$ is root of a replacement tree T_{e} $R(e)=$ nodes in T_{e} except for root e

Replacement forest

$$
\begin{aligned}
\Sigma=\langle & (c, f, 2)(b, e, 10)(h, i, 4)(e, f, 30)(h, f, 50) \\
& (e, g, 40)(d, e, 62)(a, d, 120)(d, g, 130)\rangle
\end{aligned}
$$

Replacement forest

Every edge $e \in M$ is root of a replacement tree T_{e} $R(e)=$ nodes in T_{e} except for root e

Replacement forest

$$
\begin{aligned}
\Sigma=\langle & (c, f, 2)(b, e, 10)(h, i, 4)(e, f, 30)(h, f, 50) \\
& (e, g, 40)(d, e, 62)(a, d, 120)(d, g, 130)\rangle
\end{aligned}
$$

Replacement forest

Every edge $e \in M$ is root of a replacement tree T_{e} $R(e)=$ nodes in T_{e} except for root e

Replacement edges have small weight

$$
w(R(e)) \leq w(e)
$$

Replacement edges have small weight

$$
w(R(e)) \leq w(e)
$$

By induction:

Replacement edges have small weight

$$
w(R(e)) \leq w(e)
$$

By induction:

$$
\begin{gathered}
w(e)>2 w\left(e_{1}\right)+2 w\left(e_{2}\right) \geq \\
\geq w\left(e_{1}\right)+w\left(R\left(e_{1}\right)\right)+w\left(e_{2}\right)+w\left(R\left(e_{2}\right)\right)=w(R(e))
\end{gathered}
$$

A charging scheme for M^{*}

M^{*} maximum weight matching
$H=$ history edges part of the matching at some point
Charge weight of M^{*} to H. For each $o \in M^{*}$:
(1) $o \in H$: charge $w(o)$ to o itself
(2) $o \notin H$:

- $C=$ edges conflicting with o it was examined for insertion: $w(o) \leq 2 w(C)$, since o was not inserted
- If $C=\{e\}$: charge $w(o) \leq 2 w(e)$ to e
- If $C=\left\{e_{1}, e_{2}\right\}$: charge
- $\frac{w(o) w\left(e_{1}\right)}{w\left(e_{1}\right)+w\left(e_{2}\right)} \leq 2 w\left(e_{1}\right)$ to e_{1}
- $\frac{w(o) w\left(e^{\prime \prime}\right)}{w\left(e^{\prime}\right)+w\left(e^{\prime \prime}\right)} \leq 2 w\left(e_{2}\right)$ to e_{2}
(a) Charge of $o \in M^{*}$ to any edge $e \in H \leq 2 w(e)$

Initial charging

$$
\begin{aligned}
\Sigma=\langle & (c, f, 2)(b, e, 10)(h, i, 4)(e, f, 30)(h, f, 50) \\
& (e, g, 40)(d, e, 62)(a, d, 120)(d, g, 130)\rangle \\
M^{*}=\{ & (a, d),(e, g),(h, f)\}
\end{aligned}
$$

Replacement forest
(b) Any edge of H charged by at most two edges of M^{*}, one per endpoint.

Charging redistribution

If $o \in M^{*}$ charges $e \in H$, e replaced by $e^{\prime} \in H, e^{\prime}$ and o incident, transfer charge of o from e to e^{\prime}.

Replacement forest
(a) Charge of $o \leq 2 w(e) \leq 2 w\left(e^{\prime}\right)$
(b) Any edge of H charged by at most two edges of M^{*}, one per endpoint (redistribution preserves incidence)
(c) Each edge $e \in H \backslash M$ charged by at most one edge in M^{*}

Charging redistribution

If $o \in M^{*}$ charges $e \in H$, e replaced by $e^{\prime} \in H, e^{\prime}$ and o incident, transfer charge of o from e to e^{\prime}.

Replacement forest
(a) Charge of $o \leq 2 w(e) \leq 2 w\left(e^{\prime}\right)$
(b) Any edge of H charged by at most two edges of M^{*}, one per endpoint (redistribution preserves incidence)
(c) Each edge $e \in H \backslash M$ charged by at most one edge in M^{*}

Charging redistribution

If $o \in M^{*}$ charges $e \in H$, e replaced by $e^{\prime} \in H, e^{\prime}$ and o incident, transfer charge of o from e to e^{\prime}.

