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0.1 Abstract

In the data stream scenario, input arrives very rapidly and there is limited memory to store the input. Al-
gorithms have to work with one or few passes over the data, space less than linear in the input size or
time significantly less than the input size. In the past few years, a new theory has emerged for reasoning
about algorithms that work within these constraints on space, time, and number of passes. Some of the
methods rely on metric embeddings, pseudo-random computations, sparse approximation theory and com-
munication complexity. The applications for this scenario include IP network traffic analysis, mining text
message streams and processing massive data sets in general. Researchers in Theoretical Computer Science,
Databases, IP Networking and Computer Systems are working on the data stream challenges. This article is
an overview and survey of data stream algorithmics and is an updated version of [173].

0.2 Introduction

We study the emerging area of algorithms for processing data streams and associated applications, as an
applied algorithms research agenda. We begin with three puzzles.
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0.2.1 Puzzle 1: Finding Missing Numbers

Let π be a permutation of {1, . . . , n}. Further, let π−1 be π with one element missing. Paul shows Carole
π−1[i] in increasing order i. Carole’s task is to determine the missing integer. It is trivial to do the task if
Carole can memorize all the numbers she has seen thus far (formally, she has an n-bit vector), but if n is
large, this is impractical. Let us assume she has only a few—say O(log n)—bits of memory. Nevertheless,
Carole must determine the missing integer.

This starter puzzle has a simple solution: Carole stores

s =
n(n + 1)

2
−

∑

j≤i

π−1[j],

which is the missing integer in the end. Each input integer entails one subtraction. The total number of bits
stored is no more than 2 log n. This is nearly optimal because Carole needs at least log n bits in the worst
case since she needs to output the missing integer. (In fact, there exists the following optimal algorithm for
Carole using log n bits. For each i, store the parity sum of the ith bits of all numbers seen thus far. The final
parity sum bits are the bits of the missing number.) A similar solution will work even if n is unknown, for
example by letting n = maxj≤i π−1[j] each time.

Paul and Carole have a history. It started with the “twenty questions” problem solved in [198]. Paul,
which stood for Paul Erdos, was the one who asked questions. Carole is an anagram for Oracle. Aptly, she
was the one who answered questions. Joel Spencer and Peter Winkler used Paul and Carole to coincide with
Pusher and Chooser respectively in studying certain chip games in which Carole chose which groups the
chips falls into and Paul determined which group of chips to push. In the puzzle above, Paul permutes and
Carole cumulates.

Generalizing the puzzle a little further, let π−2 be π with two elements missing. The natural solution
would be for Carole to store s = n(n+1)

2 −
∑

j≤i π−2[j] and p = n! −
∏

j≤i π−2[j], giving two equations
with two unknown numbers, but this will result in storing large number of bits since n! is large. Instead,
Carole can use far fewer bits tracking

s =
n(n + 1)

2
−

∑

j≤i

π−2[j] and ss =
n(n + 1)(2n + 1)

6
−

∑

j≤i

(π−2[j])2

In general, what is the smallest number of bits needed to identify the k missing numbers in π−k? Fol-
lowing the approach above, the solution is to maintain power sums

sp(x1, . . . , xk) =
k∑

i=1

(xi)p,

for p = 1, . . . , k and solving for xi’s. A different method uses elementary symmetric polynomials [167].
The ith such polynomial σi(x1, . . . , xk) is the sum of all possible i term products of the parameters, i.e.,

σi(x1, . . . , xk) =
∑

j1<...<ji

xj1 · · · xji .

Carole continuously maintains σi’s for the missing k items in field Fq for some prime n ≤ q ≤ 2n, as Paul
presents the numbers one after the other (the details are in [167]). Since

∏

i=1,...,k

(z − xi) =
k∑

i=0

(−1)iσi(x1, . . . , xk)zk−i,
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Carole needs to factor this polynomial in Fq to determine the missing numbers. No deterministic algorithms
are known for the factoring problem, but there are randomized algorithms take roughly O(k2 log n) bits
and time [210]. The elementary symmetric polynomial approach above comes from [167] where the authors
solve the set reconciliation problem in the communication complexity model. The subset reconciliation
problem is related to our puzzle.

Generalizing the puzzle, Paul may present a multiset of elements in {1, · · · , n} with a single missing
integer, i.e., he is allowed to re-present integers he showed before; Paul may present updates showing which
integers to insert and which to delete, and Carole’s task is to find the integers that are no longer present; etc.
All of these problems are no longer (mere) puzzles; they are derived from motivating data stream applica-
tions.

0.2.2 Puzzle 2: Fishing

Say Paul goes fishing. There are many different fish species U = {1, · · · , u}. Paul catches one fish at a time,
at ∈ U being the fish species he catches at time t. ct[j] = |{ai|ai = j, i ≤ t}| is the number of times he
catches the species j up to time t. Species j is rare at time t if it appears precisely once in his catch up to
time t. The rarity ρ[t] of his catch at time t is the ratio of the number of rare j’s to u:

ρ[t] =
|{ j | ct[j] = 1 }|

u
.

Paul can calculate ρ[t] precisely with a 2u-bit vector and a counter for the current number of rare species,
updating the data structure in O(1) operations per fish caught. However, Paul wants to store only as many
bits as will fit his tiny suitcase, i.e., o(u), preferably O(1) bits.

Suppose Paul has a deterministic algorithm to compute ρ[t] precisely. Feed Paul any set S ⊂ U of fish
species, and say Paul’s algorithm stores only o(u) bits in his suitcase. Now we can check if any i ∈ S by
simply feeding Paul i and checking ρ[t + 1]: the number of rare items decreases by one if and only if i ∈ S.
This way we can recover entire S from his suitcase by feeding different i’s one at a time, which is impossible
in general if Paul had only stored o(|S|) bits. Therefore, if Paul wishes to work out of his one suitcase, he
can not compute ρ[t] exactly. This argument has elements of lower bound proofs found in the area of data
streams.

However, proceeding to the task at hand, Paul can approximate ρ[t]. Paul picks k random fish species
each independently, randomly with probability 1/u at the beginning and maintains the number of times each
of these fish types appear in his bounty, as he catches fish one after another. Say X1[t], . . . ,Xk[t] are these
counts after time t. Paul outputs ρ̂[t] = |{ i | Xi[t]=1 }|

k as an estimator for ρ. We have,

Pr(Xi[t] = 1) =
|{j | ct[j] = 1}|

u
= ρ[t],

for any fixed i and the probability is over the fish type Xi. If ρ[t] is large, say at least 1/k, ρ̂[t] is a good
estimator for ρ[t] with arbitrarily small ε and significant probability.

However, typically, ρ is unlikely to be large because presumably u is much larger than the species found
at any spot Paul fishes. Choosing a random species from {1, . . . , u} and waiting for it to be caught is
ineffective. We can make it more realistic by redefining rarity with respect to the species Paul in fact sees in
his catch. Let

γ[t] =
|{ j | ct[j] = 1 }|
|{ j | ct[j] %= 0 }|

.

As before, Paul would have to approximate γ[t] because he can not compute it exactly using a small number
of bits. Following [24], define a family of hash functions H ⊂ [n] → [n] (where [n] = {1, . . . , n}) to be
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min-wise independent if for any X ⊂ [n] and x ∈ X, we have

Prh∈H [h(x) = min h(X)] =
1
|X| ,

where, h(X) = {h(x) : x ∈ X}. Paul chooses k min-wise independent hash functions h1, h2, . . . , hk for
some parameter k to be determined later and maintains h∗i (t) = minj≤t hi(aj) at each time t, that is, min
hash value of the multi-set {. . . , at−2, at−1, at}. He also maintain k counters C1(t), C2(t), . . . , Ck(t); Ci(t)
counts an item with (the current value of) hash value h∗i (t) in {. . . , at−2, at−1, at}. It is trivial to maintain
both h∗

i (t) and Ci(t) as t progresses and new items are seen. Let

γ̂[t] =
|{ i | 1 ≤ i ≤ k, Ci(t) = 1 }|

k
.

Notice that Pr(Ci(t) = 1) is the probability that hi(t) is the hash value of one of the items that appeared pre-
cisely once in a1, ..., at which equals |{ j | c[j]=1 }|

|{ j | c[j] %=0 }| = γ[t]. Hence, γ̂[t] is a good estimator for γ[t] provided
γ[t] is large, say at least 1/k. That completes the sketch of the Paul’s algorithm.

The remaining detail is that Paul needs to pick hi’s. If Paul resorts to his tendency to permute, i.e., if he
picks a randomly chosen permutation π over [u] = {1, . . . , u}, then hi’s will be min-wise hash functions.
However, it requires Θ(u log u) bits to represent a random permutation from the set of all permutations over
[u]. Thus the number of bits needed to store the hash function will be close to u which is prohibitive!

To overcome this problem, Paul picks a family of approximate min-hash functions. A family of hash
functions, H ⊂ [n] → [n] is called ε-min-wise independent if for any X ⊂ [n] and x ∈ X, we have

Prh∈H [h(x) = min h(X)] =
1
|X| (1 ± ε).

Indyk [132] presents a family of ε-min-wise independent hash functions such that any function from this
family can be represented using O(log u log(1/ε)) bits only and each hash function can be computed effi-
ciently in O(log(1/ε)) time. This family is a set of polynomials over GF (u) of degree O(log(1/ε)). Plug-
ging this result into the solution above, Paul uses O(k log u log(1/ε)) bits and estimates γ̂[t] ∈ (1 ± ε)γ[t],
provided γ[t] is large, that is, at least 1/k. It will turn out that in applications of streaming interest, we need
to only determine if γ[t] is large, so this solution will do.

As an aside, the problem of estimating the rarity is related to a different problem. Consider fishing
again and think of it as a random sampling process. There is an unknown probability distribution P on the
countable set of fish types with pt being the probability associated with fish type t. A catch is a sample
S fishes drawn independently from fish types according to the distribution P . Let c[t] be the number of
times fish type t appears in S. The problem is to estimate the probability of fish type t being the next catch.
Elementary reasoning would indicate that this probability is c[t]/|S|. However, it is unlikely that all (of
the large number of) fish types in the ocean are seen in Paul’s catch, or even impossible if the number of
fish types is infinite. Hence, there are fish types t∗ that do not appear in the sample (i.e., c[t∗] = 0) and
the elementary reasoning above would indicate that they have probability 0 of being caught next. This is a
conundrum in the elementary reasoning since t∗ is indeed present in the ocean and has nonzero probability
of being caught in a given probability distribution P . Let m =

∑
t∗ %∈S p∗t . The problem of estimating m is

called the missing mass problem. In a classical work by Good (attributed to Turing too) [111], it is shown
that m is estimated by s[1]/|S|, where s[k] is the number of fish types that appear k times in S, provably with
small bias; recall that our rarity γ is closely related to s[1]/|S|. Hence, our result here on estimating rarity
in data streams is of independent interest in estimating the missing mass. See recent work on Turing-Good
estimators in [183].
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Once we generalize the fishing puzzle—letting the numerator be more generally |{ j | ct[j] ≤ α }| for
some α, letting Carole go fishing too, or letting Paul and Carole throw fish back into the Ocean as needed—
there are some real data streaming applications [67]. In the reality of data streams, one is confronted with
fishing in a far larger domain, that is, u is typically very large.

0.2.3 Puzzle 3: Pointer and Chaser

We study yet another game between Paul and Carole. There are n + 1 positions numbered 1, ..., n + 1 and
for each position i, Paul points to some position given by P [i] ∈ {1, 2, · · · , n}. By the Pigeonhole principle,
there must exist at least two positions i, j such that P [i] = P [j] = D say, for a duplicate. Several different
duplicates may exist, and the same duplicate may appear many times since P is an arbitrary many-to-one
function. Carole’s goal is to find any one duplicate using O(log n) bits of storage and using no more than
O(n) queries to Paul.