Replacement forest
(a) Charge of $o \leq 2 w(e) \leq 2 w\left(e^{\prime}\right)$
(b) Any edge of H charged by at most two edges of M^{*}, one per endpoint (redistribution preserves incidence)
(c) Each edge $e \in H \backslash M$ charged by at most one edge in M^{*}

Analysis: summing up

- Charge of $o \in M^{*}$ to any edge $e \in H \leq 2 w(e)$
- Edges in $H \backslash M$ charged by at most one edge in M^{*}
- Edges in M charged by at most two edges in M^{*}

$$
w\left(M^{*}\right) \leq \sum_{x \in H \backslash M} 2 w(x)+\sum_{e \in M} 4 w(e)
$$

Analysis: summing up

- Charge of $o \in M^{*}$ to any edge $e \in H \leq 2 w(e)$
- Edges in $H \backslash M$ charged by at most one edge in M^{*}
- Edges in M charged by at most two edges in M^{*}

$$
\begin{gathered}
w\left(M^{*}\right) \leq \sum_{x \in H \backslash M} 2 w(x)+\sum_{e \in M} 4 w(e) \\
\text { Since } H \backslash M=\cup_{e \in M} R(e): \\
w\left(M^{*}\right) \leq \sum_{x \in H \backslash M} 2 w(x)+\sum_{e \in M} 4 w(e)=\sum_{e \in M} 2 w(R(e))+\sum_{e \in M} 4 w(e)
\end{gathered}
$$

Analysis: summing up

- Charge of $o \in M^{*}$ to any edge $e \in H \leq 2 w(e)$
- Edges in $H \backslash M$ charged by at most one edge in M^{*}
- Edges in M charged by at most two edges in M^{*}

$$
\begin{gathered}
w\left(M^{*}\right) \leq \sum_{x \in H \backslash M} 2 w(x)+\sum_{e \in M} 4 w(e) \\
\text { Since } H \backslash M=\cup_{e \in M} R(e): \\
w\left(M^{*}\right) \leq \sum_{x \in H \backslash M} 2 w(x)+\sum_{e \in M} 4 w(e)=\sum_{e \in M} 2 w(R(e))+\sum_{e \in M} 4 w(e)
\end{gathered}
$$

Since replacement edges have small weight $w(R(e)) \leq w(e)$:

$$
w\left(M^{*}\right) \leq \sum_{e \in M} 6 w(e)=6 w(M)
$$

Lower bounds

Communication complexity

Important technique for proving streaming lower bounds: reducing communication complexity problems to streaming problems

Lower bounds known in communication complexity yield streaming lower bounds

Example related to triangle counting:
To determine whether $T_{3}>0$, we need $\Omega\left(n^{2}\right)$ space, even using a randomized algorithm
$T_{3}=$ number of triangles

Alice has $n \times n$ matrix A Bob has $n \times n$ matrix B

A		
0	1	0
0	0	0
0	0	1

B		
0	0	0
1	1	0
0	0	1

Alice and Bob wish to determine if $A \cap B \neq \emptyset$

$$
A \cap B \neq \emptyset \quad \Leftrightarrow \quad \exists i, j: A[i, j]=1 \text { and } B[i, j]=1
$$

By a communication complexity lower bound, this requires $\Omega\left(n^{2}\right)$ bits even for protocols that are correct with probability 3/4

Is $T_{3}>0$? Graph construction

Alice has $n \times n$ matrix A Bob has $n \times n$ matrix B

$$
A \cap B \neq \emptyset ?
$$

A

0	1	0
0	0	0
0	0	1

0	0	0
1	1	0
0	0	1

Build graph $G=(V, E)$ as follows:

- $V=\left\{u_{1}, u_{2}, \ldots u_{n}\right\} \cup$ $\left\{v_{1}, v_{2}, \ldots v_{n}\right\} \cup$ $\left\{w_{1}, w_{2}, \ldots w_{n}\right\}$
- $E=\left\{\left(u_{i}, v_{i}\right): i \in[1, n]\right\} \cup$ $\left\{\left(u_{i}, w_{j}\right): A[i, j]=1\right\} \cup$ $\left\{\left(v_{i}, w_{j}\right): B[i, j]=1\right\}$

Triangles can only have the form $\left\langle u_{i}, v_{i}, w_{j}\right\rangle$
G contains a triangle $\Leftrightarrow \exists j: A[i, j]=1$ and $B[i, j]=1$

The reduction

$\mathcal{A}=s$-bit streaming algorithm that determines whether $T_{3}>0$
Use \mathcal{A} to solve set disjointness as follows:
(1) Alice creates a stream with blue and red edges, and runs the algorithm on the stream
(2) Then she sends s bits (her memory content) to Bob
(3) Bob runs the algorithm, starting from Alice memory content, on the remaining yellow edges
(9) He finally communicates 1 bit (the result) to Alice

Communication: $s+1$ bits
$\Rightarrow s=\Omega\left(n^{2}\right)$

Conclusions

More streaming algorithms...