The trivial solution to this problem is to take each item i ∈ {1, . . . , n} in turn and count how many
positions j have P [j] = i by querying P [1], P [2], . . . , P [n + 1] in turn. This solution takes O(log n) bits of
extra storage but needs Θ(n) queries per i in the worst case for a total of O(n2) queries in all. One of the
interesting aspects of this solution is that P is accessed in passes, that is, we query P [1], P [2], . . . , P [n + 1]
in order and repeat that many times.

One suspects that this problem should be solvable along the lines in Section 0.2.1 using a few passes.
The only such solution we know is not optimally efficient and works as follows. In the first pass by querying
P [1], P [2], . . . , P [n + 1] in order, Carole counts the number of items below n/2 and those above n/2.
Whichever counter is strictly larger than n/2 (one such counter exists) shows a range of size n/2 with a
duplicate. Now we recurse on the range with a duplicate in the next pass and so on. This method uses only
O(log n) bits of storage (2 counters together with the endpoints of the range of interest in the current pass),
but needs O(n) queries per pass, taking O(n log n) queries in all. Further, this solution uses O(log n) passes.
This solution can be generalized to use O(k log n) bits of storage and use only O(logk n) passes. As it is,
this approach similar to Section 0.2.1 does not meet the desired bound of O(n) queries.

Jun Tarui [202] has presented a lower bound on the number of passes needed to solve this problem.
Consider odd n and a restricted class of inputs such that the numbers in the first half (and likewise the
second half) are distinct. Hence the duplicate item must appear once in the first half and once in the second
half. A solution with s bits of memory and r passes implies a two-party protocol with r rounds and s
communication bits in each round for the game where Paul and Carole get (n + 1)/2-sized subsets PA and
CA respectively of {1, ..., n} and the task is to find and agree on some w that is in the intersection of PA
and CA. Such a protocol corresponds to a monotone (i.e. AND/OR) circuit computing the Majority function
with depth at most r and fan-in at most 2s. This leads to a lower bound of Ω(log n/ log log n) passes for
s = O(log n).

In the final solution, Carole does not count, but chases pointers. Start chasing the pointers from X = n+1
going successively to the location pointed to by P [X] for current X. Now the problem of finding a duplicate
is the same as that of finding if a “linked list” has a loop not containing the start “node” n + 1. This is easy
to solve in O(n) queries to P with 2 pointers. Notice that this solution makes use of the random access
given by P [X]. (As an aside, the problem is interesting if P [i] ∈ S where S is some set of size n, not
necessarily {1, 2, . . . , n}. Then, we do not know of an algorithm that takes less than O(n2) time within our
space constraints.)

This puzzle is related to Pollard’s rho method for determining the greatest common divisor between
integers [91]. The primary focus here is on separating the complexity of the problem using passes vs using
random accesses.
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0.2.4 Lessons

The missing-number puzzle in Section 0.2.1 shows the case of a data stream problem that can be deter-
ministically solved precisely with O(log n) bits (when k = 1, 2 etc.). Such algorithms—deterministic and
exact—are uncommon in data stream processing. In contrast, the puzzle in Section 0.2.2 is solved only
up to an approximation using a randomized algorithm in polylog bits. This—randomized and approximate
solution—is more representative of currently known data stream algorithms. Further, the estimation of γ in
Section 0.2.2 is accurate only when it is large; for small γ, the estimate γ̂ is arbitrarily bad. This points to a
feature that generally underlies data stream algorithmics. Such features—which applied algorithmicists need
to keep in mind while formulating problems to address data stream issues—will be discussed in more detail
later. In Section 0.2.3, the puzzle demonstrates the difference between passes (the best known solution using
only passes takes O(n log n) time) and random access (solution takes O(n) time using random access).

0.3 Map

Section 0.4 describes the data stream phenomenon, and avoids specific models here because the phenomenon
is real. Models are the means and may change over time. Section 0.5 will present currently popular data
stream models, motivating scenarios and other applications for algorithms in these models beyond dealing
with data streams.

Section 0.6 abstracts mathematical ideas, algorithmic techniques as well as lower bound approaches
for data stream models; together they comprise the foundation of the theory of data streams. Section 0.7
discusses applied work on data streams from different systems areas.

Section 0.8 contains new directions and open problems that arise in several research areas when the data
streaming perspective is applied. Some traditional areas get enriched, new ones emerge. Conclusions are in
Section 0.10.

0.4 The Data Stream Phenomenon

Data stream represents input data that comes at a very high rate. High rate means it stresses communication
and computing infrastructure, so it may be hard to

• transmit (T) the entire input to the program,
• compute (C) sophisticated functions on large pieces of the input at the rate it is presented, and
• store (S), capture temporarily or archive all of it long term.

Most people typically do not think of this level of stress in TCS capacity. They view data as being stored in
files. When transmitted, if links are slow or communication is erroneous, we may have delays but correct
and complete data eventually gets to where it should go. If computing power is limited or the program has
high complexity, it takes long time to get the desired response, but in principle, we would get it. Also, we
save all the data we need. This simplified picture of TCS requirements is reasonable because so far, the
need has balanced available resources: we have produced the amount of data that technology we could ship,
process, store, or we have the patience to manipulate.

There are two recent developments that have confluenced to produce new challenges to the TCS infras-
tructure.

• Ability to generate automatic, highly detailed data feeds comprising continuous updates.

This ability has been built up over the past few decades beginning with networks that spanned
banking and credit transactions. Other dedicated network systems now provide massive data
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streams: satellite-based high resolution measurement of earth geodetics, radar derived meteo-
rological data, continuous large scale astronomical surveys in optical, infrared and radio wave-
lengths, and atmospheric radiation measurements.
The Internet is a general purpose network system that has distributed both the data sources as well
as the data consumers over millions of users. It has scaled up the rate of transactions tremendously
generating multiple streams: browser clicks, user queries, IP traffic logs, email data and traffic
logs, web server and peer-to-peer downloads etc. The Internet also makes it to easier to deploy
special purpose, continuous observation points that get aggregated into vast data streams: for
example, financial data comprising individual stock, bond, securities and currency trades can
now get accumulated from multiple sources over the internet into massive streams. Wireless
access networks are now in the threshold of scaling this phenomenon even more. In particular, the
emerging vision of sensor networks combines orders of more observation points (sensors) than
are now available with wireless and networking technology and is posited to challenge TCS needs
even more. Oceanographic, bio, seismic and security sensors are such emerging examples. Mark
Hansen’s recent keynote talk discusses Slogging, citizen-initiated sensing, in good detail [123].

• Need for sophisticated analyses of update streams in near-real time.

With traditional data feeds, one modifies the underlying data to reflect the updates, and real time
queries are fairly simple such as looking up a value. This is true for the banking and credit trans-
actions. More complex analyses such as trend analysis and forecasting are typically performed
offline in warehouses. However, the automatic data feeds that generate modern data streams
arise out of monitoring applications, be they atmospheric, astronomical, networking, financial
or sensor-related. They need to detect outliers, extreme events, fraud, intrusion, and unusual or
anomalous activity, monitor complex correlations, track trends, support exploratory analyses and
perform complex tasks such as classification and signal analysis. These are time critical tasks
and need to be done in near-real time to accurately keep pace with the rate of stream updates and
reflect rapidly changing trends in the data.

These two factors uniquely challenge the TCS needs. We in the computer science community have
traditionally focused on scaling in size: how to efficiently manipulate large disk-bound data via suitable
data structures [211], how to scale to databases of petabytes [112], synthesize massive data sets [113], etc.
However, far less attention has been given to benchmarking, studying performance of systems under rapid
updates with near-real time analyses. Even benchmarks of database transactions [217] are inadequate.

There are ways to build workable systems around these TCS challenges. TCS systems are sophisticated
and have developed high-level principles that still apply. Make things parallel. A lot of data stream process-
ing is highly parallelizable in computing (C) and storage (S) capacity; it is somewhat harder to parallelize
transmission (T) capacity on demand. Control data rate by sampling or shedding updates. High energy par-
ticle physics experiments at Fermilab and CERN will soon produce 40TBytes/s which will be reduced by
real time hardware into 800Gb/s data stream. Statisticians have the sampling theory;it is now getting applied
to IP network streams. Round data structures to certain block boundaries. For example, the “Community
of Interest” approach to finding fraud in telephone calls uses a graph data structure up to and including the
previous day to perform the current day’s analysis, thereby rounding the freshness of the analysis to period
of a day [62]. This is an effective way to control the rate of real-time data processing and use pipelining. Use
hierarchically detailed analysis. Use fast but simple filtering or aggregation at the lowest level and slower
but more sophisticated computation at higher levels with smaller data. This hierarchical thinking stacks up
against memory hierarchy nicely. Finally, often asking imaginative questions can lead to effective solutions
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within any given resource constraint, as applied algorithms researchers well know.
Nevertheless, these natural approaches are ultimately limiting. They may meet ones’ expectations in

short term, but we need to understand the full potential of data streams for the future. Given a certain amount
of resources, a data stream rate and a particular analysis task, what can we (not) do? Most natural approaches
to dealing with data streams discussed above involves approximations: what are algorithmic principles for
data stream approximation? One needs a systematic theory of data streams to get novel algorithms and to
build data stream applications with ease and proven performance. What follows is an introduction to the
emerging theory of data streams.

The previous few paragraphs presented a case for data stream research. Readers should use their imagi-
nation and intuit the implications of data streaming. Imagine that we can (and intend to) collect so much data
that we may be forced to drop a large portion of it, or even if we could store it all, we may not have the time
to scan it before making judgements. That is a new kind of uncertainty in computing beyond randomization
and approximation.

0.5 Data Streaming: Formal Aspects

We define various models for dealing with data streams and present a motivating application.

0.5.1 Data Stream Models

The input stream a1, a2, . . . arrives sequentially, item by item, and describes an underlying signal A, a one-
dimensional function A : [1 . . . N ] → R. Input may comprise multiple streams or multidimensional signals,
but we do not consider those variations for now. Models differ on how the ai’s describe A.

• Time Series Model. Each ai equals A[i] and they appear in increasing order of i. This is a suitable
model for time series data where, for example, you are observing the traffic volume at an IP link
every 5 minutes, or NASDAQ volume of trades each minute, etc. At each such time “period”, we
observe the next new update.

• Cash Register Model. Here ai’s are increments to A[j]’s. Think of ai = (j, Ii), Ii ≥ 0, to mean
Ai[j] = Ai−1[j] + Ii where Ai is the state of the signal after seeing the ith item in the stream.
Much as in a cash register, multiple ai’s could increment a given A[j] over time.3 This is perhaps
the most popular data stream model. It fits applications such as monitoring IP addresses that
access a web server, source IP addresses that send packets over a link etc. because the same IP
addresses may access the web server multiple times or send multiple packets on the link over
time. This model has appeared in literature before, but was formally christened in [102] with this
name. A special, simpler case of this model is when ai’s are an arbitrary permutation of A[j]’s,
that is, items do not repeat in the stream, but they appear out of order.

• Turnstile Model. Here ai’s are updates to A[j]’s. Think of ai = (j, Ii), to mean Ai[j] =
Ai−1[j]+ Ii where Ai is the signal after seeing the ith item in the stream, and Ii may be positive
or negative. This is the most general model. It is mildly inspired by a busy NY subway train sta-
tion where the turnstile keeps track of people arriving and departing continuously. At any time, a
large number of people are in the subway. This is the appropriate model to study fully dynamic
situations where there are inserts as well deletes, but it is often hard to get powerful bounds in
this model. This model too has appeared before under different guises, but it gets christened here

3For intuition, say j ∈ {pennies, nickels, dimes}. The signal A represents the number of coins in the cash register at any instant of time. Each
new input adds some coins of a particular type to the cash register.
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with its name.
There is a small detail:

– In some cases, Ai[j] ≥ 0 for all i, at all times. We refer to this as the strict Turnstile
model.
For example, in a database, you can only delete a record you inserted. Hence, the distri-
bution of the number of records with a given attribute value can not be negative.

– On the other hand, there are instances when streams may be non-strict, that is, Ai[j] < 0
for some i.
This happens for instance as an artifact of studying say A1−A2 with streams A1 and A2

distributed at two different sites respectively as cash register or strict turnstile streams.

We will avoid making a distinction between the two Turnstile models unless necessary. Typically
we work in the strict Turnstile model unless the non-strict model is explicitly needed.

The models in decreasing order of generality are as follows: Turnstile, Cash Register, Time Series. (A
more conventional description of models appears in [102].) From a theoretical point of view, of course one
wishes to design algorithms in the Turnstile model, but from a practical point of view, one of the other
models, though weaker, may be more suitable for an application. Furthermore, it may be (provably) hard to
design algorithms in a general model, and one may have to settle for algorithms in a weaker model.

We wish to compute various functions on the signal A at different times during the stream. These func-
tions can be thought of as queries to the data structure interspersed with the updates. There are different
performance measures.

• Processing time per item ai in the stream. (Proc. Time)
• Space used to store the data structure on At at time t. (Storage)
• Time needed to compute functions on A. (Compute or query time.)

There is also the work space needed to compute the function or execute the query. We do not explicitly
discuss this because typically this is of the same order as the storage.

Here is a rephrasing of our solutions to the two puzzles at the start in terms of data stream models and
performance measures.

The puzzle in Section 0.2.1 is in the cash register model (although items do not repeat). The function
to be computed is {j|A[j] = 0}, given |{j|A[j] = 0}| ≤ k. For the simplest solution we presented for
k = 1, the processing time per item and storage was O(log n) and the compute time was O(1). The function
is computed at the end of the stream, so compute time here applies only once. In the fishing exercise in
Section 0.2.2, it is again the cash register model. The function to be computed is γ[t] at any time t. Processing
time per item was O(k log(1/ε)), storage was O(k log u log(1/ε)) and compute time was O(k) to estimate
γ[t] to 1+ε approximation provided it was large (at least 1/k) with desired, fixed probability of success. The
query to estimate γ[t] may arise at any time t during the stream, so compute time applies each time γ[t] is
estimated. The puzzle in Section 0.2.3 does not fit into the data stream models above since its solution uses
multiple passes or random access over the signal. The discussion above is summarized in the table below.

Puzzle Model Function Proc. Time Storage Compute Time
Section 0.2.1 cash register k = 1, {j|A[j] = 0} O(log N) O(log N) O(1)
Section 0.2.2 cash register γ[t] O(k log(1/ε)) O(k log u log(1/ε)) O(k)
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We can now state the ultimate desiderata that are generally accepted:

At any time t in the data stream, we would like the per-item processing time, storage as well as the
computing time to be simultaneously o(N, t), preferably, polylog(N, t).

Readers can get a sense for the technical challenge this desiderata sets forth by contrasting it with a tradi-
tional dynamic data structure like say a balanced search tree which processes each update in O(log N) time
and supports query in O(log N) time, but uses linear space to store the input data. Data stream algorithms
can be similarly thought of as maintaining a dynamic data structure, but restricted to use sublinear storage
space and the implications that come with it. Sometimes, the desiderata is weakened so that:

At any time t in the data stream, per-item processing time and storage need to be simultaneously
o(N, t) (preferably, polylog(N, t)), but the computing time may be larger.

This was proposed in [125], used in few papers, and applies in cases where computing is done less
frequently than the update rate. Still, the domain N and input t being so large that they warrant using only
polylog(N, t) storage may in fact mean that computing time even linear in the domain or input may be
prohibitive in applications for a particular query.

A comment or two about the desiderata follows.
First, why do we restrict ourselves to only a small (sublinear) amount of space? Typically, one says this

is because the data stream is so massive that we may not be able to store all of what we see. That argument is
facetious. Even if the data stream is massive, if it describes a compact signal (i.e., N is small), we can afford
space linear in N , and solve problems within our conventional computing framework. For example, if we
see a massive stream of peoples’ IDs and their age in years, and all we wish to calculate were functions on
peoples’ age distribution, the signal is over N less than say 150, which is trivial to manage. What makes data
streams unique is that there are applications where data streams describe signals over a very large universe.
For example, N may be the

• number of source, destination IP address pairs (which is currently 264 and may become larger if
we adopt larger IP addresses in the future),

• number of time intervals where certain observations were made (which increases rapidly over
time), or

• http addresses on the web (which is potentially infinite since web queries get sometimes written
into http headers).

More generally, and this is significantly more convincing, data streams are observations over multiple at-
tributes and any subset of attributes may comprise the domain of the signal in an application and that leads
to potentially large domain spaces even if individual attribute domains are small. As we will see, there are
serious applications where available memory is severely limited. It is the combination of large universe size
of the signals and the limited available memory that leads to the data stream models.

Second, why do we use the polylog function? This is because the log of the input size is the lower bound
on the number of bits needed to index and represent the signal, and poly gives us a familiar room to play.

Finally, there is a cognitive analogy that explains the desiderata qualitatively, and may be appealing.
As human beings, we perceive each instant of our life through an array of sensory observations (visual,
aural, nervous, etc). However, over the course of our life, we manage to abstract and store only part of the
observations, and function adequately even if we can not recall every detail of each instant of our lives. We
are biological data stream processing machines.
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0.5.2 Motivating Scenarios

There are many motivating scenarios for data streams, some more fitting than the others. The one that has
been worked out to the most detail is that of traffic analysis in the Internet as described below.

The Internet comprises routers connected to each other that forward IP packets. Managing such net-
works needs real time understanding of faults, usage patterns, and unusual activities in progress. This needs
analyses of traffic and fault data in real time. Consider the traffic data. Traffic at the routers may be seen at
many levels.

(1) At the finest level, we have the packet log. Each IP packet has a header that contains source
and destination IP addresses, ports and other information. The packet log is a list of the relevant
header attributes on the series of IP packets sent via a router.

(2) At a higher level of aggregation, we have the flow log. Each flow is a collection of packets with
same values for certain key header attributes such as the source and destination IP addresses,
seen within a short span of each other. The flow log comprises cumulative information about the
number of bytes and packets sent, start time, end time, and protocol type for each flow passing
through a router.

(3) At the highest level, we have the SNMP log, which is the aggregate data of the number of bytes
sent over each link every few minutes.

Many other logs can be generated from IP networks (fault alarms, CPU usage at routers, etc), but the exam-
ples above suffice for our discussion.

One can collect and store SNMP data: one could store SNMP data up to a year or two for a Tier 1
Internet Service Provider without stressing one’s laptop. The arguments we presented for data streaming
apply to flow and packet logs which are far more voluminous than the SNMP log. The fundamental issue is
that packet headers have to processed at the rate at which they flow through the IP routers. OC48 backbone
routers work at about 2.5Gbps speed handling up to a few million packets a second comprising several
hundreds of thousands of concurrent flows during normal times. Memory that has access times compatible
with IP packet forwarding times are expensive and are used sparingly in the routers. This presents challenges
for both approaches of (a) taking the dump of the traffic logs at packet level and populating a backend
database for offline analysis, and (b) analyzing the traffic on line at or near the router at near real time.
A more detailed description and defense of streaming data analysis in IP network traffic data is presented
in [80, 103]. In general, making a case for a particular application for theoretical models is tricky, but over
the past few years, there seems to be significant convergence that data stream methods are useful for IP
traffic analysis.

Here are some examples of queries one may want to ask on IP traffic logs.

(1) How much HTTP traffic went on a link today from a given range of IP addresses? This is an
example of a slice and dice query on the multidimensional time series of the flow traffic log.

(2) How many distinct IP addresses used a given link to send their traffic from the beginning of the
day, or how many distinct IP addresses are currently using a given link in ongoing flows?

(3) What are the top k heaviest flows during the day, or currently in progress? Solution to this prob-
lem in flow logs indirectly provides a solution to the puzzle in Section 0.2.1.

(4) How many flows comprised one packet only (i.e., rare flows)? Closely related to this is the
question: Find the number (or fraction) of TCP/IP SYN packets without matching ACK packets.
This query is motivated by the need to detect denial-of-service attacks on networks as early as
possible. This problem is one of the motivations for the fishing exercise in Section 0.2.2.
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(5) How much of the traffic yesterday in two routers was common or similar? This is a distributed
query that helps track the routing and usage in the network. A number of notions of “common”
or “similar” apply.

(6) What are the top k correlated link pairs in a day, for a given correlation measure. In general a
number of correlation measures may be suitable.

(7) For each source IP address and each five minute interval, count the number of bytes and number
of packets related to HTTP transfers. This is an interesting query: how do we represent the output
which is also a stream and what is a suitable approximation in this case?

The questions above is a sparse sample of interesting questions; by being imaginative or being informed
by network practitioners, one can discover many other relevant ones.

Let us formalize one of the examples above in more detail in the data stream terminology, say the
question (2) above.

Example 1. Consider the question: how many distinct IP addresses used a given link to send their traffic
since the beginning of the day? Say we monitor the packet log. Then the input stream a1, a2, . . . is a sequence
of IP packets on the given link, with packet ai having the source IP address si. Let A[0 . . . N − 1] be the
number of packets sent by source IP address i, for 0 ≤ i ≤ N − 1, initialized to all zero at the beginning
of the day. Each packet ai adds one to A[si]; hence, the model is Cash Register. Counting the number of
distinct IP addresses that used the link during the day thus far can be solved by determining the number of
nonzero A[i]’s at any time. (Alternately, we could consider each new packet ai to be setting A[si] to 1. We
have used a more general signal to be useful for the example below.)

Example 2. Consider the question: how many distinct IP addresses are currently using a given link?
More formally, at any time t, we are focused on IP addresses si such that some flow fj began at time before
t and will end after t, and it originates at si. In the packet log, there is information to identify the first as
well as the last packets of a flow. (This is an idealism; in reality, it is sometimes hard to tell when a flow has
ended.) Now, let A[0 . . . N − 1] be the number of flows that source IP address i is currently involved in, for
0 ≤ i ≤ N − 1, initialized to all zero at the beginning of the day. If packet ai is the beginning of a flow, add
one to A[sj ] where sj is the source of packet ai; if it is the end of the flow, subtract one from A[sj] where
sj is the source of packet ai; else, do nothing. Thus the model is Turnstile. Counting the number of distinct
IP addresses that are currently using a link can be solved by determining the number of nonzero A[i]’s at
any time.

Similarly other examples above can be formalized in terms of the data stream models and suitable func-
tions to be computed. This is a creative process: the same example may be formalized in terms of different
signals with associated functions to be computed, each formulation with potentially unique complexity. A
recent paper represents a nice exercise showing a set of case studies, in each case, starting from a network
traffic analysis problem and mapping it neatly to a data stream instance [157]. Another recent paper maps
network security problems to data stream queries [141].

There has been some frenzy lately about collecting and analyzing IP traffic data in the data stream
context. Analyzing traffic data is not new. In telephone and cellular networks, call detail records (CDRs) are
routinely collected for billing purposes, and they are analyzed for sizing, forecasting, troubleshooting, and
network operations. The angst with IP traffic is that the data is far more voluminous, and billing is not usage
based. The reason to invest in measurement and analysis infrastructure is mainly for network maintenance,
value-added services and more recently, network security. So, the case for making this investment has to be
strong, and it is now being made across the communities and service providers. Both Sprint (the IPMON
project) and AT&T seem to be engaged on this topic. That presents the possibility of getting suitable data
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stream sources in the future, at least within these companies. Other smaller companies are also developing
methods for these large service providers.

0.5.3 Other Data Streaming Applications

The IP traffic analysis case is perhaps the most developed application for data streaming. Consider a different
data streaming scenario from Section 0.4: it is a mental exercise to identify suitable analyses and develop
data stream problems from them. This is an opportunity to be imaginative. For example,

Exercise 1. Consider multiple satellites continuously gathering multiple terrestrial, atmospheric and ocean-
surface observations of the entire earth. What data analysis questions arise with these spatial data streams?

This is a good homework exercise. The queries that arise are likely to be substantially different from the
ones listed above for the IP traffic logs case. In particular, problems naturally arise in the area of Computa-
tional Geometry: an example is detecting the changes in the shape of clouds over time. A wealth of (useful,
fundamental) research remains to be done. Algorithms for geometric streams have begun emerging the past
year.