Many others fundamentals have been studied, not covered here

- Different stream data types:
- geometric data (location streams)
- permutations
- graphs and hypergraphs
- Different streaming models:
- time-conscious models: sliding windows, exponential decay
- non adversarial models: random order streams, skewed streams
- Different streaming scenarios:
- distributed computations
- sensor network computations

Directions: time-conscious models

Which is more popular between
Star Wars - Episode IV (1977) and Mission Impossible Ghost Protocol (2011)?

Are N tickets sold in each of the last 20 years better than N tickets sold in the last week?

Recent past in some cases more important than distant past \Rightarrow windowed streaming:

- fixed size window
- decaying window: influence of items on the result decreases exponentially

Directions: graphs

Rich graph structure in Web data: conversations, friendships, video, images...

Billions of dollar industry applications rely on analyzing Web info
Graph problems are very challenging:

- More dense graph problems in semi-streaming (so far, matching, spanners, shortest paths and diameter)
- Space/passes tradeoffs: reduce or annotate the stream, taking multiple passes on less and less elements
- Look at graphs as matrices: can we compute fundamental properties such as eigenvalues?
- Many natural graph questions are "hard" in standard models: more realistic and tractable models?

Directions: distributed streams

Data progressively seen from distributed sources, a central monitor (coordinator) needs to estimate some quantity

Goal: minimize total number of bits communicated by the distributed streams to the coordinator

- Can we continuously track a (global) query over streams while bounding the communication with the coordinator?
- Can we design stream summary data structures that can be combined to summarize the union of streams?

Directions: beyond adversarial order

In practice, not all frequency distributions are worst case
Can we prove stronger algorithmic results for:

- Skewed data (e.g., "Zipfian" distribution)
- Small-world scale-free models for graphs
- Random order streams
- Semi-random streams: can we develop algorithms whose performance degrades smoothly as the stream ordering becomes "less-random"?

Results in these lectures: references

Reservoir sampling. J. S. Vitter. Random Sampling with a Reservoir, ACM Transactions on Mathematical Software, 11(1), 37-57, 1985

Heavy hitters. G. S. Manku \& R. Motwani. Approximate Frequency Counts over Data Streams, VLDB 2002

Distinct items. P. Flajolet, G. N. Martin. Probabilistic Counting Algorithms for Data Base Applications. J. Comput. Syst. Sci. 1985

Fer Frequency moments. N. Alon, Y. Matias and M. Szegedy. The Space Complexity of Approximating the Frequency Moments. J. Comput. Syst. Sci. 1999

吕
Triangle counting. L. Buriol, G. Frahling, S. Leonardi, A. Marchetti-Spaccamela, \& C. Sohler. Counting Triangles in Data Streams. PODS 2006

R Weighted matching. J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, J. Zhang. On graph problems in a semi-streaming model. Theor. Comput. Sci. 2005

Online resources

Too many papers to be comprehensive... Some surveys and interesting pointers:
(1) Data streams: algorithms and applications, S. Muthukrishnan http://www.cs.rutgers.edu/~muthu/
(2) Sketch techniques for massive data, G. Cormode Continuous distributed monitoring: a short survey, G. Cormode http://dimacs.rutgers.edu/~graham/
(3) Algorithms for data streams, C. Demetrescu \& I. Finocchi twiki.di.uniroma1.it/pub/Ing_algo/WebHome/DFchapter08.pdf
(4) Andrew McGregor's crash course and blog http://polylogblog.wordpress.com/2010/09/08/some-slides/
(5) IITK Workshop on Algorithms for Processing Massive Data Sets, IIT-Kanpur, India, 2009 http://www2.cse.iitk.ac.in/~fsttcs/2009/wapmds/
(6) Open problems in data streams, property testing, and related topics, Indyk et al., 2011 (the Bertinoro and Kanpur lists) http://polylogblog.wordpress.com/category/open-problems/

Thanks!