Those who want more mental exercises can consider the following three exercises.

Exercise 2. We have a stream of financial transactions including securities, options etc. collected from
multiple sources. What are interesting data analysis queries on such data streams?

Many financial companies already face and deal with the challenges; database community has begun
addressing some of these problems in research and demos [16] recently. The problems here seem less to do
with bounded space and more to do with real time processing.

Exercise 3. We have continuous physical observations—temperature, pressure, EMG/ECG/EEG signals
from humans, humidity—from an ad hoc network of sensors. What are interesting data analysis queries on
such data streams?

The area of sensor-based data collection is moving from concept to prototypes and slowly beyond. See
Zebranet [142], Duck Island [160] and in loco monitoring [36] for some examples and more pointers. More
and more data stream algorithms are emerging in the context of sensor streams. In particular, the space and
power constraints on sensors are real. Also, there are communication constraints which enrich the class of
distributed data stream problems of interest.

Exercise 4. We have distributed servers each of which processes a stream of text files (instant messages,
emails, faxes, say) sent between users. What are interesting data analysis queries on such text data streams?

For example, one may now look for currently popular topics of conversation in a subpopulation. More
generally, this scenario involves text processing on data streams which entails information retrieval prob-
lems.

We need to develop the examples above in great detail, much as we have done with the IP traffic analysis
scenario earlier. We are far from converging on the basic characteristics of data streams or a building block
of queries that span different application scenarios, but each of these applications point to new algorithmic
problems and challenges.
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0.5.4 Other Applications for Data Stream Models

The data stream models are suitable for other applications besides managing rapid, automatic data feeds.
In particular, they find applications in the following two scenarios (one each for cash register and Turnstile
models).

One pass, Sequential I/O. Besides the explicit data stream feeds we have discussed thus far, there are
implicit streams that arise as an artifact of dealing with massive data. It is expensive to organize and access
sophisticated data structures on massive data. Programs prefer to process them in one (or few) scans. This
naturally maps to the (Time Series or Cash Register) data stream model of seeing data incrementally as a
sequence of updates. Disk, bus and tape transfer rates are fast, so one sees rapid updates (inserts) when
making a pass over the data. Thus the data stream model applies to some extent.

Focus on one (or few) pass computing is not new. Automata theory studied the power of one versus
two way heads. Sorting tape-bound data relied on making few passes. Now we are seeking to do more
sophisticated computations, with far faster updates.

This application differs from the data streaming phenomenon we saw earlier in a number of ways. First,
in data streaming, the analysis is driven by monitoring applications and that determines what functions you
want to compute on the stream. In contrast, here, you may have in mind to compute any common function
(say transitive closure or eigenvalues) and want to do it on massive data in one or more passes. Thus, there
is greater flexibility in the functions of interest. Second, programming systems that support scans often have
other supporting infrastructure such as a significant amount of fast memory etc. which may not exist in IP
routers or satellites that generate data streams. Hence the one pass algorithms may have more flexibility.
Finally, the rate at which data is consumed can be controlled and smoothed, data can be processed in chunks
etc. In contrast, some of the data streams are more phenomena-driven, and can potentially have higher and
more variable update rates. So, the data stream model applies to one pass algorithms, but some of the specific
concerns are different.

Monitoring database contents. Consider a large database undergoing transactions: inserts/deletes and
queries. In many cases, we would like to monitor the database contents. As an example, consider selectivity
estimation. Databases need fast estimates of result sizes for simple queries in order to determine an efficient
query plan for complex queries. The estimates for simple queries have to be generated fast, without running
the queries on the entire database which will be expensive. This is the selectivity estimation problem. It maps
to the data stream scenario as follows. The inserts or deletes in the database are the updates in the (Turnstile
model of a data) stream, and the signal is the database. The selectivity estimation query is the function to be
computed on the signal. Data stream algorithms therefore have the desirable property that they represent the
signal (i.e., the database) in small space and the results are obtained without looking at the database, in time
and space significantly smaller than the database size and scanning time. Thus, data stream algorithms in the
Turnstile model naturally find use as algorithms for selectivity estimation. Readers should not dismiss the
application of monitoring database content as thinly disguised data streaming. This application is motivated
even if updates proceed at a slow rate; it relies only on small space and fast compute time aspect of data
stream algorithms to avoid rescanning the database for quick monitoring. In addition, having small memory
during the processing is useful: for example, even if the data resides in the disk or tape, the small memory
“summary” can be maintained in the main memory or even the cache and that yields very efficient query
implementations in general.

Other reasons to monitor database contents are approximate query answering and data quality monitor-
ing, two rich areas in their own right with extensive literature and work. Again, data stream algorithms find
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direct applications in these areas.

0.6 Foundations

The main mathematical and algorithmic techniques used in data stream models are collected here, so the
discussion below is technique-driven rather than problem-driven.

0.6.1 Basic Mathematical Ideas

0.6.1.1 Sampling

Many different sampling methods have been proposed: domain sampling, universe sampling, reservoir sam-
pling, priority sampling, distinct sampling etc. Sampling in the data stream context means every input/update
is seen but only a (polylogarithmic sized) subset of items are retained, possibly with associated satellite data
such as the count of times it has been seen so far, etc. Which subset of items to keep can be chosen deter-
ministically or in a randomized way. Sampling algorithms are known for:

• Finding the quantiles on a Cash Register data stream. See [114] for most recent results.
• Finding frequent items in a Cash Register data stream. See [162].
• Estimating the inverse distribution in a Cash Register data stream. See [58].
• Finding rangesums of items in a Cash Register data stream. See [8].

These problems/solutions have many nice applications. Further, it is quite practical to implement sam-
pling even on high speed streams. In fact, some of the systems that monitor data streams—especially IP
packet sniffers—end up sampling the stream just to slow the rate down to a reasonable level, but this should
be done in a principled manner, otherwise valuable signals may be lost. Also, keeping a sample helps one
estimate many different statistics or apply predicates on the samples a posteriori, and additionally, actually
helps one return certain sample answers to non-aggregate queries that return sets. As a result, sampling
methods have been popular and many of these stream sampling methods have even become embedded into
an operator in an operational data stream management systems within an SQL-like language [140].

In what follows, we will provide a technical overview of these sampling methods.

Quantile Sampling. The problem is typically thought of as follows. Consider some set S of items: φ-
quantiles for 0 < φ < 1 are items with rank kφ|S| for k = 0 . . . 1/φ, when S is sorted. This is easily
generalized to when S is a multiset, that is, items have frequency greater than 1. For our purpose, we need to
define an approximate version of this problem. We will define the problem in the context of the data stream
model from Section 0.5.1 equivalently as follows. Recall that ||A||1 =

∑
i A[i].

Definition 1. ((φ, ε)-Quantiles) The (φ, ε)-quantiles problem is to output k-quantile jk for k = 0 . . . 1/φ,
such that (kφ− ε)||A||1 ≤

∑
i≤jk

A[i] ≤ (kφ+ ε)||A||1 for some specified ε < φ.

The (φ, ε)-Quantiles problem is trivial to solve exactly on a time series model, that is, with ε = 0 pro-
vided we know ||A||1. The problem is more interesting in the cash register model. Computing quantiles
exactly requires space linear in N [186, 172]. The folklore method of sampling values randomly and return-
ing the sample median works in O(1/ε2 log(1/δ) space to return the median, i.e., the (1/2, ε)-quantile, to
ε approximation with probability at least 1 − δ; improved randomized sampling algorithms were presented
in [163] using space O((1/ε)(log2(1/ε) + log2 log(1/δ))).
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A deterministic sampling method for the (φ, ε)-quantiles problem follows from [172] taking space
O((log2(ε||A||1))/ε). We will describe a deterministic sampling procedure from [114], which has the cur-
rently best known space bounds. For exposition here, let us assume each update ai = (j, Ii) is in fact (j, 1).
The data structure at time t, S(t), consists of a sequence of s tuples 〈ti = (vi, gi,∆i)〉, where each vi is a
sampled item from the data stream and two additional values are kept:

• gi is the difference between the lowest possible rank of item vi and the lowest possible rank of
item vi−1; and

• ∆i is the difference between the greatest possible rank of item vi and the lowest possible rank of
item vi.

The total space used is therefore O(s). For each entry vi, let ri =
∑i−1

j=1 gj . Hence, the true rank of vi is
bounded below by ri + gi and above by ri + gi +∆i. Thus, ri can be thought of as an overly conservative
bound on the rank of the item vi. The algorithm will maintain the invariant:

∀i : gi +∆i ≤ 2ε||A||1

When the update at time t + 1 is to insert a new item, v %∈ S(t), find i such that vi < v ≤ vi+1, compute
ri and insert the tuple (v, g = 1,∆ = +2ε||A||1,). Periodically, the algorithm scans the data structure
and merges adjacent nodes when this does not violate the invariant. That is, remove nodes (vi, gi,∆i) and
(vi+1, gi+1,∆i+1) and replace with (vi+1, (gi + gi+1),∆i+1) provided that (gi + gi+1 +∆i+1) ≤ 2ε||A||1.
Given a value 0 ≤ φ ≤ 1, let i be the smallest index so that ri + gi +∆i > (φ + ε)||A||1. Output vi−1 as
the approximated quantile when desired.

Theorem 5. [114] The deterministic sampling procedure above outputs (φ, ε)-quantiles on a cash register
stream using space O(log(ε||A||1)

ε ).

The algorithm above can be implemented carefully by batching updates and scheduling the pruning to
minimize the amortized processing time. It will be of interest to develop a simpler proof for Theorem 5 than
the one in [114].

A recent paper [197] gives a simple, alternative way to compute approximate quantiles over streaming
data. Impose the obvious full binary tree of height log N over the domain [1, N ]. With each node v, associate
a count c(v) corresponding to a count of some subset of items appearing in the range covered by the node.
A q-digest is a set of carefully chosen (v, c(v))’s. Let α < 1. A node v and its count c(v) is in the q-digest
if and only if: c(v) ≤ α||A||1 (unless v is a leaf) and

c(v) + c(vparent) + c(vsibling) > α||A||1.

It is quite simple to see that on a static tree, one can maintain this invariant by bottom-up traversal. Further,
the size of q-digest is at most O(1/α) and error in estimating the frequency of any node is at most (α log N).
This algorithm can be made incremental by considering each new update as a q-digest by itself and merging
the two q-digests to still maintain the invariant above. It will follow that:

Theorem 6. [197] The deterministic sampling procedure above outputs (φ, ε)-quantiles on a cash register
stream using space O(log N

ε ).

Which of the two above algorithms is more efficient depends on the domain and nature of the stream.

Problem 1. Are there deterministic algorithms for the (φ, ε)-quantiles problem on cash register streams
using space o((1/ε)min{log N, log ε||A||1})?
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While 1/ε term is necessary, it is not known if the multiplicative log(ε||A||1) or log N factor is neces-
sary. Is O(1/ε + log(ε||A||1)) doable?

None of the algorithms mentioned thus far work in the Turnstile model for which algorithms will be
discussed later.

Frequent Elements/Heavy Hitters Sampling. Again consider the cash register model. Estimating
maxi A[i] is impossible with o(N) space [10]. Estimating the k most frequent items (k largest A[i]’s)
is at least as hard. Hence, research in this area studies related, relaxed versions of the problems, in partic-
ular, the heavy hitters problem. The φ-heavy hitters of a multiset of values consist of those items whose
multiplicity exceeds the fraction φ of the total cardinality. There can be between 0 and 1

φ heavy hitters in
any given sequence of items. If one is allowed O(N) space, then a simple heap data structure will process
each insert update in O(log N) time and find the heavy hitter items in O((log N)/φ) time. However, this
reduced goal of finding the heavy hitters is also difficult when working with only small space. The lower
bound of [10] does not directly apply to finding φ-heavy hitters, but a simple information theory argument
shows the following lower bound.

Theorem 7. Any algorithm which guarantees to find all and only items i such that A[i] > (1/k + 1)||A||1
must store Ω(N) bits.

Proof. Consider a set S ⊆ {1 . . . N}. Transform S into a stream of length n = |S|. Process this stream with
the proposed algorithm. We can use the algorithm to extract whether x ∈ S or not: for some x, insert n/k
copies of x. Suppose x %∈ S: the frequency of x is (n/k)/(n + n/k) ≤ 1/(k + 1), and so x will not be
output. On the other hand, if x ∈ S then (n/k + 1)/(n + n/k) > 1/(k + 1) and so x will be output. Hence
we can extract the set S and the space stored must be Ω(N) since, by an information theoretic argument,
the space to store an arbitrary subset S is N bits.

The lower bound above also applies to randomized algorithms. Any algorithm which guarantees to out-
put all heavy hitters (with ε = 0) with probability at least 1 − δ, for some constant δ, must also use Ω(N)
space. This follows by observing that the above reduction corresponds to the Index problem in communica-
tion complexity [155], which has one-round communication complexity Ω(N).

Hence, we need to allow some approximation. We formally work in the data stream model and define an
approximate version.

Definition 2. ((φ, ε)-heavy hitters) Return all i such that A[i] ≥ φ||A||1 and no i such that A[i] ≤ (φ −
ε)||A||1 for some specified ε < φ.

The problem of determining the (φ, ε)-heavy hitters has many (rediscovered) algorithms. Consider the
simpler problem: given n items in a data stream model, find the strict majority if any, that is, any item that
appears at least ||A||1/2 + 1 times. A simple, elegant algorithm is in [90, 169] which relies on ignoring
successive pairs of elements that differ from each other. If there is a majority, it will be the element left over.
This can be generalized to reporting all items that appear at least ||A||1/φ + 1 times as follows. Maintain
a set K of elements and counts for each. If the new element is in K , its count is incremented. Else, it is
added to K with count 1. When |K| > 1/φ, decrement each of the counts by 1 and eliminate the ones with
count 0. There are no false negatives, that is, any heavy hitter item will be in K because each occurrence of
i not in K is eliminated with at most 1/φ − 1 others. Space used is O(1/φ) and time per new element is
amortized O(1) since deletion can be charged to the time of the arrival of the element. This generalization
appears in [144, 110]. While this algorithm has no false negatives, it potentially has bad false positives, that
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is, there may be items i with A[i] arbitrarily smaller than ||A||1/φ. An additional observation shows that
this algorithm in fact can eliminate the false positives with very low frequencies and solve the (φ, ε)-heavy
hitters problem in space O(1/ε) [166] which is tight.

Curiously, the (φ, ε)-heavy hitters problem seems to have captured the imagination of the researchers.
There are rediscoveries aplenty of the basic scheme above, each tuning one aspect or the other in terms
of the worst case update time, batched updates or frequency estimates. A popular example is the sampling
algorithm in [162]. The input stream is conceptually divided into buckets of width w = .1ε /. There are two
alternating phases of the algorithms: insertion and compression. The algorithm maintains triples (e, f,∆)
where e is an element on the stream, f is its estimated frequency and ∆ is the maximum possible error in f .
It is easy to see that items i with A[i] < (φ−ε)||A||1 are not maintained; it requires an analysis to show that
this algorithm takes O((log(ε||A||1))/ε) space to solve the (φ, ε) heavy hitters problem in the cash register
model. Some empirical and special-case analysis is shown in [162] that the space used is closer to O(1/ε).

Note. There is a strong relationship between the (φ, ε)-quantiles and (φ, ε)-heavy hitters problems.

• Using (φ, ε/2)-quantiles will retrieve the (φ, ε)-heavy hitters.
• Consider a partition of the universe 1 . . . N into log N problems, ith of which comprises N/2i

disjoint intervals of size 2i—called dyadic intervals—covering [1, N ]. Use (φ/ log N, ε/ log N)-
heavy hitters in each of these subproblems. Observe that each range [1, i] ∈ [1, N ] can be thought
of as the disjoint union of at most log N dyadic intervals. The quantiles can be obtained by binary
searching for i such that

∑j=i
j=1 A[j] is the desired approximation to the kth φ-quantile for each

k independently. Thus, the (φ, ε)-quantiles problem needs roughly log N times the resources
needed for the (φ/ log N, ε/ log N)-heavy hitters problem.

The discussion above shows that up to polylog N factors, the two problems are equivalent. This will help
understand the relationship between [162], [114] and [197].

The problem of heavy hitters has been extended together with generalization of the sampling approach
above to hierarchical domains [47]—there is a tree atop 1 · · ·N where internal nodes correspond to ranges
and the tree specifies the containment of a range within others—as well as multidimensional signals—
product of trees on each dimension [79, 48]. Here, one discounts heavy-hitter A[i]’s while determining if j
is a heavy-hitter provided i is contained in j’s range for d-dimensional nodes i and j in the hierarchy. Still,
there are inherent bottlenecks and one can not get as succinct space bounds for these extensions as we did
for the one dimensional heavy-hitters problem [126].

Distinct Sampling. Consider the problem of estimating aspects of the inverse signal. Formally, let us
assume A[i]’s are non-negative integers. We define the inverse signal

A−1[i] =
|{j|j ∈ [1, N ],A[j] = i, i %= 0}|

|{j |A[j] %= 0}| .

Therefore,
∑

i A−1[i] = 1. Queries on the inverse signal give a variety of information about the signal itself.
Any function or query on the inverse signal can be rewritten explicitly as a query or function on the

original signal, so the inverse signal does not provide any additional information, but it is an intuitive conve-
nience. Given full space, we can convert the signal to its inverse easily. However, in the data stream model,
this conversion is not possible. Hence, it is a challenge to support queries on the inverse signal directly in
any of the data stream models.
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In general, queries over the inverse signal are strictly harder than their counterparts over the original
signal. For example, answering A[i] query for a prespecified i over the cash register or turnstile models
is trivial to do exactly, but answering A−1[i] even for a prespecified i = 1 requires Ω(N) space as we
know from Section 0.2.2. The number of distinct values, that is |{j |A[j] %= 0}|, can be approximated up
to a fixed error with constant probability in O(1) space by known methods [18]. However, the number of
distinct values in the inverse signal, that is |{j |A−1[j] %= 0}| requires linear space to approximate to a
constant factor which can be shown by reducing the communication complexity problem of disjointness to
this problem [58].

Consider estimating A−1[i] for any i in the cash register model. This corresponds to finding the fraction
of items that occurred exactly i times on the stream. For example, finding A−1[1] over a stream of IP flows
corresponds to finding IP flows consisting of a single packet — possible indication of a probing attack if
A−1[1] is large. This quantity is the rarity discussed in Section 0.2.2. Other problems like heavy hitters and
quantiles can be defined on inverse signal as well.

The technique in Section 0.2.2 from [67] will solve these problems as shown below; in addition, the
procedure below uses only pair-wise independence (and not approximate min-wise independence as in [67]).

There are two steps.

• Produce multiset S consisting of O( 1
ε2 log 1

δ ) samples (x, i), where x is an item in [1, N ] and i, its
count in the input stream; further, the probability that any x ∈ [1, N ] is in S is 1/|{j |A[j] %= 0}|.
That is, each distinct item in the input stream is equally likely to be in S.

• Subsequently, approximate A−1[i] by |{(x,i)∈S}|
|S| . Let Yj = 1 if the jth sample in S is a pair (x, i),

and Yj = 0 if the jth sample is a pair (x′, i′) for i′ %= i. Since each sample is drawn uniformly,

Pr[Yj = 1] =
|{x|A[x] = i}|
|{j |A[j] %= 0}| = A−1[i].

So the estimate is correct in expectation. By applying the Hoeffding inequality to
∑

j Yj/|S|,

Pr[

∣∣∣∣∣

∑
j Yj

|S|
− A−1[i]

∣∣∣∣∣ ≤ ε] ≥ 1 − δ.

The technical crux is therefore the first step. We consider pairwise-independent hash functions h% :
[1, N ] → [0, 2% − 1] for * = 1, · · · , log N . For each i, we maintain the unique item i, if any, that maps to
0, as well as A[i] for such an i. If more than one item mapped to 0 for that *, then we can ignore that *
thereafter. Each item on the cash register stream is hashed using each of these hash function and updates are
handled in the straightforward way. Generate a sample by picking the largest * such that something mapped
to 0 and if a unique item i did, return the item and its count A[i]. One outcome is that no item is output when
for example more than one item mapped to 0 for some *. However, it can be proved that

• With constant probability, some (i,A[i]) is returned, and
• If a sample is returned, probability that i is returned is uniformly O(1/|{j |A[j] %= 0}|).

In fact, the above can be proved by considering a single hash function h and defining h%(x) to be the trailing
* bits of h(x) for any x. Combining the two steps:

Theorem 8. [58] There exists a randomized O(1/ε2) log N log(1/δ)) space algorithm that with probability
at least 1 − δ, returns an estimate for any A−1[i] correct to ±ε.
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The sampling procedure above can be extended to the turnstile case too: the crux is in maintaining the
unique element that maps to 0 under the hash function at any given time even if at times earlier, many
items were mapped to 0 but subsequently removed. Independently, solutions have been proposed for this
in [92] and [58]. Inverse signals may be sometimes more effective in detecting anomalies [109]. Problems
on inverse signals have not been studied as much as those on the basic signals, so more work will be useful.

Subset-Sum Sampling. Recall that in the cash register model, the ith update is (j, Ii), Ii ≥ 0. So far
we have studied problems that collect the tuples based on the first coordinate—e.g., all updates to j—and
support various estimation queries on the summation of associated Ii’s. There are many known methods for
estimating A[i] for query i,

∑k=j
k=i A[k] for given range [i, j], heavy hitters and quantiles on i’s described

earlier.
Let us consider a more general collection method in which we specify an arbitrary subset T of these

updates by some predicate (all those where j’s are odd or all odd numbered updates etc.) at query time and
seek to estimate the sum of Ii’s in T . One special case of this problem is the one in which we specify the
subset T to be all updates to a particular j which will coincide with querying A[i] for a given i, but this
framework is more general.

Subset-sum sampling works as follows. For each update i, generate an independent uniformly random
αi ∈ (0, 1) and assign priority qi = Iiα

−1
i . For any subset T , let q be the k + 1st largest priority amongst

items in T . The subset-sum sample S ⊆ T of size k is the top k priority updates in T , that is, i ∈ S
iff qi > q. Using S, for subset T , W =

∑
i∈T Ii can be estimated as W∗ =

∑
i∈S max{Ii, q} in an

unbiased way, that is, E(W∗) = W [77, 8]. In a very interesting result, Szegedy recently proved that
var(W ∗) ≤ W 2/(k − 1) [201] (this is known to be tight).

This scheme can be applied in a way that all priorities are stored in a data structure and when some
subset-sum needs to be estimated, S can be retrieved from the data structure [8]. However, in applications
to IP networks in earlier versions [77], it is used to determine a single S for {1, . . . , N} and used for any T
specified at the query time by projecting S on the given T . By asking for a sample which will provide such
subset-sum estimates for any T , one has to necessarily settle for extremely weak accuracy guarantees in the
worst case since the set of possible T ’s is exponential in ||A||1. It is also not clear one needs to aim for such
a general query since one needs to identify suitable applications where we need arbitrary subset sums—
points or ranges seemed to be adequate for many applications thus far. Finally, statistical sampling methods
such as this may not be accurate (even some heavy hitters may not be accurately estimated) or efficient (to
get relative approximation of 1 ± ε, these methods need Ω(log(1/δ)/ε2) samples; in contrast, the heavy
hitters and quantiles can be solved with O(1/ε) samples) or powerful to model (subset-sum sampling does
not solve the inverse signal estimation problem directly) for many specific problems of interest. Thus this
scheme has some challenges in applicability for data streams.

Still, this sampling scheme can be executed in the cash register model easily. Further, it is an interesting
sampling scheme and its analysis has proved to be nontrivial. The problem itself seems to be a generalization
of the Ii = 1 case studied in order statistics. Better understanding of this method will be useful. Also, it
will be a scholarly exercise to precisely show the relationship between subset-sum sampling and other data
stream sampling methods.

In general, the sampling approach to solving problems on the data stream models has some positives.
The algorithms are often simple and once one has a sample, any predicate can be applied on the sample itself
and produce candidate items which is sometimes useful. On the other hand, there are two main difficulties
with sampling for data stream problems. First, sampling is not a powerful primitive for many problems.
One needs far too many samples for performing sophisticated analyses. See [34] for some lower bounds.
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Second, sampling methods typically do not work in the Turnstile data stream model: as the stream unfolds,
if the samples maintained by the algorithm get deleted, one may be forced to resample from the past, which
is in general, expensive or impossible in practice and in any case, not allowed in data stream models. An
exception is the inverse sampling above where if the randomness used by the algorithm is unknown to the
adversary, the algorithm still provides a guarantee on the sample size it outputs [92, 58]. This is the only
such dynamic sampling scheme we know.

Problem 2. Say we have data streams over two observed variables (xt, yt). An example correlated aggre-
gate at time t is {g(yi) | xi = f(x1 · · · xt)}, that is, computing some aggregate function g—SUM, MAX,
MIN—on those yt’s when the corresponding xt’s satisfy certain relationship f . For what f ’s and g’s (by
sampling or otherwise) can such queries be approximated on data streams? See [148] for the motivation.

0.6.1.2 Random Projections

This approach relies on dimensionality reduction, using projection along pseudo-random vectors. The
pseudo-random vectors are generated by space-efficient computation of limitedly independent random vari-
ables. These projections are called the sketches. This approach typically works in the Turnstile model and is
therefore quite general.

Moments estimation. The problem is to estimate the kth moment, Fk =
∑

i A[i]k , k = 0, 1, 2, . . ..
First focus on F2. In a seminal paper [10], Alon, Matias and Szegedy presented an algorithm in the

turnstile model. For each i and j, let Xi,j be a random vector of size N where Xi,j [*]’s are ±1-valued
4-wise independent random variables. Let Xi,j = 〈A,Xi,j〉. We have

E(X2
i,j) = F2 and var(X2

i,j) ≤ 2F2
2

using the 4−wise independence property of Xi,j[*]’s. Define Yi to be the average of Xi,1, . . . ,Xi,O(log(1/ε2).
By Chebyshev’s inequality, Pr(|Yi − F2| > εF2) ≤ O(1). Now define Z to be the median of
Y1, . . . , YO(log(1/δ). By Chernoff’s bound, Pr(|Z − F2| > εF2) < δ. Note that it takes O(log N) bits to
generate each Xi,j , and Xi,j can be maintained in the turnstile model with O(1) time per update using
constant time word operations on O(log N + log ||A||1) bits. Thus:

Theorem 9. [10] There exists an O((1/ε2) log(1/δ)) space randomized algorithm in the turnstile model
that outputs an estimate F̃2 such that with probability at least 1 − δ, F̃2 ∈ (1 ± ε)F2. The time to process
each update is O((1/ε2) log(1/δ)).

The study of Fk, k > 2, has a rich history of successively improved upper bounds from [10], via eg [41],
to finally [137] where O(N1−2/k) space (to polylog terms) algorithm is presented for k > 2. This is tight
following successively improved lower bounds from [10], via e.g. [193] and [17], to finally [27].

Norms estimation. The problem is to estimate Lp-sums defined as
∑

i |A[i]|p (Lp sums are pth powers
of Lp norms). Moment estimation methods that work in the turnstile model can be used to estimate the
Lp-sums, often with nearly tight space bounds. The interesting cases are for p = 1 (where F1 estimation is
trivial unlike L1-sum estimation), or smaller.

Indyk [131] pioneered the use of stable distributions to estimate Lp-sums. In p-stable distributions,∑n
i=1 aiXi is distributed as (

∑n
i=1 |ai|p)1/pX0. Here, ai are scalars, and X0 . . . Xn are independent and

identically distributed random variables drawn from p-stable distributions. Such distributions exist for all p ∈
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Fig. 1 Each item j is hashed to one cell in each row: on ith update (j, Ii), Ii is added to each such cell.

(0, 2]; Gaussian is stable with p = 2 and Cauchy is stable with p = 1. For estimating Lp-sum, the algorithm
is similar to the one for F2 estimation, but uses random variables from p-stable distributions for Xi,j[*].
Stable distributions can be simulated for any value of p using transforms from uniform variables [28]. As
before, the median of O(1/ε2 log 1/δ) estimators is close to the median of the distribution with probability
at least 1 − δ, relying on the derivative of the distribution being bounded at the median. Hence, one obtains
1± ε approximation to the Lp-sum with probability at least 1− δ in space O(1/ε2 log 1/δ). Many technical
issues need to be explored about the use of stable distributions for Lp-sum estimation: see [42].

There are a few applications for computing moments and norms on streams, but not many. Mainly, they
(and the techniques) are used as subroutine in other problems in the Turnstile data stream model. F2 and
L2 are used to measure deviations in anomaly detection [153] or interpreted as self-join sizes [9]; with
variants of L1 sketches we can dynamically track most frequent items [51], quantiles [104], wavelets and
histograms [105], etc. in the Turnstile model; using Lp sketches for p → 0, we can estimate the number
of distinct elements at any time in the Turnstile model [43]. But in many of these applications, the basic
mathematical results above can be replaced by variations of random projections of simpler ilk (Random
subset sums [102], counting sketches [32], Count-Min sketches [55]), and simple algorithmic strategies
atop which give better bounds for specific problems. Here are three such specific sets of results.

Count-Min sketch and its applications. We discuss the strict turnstile case, that is, A[i] ≥ 0 at all
times. A Count-Min (CM) sketch with parameters (ε, δ) is a two-dimensional array counts with width w
and depth d: count[1, 1] . . . count[d,w]. Given parameters (ε, δ), set w = .e

ε/ and d = .ln 1
δ /. Each entry

of the array is initially zero. Additionally, d hash functions h1 . . . hd : {1 . . . N} → {1 . . . w} are chosen
uniformly at random from a pairwise-independent family. When jth update (j, Ii) is seen, set ∀1 ≤ k ≤ d,
count[k, hk(j)] ← count[k, hk(j)] + Ii. See Figure 1.

The answer to a point query: “A[i] =?” is given by

Â[i] = min
j

count[j, hj(i)].

Clearly, A[i] ≤ Â[i]. The claim is, with probability at least 1− δ, Â[i] ≤ A[i]+ε||A||1. This is because for
each cell i is mapped to, the expected contribution of other items is ||A||1/w. Application of the Markov’s
Inequality to each row upper bounds the failure probability by δ. Summarizing:

Theorem 10. [55] The CM sketch data structure works in the Turnstile model, uses space
O((1/ε) log(1/δ)) with update time O(log(1/δ)), and answers point query ”A[i] =?” with estimate Â[i]
such that A[i] ≤ Â[i] and with probability at least 1 − δ,

Â[i] ≤ A[i] + ε||A||1.
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For all previous sketches for point queries, the dependency of space on ε was 1
ε2 ; the result above is a

significant improvement since ε = 0.01 is not uncommon in applications. All prior analyses of sketch
structures compute the variance of their estimators in order to apply the Chebyshev inequality, which brings
the dependency on ε2. Directly applying the Markov inequality yields a more direct analysis which depends
only on ε. Also, the constants are small and explicit. Further, CM Sketch is a building block for rangesum
queries, quantiles, heavy hitters [55] and moments [56]; hence, it is a single sketch that can be used for a
variety of analyses —something desirable in systems, as well as conceptually. CM Sketch is currently in the
Gigascope data stream system [46], working at 2−3 million updates per second without significantly taxing
the resources.

Theorem 10 has some apparent strengths. For example, unlike the standard sampling methods, it works
in the Turnstile model to summarize any data set. Consider inserting a million (≈ 220) IP addresses; the CM
sketch still maintains O((1/ε) log(1/δ)) counts of size log ||A||1 ≈ 20 bits still, which is much less than
the input size. Now delete all but 4. Asking point queries on the remaining signal to accuracy ε = 0.1 will
exactly reveal the 4 remaining items by using Theorem 10 (since ||A||1 = 4 now, and for i’s with A[i] = 1,
Â[i] ∈ [1, 1.4]). The interesting part is that in the intermediate stages the input data was significantly larger
than the CM data structure or the final signal size when the point query was posed.

Theorem 10 also has apparent weaknesses. Estimating A[i] to additive ε||A||1 accuracy is not effective
for small A[i]’s. Fortunately, in most data stream applications, one is interested in cases where A[i]’s are
large with respect to ||A||1. Further, the theorem above is tight:

Theorem 11. The space required to answer point queries correctly with any constant probability and error
at most ε||A||1 is Ω(ε−1) over general distributions.

Proof.We reduce from the Index problem in communication complexity. Paul holds a bitstring of length N
and is allowed to send a message to Carole who wants to compute the ith bit of the bitstring. Since Carole is
not allowed to communicate with Paul, any protocol to solve this problem, even probabilistically, requires
Ω(N) bits of communication [155]. Take a bitstring B[1 . . . 1

2ε ] of length N = 1
2ε bits and set A[i] = 2 if

B[i] = 1; otherwise, set A[i] = 0 and add 2 to A[0]. Whatever the value of B, ||A||1 = 1/ε. If we can
answer point queries with accuracy ε||A||1 = 1, we can test any A[i] and determine the value of B[i] by
reporting 1 if the estimated value of A[i] is above ε||A||1 and 0 otherwise. Therefore, the space used must
be at least Ω(1

ε ) bits.
We can sometimes overcome this lower bound in practical settings, since the distribution of frequencies

of different items is often skewed in practice. The Zipf distribution accurately captures this skew in certain
natural distributions. It was introduced in the context of linguistics where it was observed that the frequency
of the ith most commonly used word in a language was approximately proportional to 1/i [216]. Zipf distri-
butions are related to Pareto distributions and power-laws [4]. Formally, a Zipf distribution with parameter
z has the property that fi, the (relative) frequency of the ith most frequent item is given by fi = cz

iz , where
cz is an appropriate scaling constant. For the signal A whose entries are distributed according to a Zipf
distribution, the count of the ith most frequent item is simply ||A||1fi. In real life, web page accesses have
z ∈ [0.65, 0.8]; “depth” to which surfers investigate websites has z ≈ 1.5; file transmission times over the
internet has z ≈ 1.2; size of files moved has z ≈ [1.06, 1.16]; etc. [56].

Theorem 12. [56] Using the CM Sketch, the space required to answer point queries with error ε||A||1 with
probability at least 1 − δ is given by

O(ε−min{1,1/z} ln 1/δ)
for a Zipf distribution with parameter z.
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The proof of above theorem uses the idea of separating the influence of certain heavy items and arguing that,
with significant probability, only the influence of the remainder of the item counts, and bounding the latter
using Zipfian properties. This result improves the “golden standard” of O(1/ε) space used in data stream
algorithms for skewed data, z > 1. The space used in the theorem above is tight can be shown to be tight for
Zipfian data. The result above is useful in practice because one uses the same CM data structure one uses
regularly, but gets the improvement because of just better analysis. In practice, z is unknown; hence, this
result would be used with fixed space, but providing better accuracy guarantees for the given space bound.
That is, theorem above alternatively implies: for z ≥ 1,

Â[i] ≤ A[i] + O(ε)z ||A||1.

Estimating number of distinct elements. The problem is to estimate D = |{i | A[i] %= 0}. If A[i] is
the number of occurrences of i in the stream, D is the number of distinct items. More generally, D may be
thought of as the Hamming norm if A[i] is arbitrary. Estimating D is a fundamental problem.

An early result for estimating D in a data stream model appears in [89]. We keep a bit vector
c[1] . . . c[log2 N ] initialized to zero and use a hash function f : [1, N ] → {1, 2, . . . log2 N} such that
Pr[f(i) = j] = 2−j . Any update j to item i sets c[f(i)] to 1. At any point, an unbiased estimate for
the number of distinct items is given by 2k(c), where k(c) is the lowest index of a counter c[j] that is
zero (k = min{j|c[j] = 0}). Intuitively this procedure works because if the probability that any item is
mapped onto counter j is 2−j , then if there are D distinct items, we expect D/2 to be mapped to c[1],
D/4 to be mapped to c[2], and so on until there are none in c[log2 D]. This algorithm is not affected by
repeated elements: if one item, i, is seen many times, it is mapped onto the same bit counter each time,
and will not alter the estimate of the number of distinct elements. The procedure above relies on exis-
tence of fully random hash functions. In a series of papers including [10] and [101] more realistic hash
functions were used and the space used was O(1/ε2 log N log(1/δ)), until the current best space bound of
O(( 1

ε2 log log m+log m log(1/ε)) log(1/δ) was shown in [18]. These results [10, 101, 18] work only in the
cash register model. The result in [89] works for the strict Turnstile model and fails for the non-strict Turn-
stile model. For example, if an item that has not been seen before is removed (that is A[i] < 0), this method
is not well defined. It could lead to decreasing a counter (even when generalized to be a large counter rather
than being a bit counter) below zero, or to producing an estimate of the Hamming norm that is inaccurate.

In the most general data stream model—non-strict turnstile model—the algorithm for estimating D uses
Lp-sum estimation. Observe that |A[i]|0 = 1 if A[i] %= 0; we can define |A[i]|0 = 0 for A[i] = 0. Thus,
D = |{i|A[i] %= 0}| =

∑
i |A[i]|0, L0-sum defined earlier. We approximate L0-sum by Lp for suitably

small p. Say |A[i]| ≤ M for some upper bound M , then

D =
∑

i

|A[i]|0 ≤
∑

i

|A[i]|p ≤
∑

i

Mp|A[i]|0 ≤ Mp
∑

i

A[i]0 ≤ (1 + ε)
∑

i

A[i]0 = (1 + ε)D

if we set p ≤ log(1 + ε)/ log M ≈ ε/ log M . Hence, estimating
∑

i |A[i]|p for 0 < p ≤ ε/ log M gives
1 + ε approximation to D. Estimating such Lp-sum for small p can be done using stable distributions
like described earlier. This approach of using small Lp sums first appeared in [43], is quite general and
gives efficient results for distinct element estimation, Hamming norms and its generalization to dominance
norms [53].

Theorem 13. [43] We can compute a sketch of a non-strict Turnstile stream that requires space O(1/ε2 ·
log 1/δ) words of size log(N + ||A||1) and allows approximation of D to 1+ ε factor with probability 1−δ.
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There is a history of lower bounds as well for estimating D. Early results showed the lower bound of
Ω(log N + 1/ε) [10, 18]. Recently, a lower bound of Ω(1/ε2) has been shown [137, 213], nearly optimal
with the best known upper bound in [18] for the cash register model.

Estimating inner products. Given A and B as data streams, we want to estimate their inner product
A 2 B =

∑n
i=1 A[i]B[i]. This is motivated by the important problem of join size estimation in databases.

The join size of two database relations on a particular dimension is the number of tuples in the cartesian
product of the two relations which agree on the value of that dimension. Representing the two relations as
vectors A and B where A[i] is the number of tuples in A with value i in that dimension (likewise for B[i]),
join size is their inner product. Inner product estimation also arises in other contexts such as measuring the
projection of the signal along different directions, document similarity and correlations between signals.

Use CM Sketch to summarize the signals A and B via countA and countB respectively. Set

( ̂A 2 B)j =
w∑

k=1

countA[j, k] ∗ countB[j, k].

Then our estimate ̂A2 B = minj( ̂A2 B)j . We have A2B ≤ ̂A2 B and with probability at least 1− δ,

̂A 2B ≤ A2 B + ε||A||1||B||1.

The space and time to produce the estimate is O(1ε log 1
δ ). Updates take time O(log 1

δ ). In the special case
where B[i] = 1, and B is zero elsewhere, this result coincides with the point query case above.

Using the moment estimation results from [9], an alternative method uses O(1
ε2 log 1

δ ) space and pro-
duces an estimate for the inner product with additive error ε||A||2||B||2 (by definition ||A||2 =

√∑
i A[i]2).

This alternative uses more space than the CM sketch approach, but provides a tighter error guarantee since
the L2 norm can be quadratically smaller than the L1 norm.

No matter what alternative is used, the approximation is weak since inner-product estimation is a difficult
problem in the communication complexity setting captured by the small space constraint of the data stream
models.

Problem 3. Provide improved estimates for Lp-sums including distinct element estimation if input stream
has statistical properties such as being Zipfian.

Results are known for estimating the L2-sum [56] and top-k [32] when the input is Zipfian, heavy-
hitters [166] and heavy-hitters under “random, small tail” [162], but in general, only a handful of results
are known that improve upon the worst case bounds.

Problem 4. Develop data stream algorithms for estimating the entropy sum of the stream∑
i | A[i] %=0 A[i] log A[i] and the harmonic sum (

∑
i | A[i] %=0(A[i])−1) or more generally,

(
∑

i | A[i] %=0(A[i])−p), under the Turnstile models.

Some of these problems have easy lower bounds: still, the goal would be to find workable approximations
under suitable assumptions on input data distributions.

Problem 5. Design random projections using complex random variables or other generalizations, and find
suitable streaming applications.
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There are instances where considering random projections with complex numbers or their generalization
have been useful. For example, let A be a 0, 1 matrix and B be obtained from A by replacing each 1
uniformly randomly with ±1. Then E[(det(B))2] = per(A) where det(A) is the determinant of matrix A
and per(A) is the permanent of matrix A. While det(A) can be calculated in polynomial time, per(A) is
difficult to compute or estimate. The observation above presents a method to estimate per(A) in polynomial
time using det(A), but this procedure has high variance. However, if C is obtained from A by replacing
each 1 uniformly randomly by ±1,±i, then E[(det(C))2] = per(A) still, and additionally, the variance
falls significantly. By extending this approach using quaternion and Clifford algebras, a lot of progress
has been made on decreasing the variance further, and deriving an effective estimation procedure for the
permanent [37].

Rangesum random variables. Data stream algorithms need to generate random variables xi drawn from
a stable distribution, for each value i of the domain [u]. The range-summable property was introduced in [85]
where the authors additionally required that given a range [l, r] ∈ [u], the random variables in the range be
summed fast, that is,

∑r
i=l xi be computed fast on-demand. They gave a 3-universal construction based on

the Hamming error-correcting code. Subsequently, [102] gave a 7-universal construction based on the dual of
the second-order Reed-Muller code. A very general construction was given for stable distributions with p =
1, 2 in [105] and for p → 0 in [53]. These work in the Turnstile model and find many applications including
histogram computation and graph algorithms on data streams. An improved 5-wise range-summable random
variable construction is in [26]. It is #P -complete to construct range-sum Reed-Muller codes of high
order [156]. A detailed study of range-sum random variables will be of great interest.

0.6.2 Basic Algorithmic Techniques

There are a number of basic algorithmic techniques: binary search, greedy technique, dynamic program-
ming, divide and conquer etc. that directly apply in the data stream context, mostly in conjunction with
samples or random projections. Here are a few other algorithmic techniques that have proved useful.

0.6.2.1 Group Testing

This goes back to an earlier Paul and Carole game. Paul has an integer I between 1 and n in mind. Carole
has to determine the number by asking “Is I ≤ x?”. Carole determines various x’s, and Paul answers the
questions truthfully. How many questions does Carole need, in the worst case? There is an entire area called
Combinatorial Group Testing that produces solutions for such problems [76]. In the data stream case, each
question is a group of items and the algorithm plays the role of Carole. This setup applies to a number of
problems in data streams. Examples are found in:

• Determining the B heavy-hitter Haar wavelet coefficients in Turnstile data streams [105]. This
was the first use of combinatorial group testing in data stream algorithms.

• Finding (φ, ε)-heavy hitters, quantiles and what are known as deltoids, in Turnstile data
streams [51, 55, 54].

• Estimating highest B fourier coefficients by sampling [106].

We describe two specific results to show the framework of group testing for data stream algorithms.

Finding large differences. Say we have two signals A and B. For any item i, let D[i] = |A[i] − B[i]|
denote the absolute difference of that item between the two signals. A φ-deltoid is an item i so that D[i] >
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φ
∑

x D[x]. It is a heavy-hitter in absolute differences. As before, we need an approximation version. Given
ε ≤ φ, the ε-approximate φ-deltoid problem is to find all items i whose difference D[i] satisfies D[i] >
(φ + ε)

∑
x D[x], and to report no items where D[i] < (φ − ε)

∑
x D[x]. Items between these thresholds

may or may not be output.
At high level, the algorithm works as follows. Say φ > 1/2: there is only one (if any) deltoid of interest.

Do a standard non-adaptive grouping of items [1, N ] into 2 log N “groups” based on the ith bit in their
binary representation being a 1 or 0 for each i. For each such group, maintain the sum of all items that fall
in it. Then comparing the absolute difference in the sum for 1-group in A and B versus that for 0-group
for the ith bit will reveal the ith bit of the deltoid, if any. In the general case of up to 1/φ deltoids, use a
pairwise independent hash function to map items to O(1/ε) groups. Then with constant probability no two
deltoids will collide in the same group. Thereafter, within each group, repeat the log N grouping above to
identify the unique deltoid if any. The entire process is repeated O(log1

δ ) times in parallel to boost success
probability. To sum,

Theorem 14. [54] Each ε-approximate φ-absolute deltoid is found by the above algorithm with probability
at least 1 − δ. The space required is O(1

ε log N log 1
δ ), time per update is O(log N log 1

δ ), and the expected
time to find deltoids is O(1

ε log N log 1
δ ).

The same overall framework also gives other kinds of deltoids [54] where the differences may be relative
or variational. The particular tests performed and statistics kept per group differ. For intuition, consider the
following. We could not directly apply the (φ, ε)-heavy hitters solutions discussed earlier on the signal
A − B to detect 1/φ deltoids since they work for the strict Turnstile model and not the non-strict Turnstile
model; hence they err in presence of negative A[i]−B[i] and can not identify heavy hitters in |A[i]−B[i]|.
The theorem above for deltoids also gives a different (φ, ε)-heavy-hitters solution on a single signal, say A.

Problem 6. Paul sees data stream A followed by stream B. Design a streaming algorithm to determine a
certain number of i’s with the largest A[i]

max 1,B[i] .

This has a strong intuitive appeal: compare today’s data with yesterday’s and find the ones that changed
the most. Certain relative norms similar to this problem are provably hard [53].

Deterministic group testing on streams. All heavy hitter or deltoids solutions known thus far in the
Turnstile model use randomization (unlike their counterparts in the cash register model). A natural open
problem is if these problems could be solved deterministically in the Turnstile model, strict or non-strict.

We can solve the problem partially. In particular, we consider the special case when there are at most k
nonzero A[i]’s. We present a deterministic streaming algorithm to identify the i’s with top k A[i]’s which
we call toppers.

The solution is to construct a group testing procedure of small number of groups in small space, i.e.,
within constraints of the Turnstile model. Let k < p1 < p2 < .. < px = m be the sequence of consecutive
primes larger than k and with the largest index x = (k − 1) logk N + 1. For each pi, form groups 0 mod
pi, . . . , pi − 1 mod pi, called pi-groups. Each of the items in the domain now belong to one pi group for
each i. The claim is, for any k toppers, each one of them will be isolated in at least one of these groups,
away from the other k−1 toppers. This is true because any such topper α can collide with a different topper
β in at most logk N p′i-groups with different i′’s. Otherwise, the difference |α− β| < N would be divisible
by logk N + 1 different primes > k which is a contradiction. Thus, doing log N non-adaptive subgrouping
within each other groups above will solve the problem of identifying all toppers without any error. Since
m = O(k logk N(log k + log log N)), the total space cost is poly(k, log N). To summarize:
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Theorem 15. [98] There exists a deterministic algorithm in the Turnstile model to identify the k-toppers,
using space, per item processing time and compute time all poly(k, log N).

This is the first-known deterministic algorithm in the Turnstile data stream model for any nontrivial
problem. It can be extended to the small tail situation where sum of the tail N − k of the A[i]’s in sorted
order sum to less than the kth largest A[i]. The approach above can be thought of as constructing a certain
separating code in small space. This leads to:

Problem 7. Present polylog space and time construction algorithms for constructing various codes.

0.6.2.2 Tree Method

This method applies nicely to the Time Series model. Here, we have a (typically balanced) tree atop the data
stream. As the updates come in, the leaves of the tree are revealed in the left to right order. In particular, the
path from the root to the most currently seen item is the right boundary of the tree we have seen. We maintain
a small-space data structure on the portion of the tree seen thus far, typically, some storage per level; this can
be updated as the leaves get revealed by updating along the right boundary. This overall algorithmic scheme
finds many applications:

• Computing the B largest Haar wavelet coefficients of a Time Series data stream [9].
• Building a histogram on the Time Series data stream [118]. This also has applications to finding

certain outliers called the deviants [177].
• Building a parse tree atop the Time Series data stream seen as a string [50]. This has applications

to estimating string edit distances as well as estimating size of the smallest grammar to encode
the string.

In what follows, we provide more insight into each of these categories of algorithms.

Estimating wavelet coefficients. There are many kinds of wavelets. We work with one of the simplest,
most popular, i.e., Haar wavelets [124].

Definition 3. Let N be a power of 2. Define N − 1 proper wavelet functions on [0, N − 1) as follows. For
integer j, 0 ≤ j < log(N) and integer k, 0 ≤ k < 2j , we define a proper wavelet φ(x)[j, k] by −

√
2j/N

for x ∈ [kN/2j , kN/2j + N/2j+1), +
√

2j/N for x ∈ [kN/2j + N/2j+1, (k + 1)N/2j) and 0 otherwise.
Additionally, define a wavelet φ, also known as a scaling function, that takes the value +1/

√
N over the

entire domain [0, N). Number the φ(x)[j, k]’s as ψ0,ψ1, . . . ,ψN−2 in some arbitrary order and φ as ψN−1.

Wavelets can be used to represent signals. Assume N is a power of 2. Any signal A is exactly recoverable
using the wavelet basis, i.e.,

A =
∑

i

〈A,ψi〉ψi.

Typically, we are not interested in recovering the signal exactly using all the N wavelet coefficients ci =
〈A,ψi〉; instead, we want to represent the signal using no more than B wavelet coefficients for some B 5
N . Say Λ is a set of wavelets of size at most B. Signal A can be represented as R using these coefficients
as follows:

R =
∑

i∈Λ
〈A,ψi〉ψi.
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A(i)

Level 0

Level 1

Level 2

Fig. 2 Wavelet-vectors (N=8)

Clearly R can only be an approximation of A in general. The best B-term representation (aka wavelet
synopsis) of A is the choice of Λ that minimizes the error εR of representing A which is typically the
sum-squared-error, i.e., εR = ||R − A||22 =

∑
i(R[i] − A[i])2. From a fundamental result of Parseval

from 1799 [184, 21], it follows that the best B-term representation for signal A is R =
∑

i∈Λ ciψi, where
ci = 〈A,ψi〉 and Λ of size k maximizes

∑
i∈Λ c2

i . This is because the error of R is

εR =
∑

i∈Λ
(ci − 〈A,ψi〉)2 +

∑

i/∈Λ
〈A,ψi〉2 .

Hence, choosing the B largest |ci|’s suffices to get the best B term representation for any signal.
Consider the problem of estimating the best B term representation for A given in the time series model.

Note that there is a tree representation of the Haar wavelet transformation where a full binary tree is laid
atop the A; each internal node corresponds to a 2j sized interval on the signal. Associate with it the wavelet
that is 0 outside that interval and is a difference of the summand for the left half-interval and that of the right
half-interval. Thus Haar wavelet vectors can be associated with the nodes of the tree in a one-to-one fashion
(except ψN−1). Recall also that in the Timeseries model, we get the signal values specified as (i,A[i]) in
the increasing order of i’s. Our algorithm is as follows. Consider reading the data stream and say we are at
some position i′ in it, that is, we have seen all A[i]’s for i ≤ i′, for some i′. We maintain the following two
sets of items:

(1) Highest B-wavelet basis coefficients for the signal seen thus far.
(2) log N straddling coefficients, one for each level of the Haar wavelet transform tree. At level j,

the wavelet basis vector that straddles i′ is ψj,k where k(N/2j) ≤ i′ ≤ k(N/2j) + N/2j − 1,
and there is at most one such vector per level.

When the following data item (i′ +1,A[i′ +1]) is read, we update each of the straddling coefficients at each
level if they get affected. Some of the straddling coefficients may no longer remain straddling. When that
happens, we compare them against the highest B-coefficients and retain the B highest ones and discard the
remaining. At levels in which a straddling coefficient is no longer straddling, a new straddling coefficient
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is initiated. There will be only one such new straddling coefficient for each level. In this manner, at every
position on the data stream, we maintain the highest B-wavelet basis coefficients exactly. This gives,

Theorem 16. With at most O(B+log N) storage, we can compute the highest (best) B-term approximation
to a signal exactly in the Timeseries model. Each new data item needs O(B + log N) time to be processed;
by batch processing, we can make update time O(1) in the amortized case.

Histogram Construction. A B-bucket histogram is a partition of [0, N) into intervals [b0, b1)∪ [b1, b2)∪
· · · ∪ [bB−1, bB), where b0 = 0 and bB = N , together with a collection of B heights hj , for 0 ≤ j < B,
one for each interval (aka bucket). In vector notation, write χS for the vector that is 1 on the set S and zero
elsewhere. The histogram can be thought of as an approximation to the A given by

R =
∑

0≤j<B

hjχ[bj ,bj+1),

that is, each point A[i] is approximated by hj , where j is the index of the bucket containing i (the unique j
with bj ≤ i < bj+1). Thus, in building a B-bucket histogram, we want to choose B − 1 boundaries bj and
B heights hj that minimize the sum square error

∥∥∥∥∥∥
A−

∑

0≤j<B

hjχ[bj ,bj+1)

∥∥∥∥∥∥

2

.

Once we have chosen the boundaries, the best bucket height on an interval I is the average of A over i. In
the data stream context, R can not be optimally computed. Hence, an approximation is needed. Fix integer
B and positive reals ε and δ. The (B, ε)-histogram problem is to find a B-bucket histogram R for A such
that with probability at least 1 − δ,

‖A− R‖2 ≤ (1 + ε) ‖A − Ropt‖2 ,

where Ropt is the optimal B-bucket histogram.
There is a simple dynamic programming solution when there are no space constraints. Fix k < N and

* ≤ B. Assume that for each i < k, we have found the optimal (* − 1)-bucket histogram on the prefix of
data indexed by [0, i). To find the best *-bucket histogram on [0, k), try all possibilities m < k for the final
boundary, and form a histogram by joining the best (* − 1)-bucket histogram on [0,m) with the 1-bucket
histogram on [m,k). The time for this step is therefore at most N to try all values of m. Since this has to
be repeated for all k < N and all * ≤ B, the total time is O(N2B). The space is O(BN), to store a table
of a B-bucket histogram for each i. Space O(N) suffices if one is willing to spend more time recomputing
best histograms. Recently, generalizing ideas reminiscent of [128], fast algorithms have been designed for
reconstructing the histogram with small (near-linear) space [115].

Now consider the problem in the Time Series data stream model. The algorithm in [118] works on B
levels simultaneously. In particular, let sol[p, x] be the optimal cost solution on A[1, x] with p buckets,
1 ≤ p ≤ B. For each p, the algorithm maintains an series of points bpj that are successively 1 + δ factor
more in error, i.e., roughly, sol[p, bpj ] ≤ (1 + δ)sol[p, bp

j−1]. When a new point is seen, the rightmost bpj is
either set and new candidate bpj+1 begun, or it is updated as needed (this corresponds to the straddling case
in the previous example). In particular, use

sol[p + 1, x + 1] = min
j

sol[p, bp
j ] + var[bp

j + 1, . . . , x + 1]
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where var[] is the variance of the signal in the specified interval. This is akin to the dynamic programming so-
lution but only the specific endpoints that delineate significant error growth are involved, at each level p, 1 ≤
p ≤ B. An analysis shows that the number of endpoints that are tracked is O((B2 log N log(maxi A[i]))/ε)
and the above algorithm gives (1 + δ)p approximation to sol[p + 1, x + 1]. Summarizing:

Theorem 17. [118] There exists an 1+ε approximation to Ropt in O((B2 log N log(maxi A[i]))/ε) space
as well time per update in the Time Series data stream model.

The example above of the tree method of data stream design is more sophisticated than the simple
wavelet algorithm. There have been a series of improvements for the histogramming problem in the Time
Series model further refining the complexity in terms of per-item processing time or dependence on B [117,
119, 180].

Note. There is an intimate relationship between representing a signal by Haar wavelets and by histograms
(which is the piecewise-constant object defined earlier).

• The best 2 log(N)B-term Haar wavelet representation R is at least as good as the best B-bucket
histogram.
Any histogram element χI on interval I can be expressed as a 2 log(N)-term Haar wavelet rep-
resentation. This is because 〈χI ,ψ〉 = 0 unless ψ’s nonzero parts intersect an endpoint of I .

• The best (3B + 1) bucket histogram representation R is at least as good as the best B-bucket
Haar wavelet representation.
Any Haar wavelet term is itself a 4-bucket histogram (i.e., a histogram with 3 boundaries), so a
B-term Haar wavelet representation can be viewed as a (3B + 1)-bucket histogram.

String parse tree. There are many applications that need to manipulate long strings. Given string S, we
will parse it hierarchically as described below and obtain a parse tree T . At each iteration i, we start with
a string Si and partition it into blocks of length 2 or 3. We replace each such block S[j · · · k] by its name
which is any one-to-one hash function on substrings of S. Then Si+1 consists of the names for the blocks in
the order in which they appear in Si. So |Si+1| ≤ |Si|/2. Initially S0 = S, and the iterations continue until
we are left with a string of length 1. The tree T consists of levels such that there is a node at level i for each
of the blocks of Si−1; their children are the nodes in level i− 1 that correspond to the symbols in the block.
Each character of S0 = S is a leaf node.

The crux is to partition the string Si at iteration i. This will be based on designating some local features
as “landmarks” of the string. Consider a substring which is not repeating, that is, each symbol differs from
its predecessor. (Other cases are simpler.) For each symbol Si[j] compute a new label as follows. Denote by
* the index of the least significant bit in which Si[j] differs from Si[j−1], and let bit(*, Si[j]) be the value of
Si[j] at the *th bit location. Form label(Si[j]) as 2*+ bit(*, Si[j]) — in other words, as the index * followed
by the value at that index. For any j, if Si[j] %= Si[j + 1] then label(Si[j]) %= label(Si[j + 1]). Generate
a new sequence by replacing the positions by their labels. If the original alphabet was size τ , then the new
alphabet is sized 2 log |τ |. Iterate this process until alphabet size is unchanged; it can be eventually reduced
to size 3. Pick landmarks from resulting string by selecting any position j which is a local maximum and in
addition selecting any j which is a local minimum and is not adjacent to an already chosen landmark. For
any two successive landmark positions j1 and j2, this insures that 2 ≤ |j1 − j2| ≤ 3. Partition the string
around the landmarks. An example of the parse tree generated by the process above is shown in Figure 3.
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c a b a g e h e a d b a g
Fig. 3 The hierarchical structure of nodes is represented as a parse tree on the string S.

The chief property of the parsing is that of locality: determining the closest landmark to position j in
a string of length τ depends on only O(log∗ τ) positions to its left and right. As a result, edit operations
such as inserts, deletes, changes, and substring moves applied to S have only a local effect on the parsing at
any level. Also of interest is that the parsing can be done obliviously at S independent of a different string
T and still because of this locality, S and T will get parsed nearly the same way in segments which have
small edit distance. Therefore, the parsing gives a hierarchical way to reduce the string sizes of two strings
independently while controlling the loss of quality in parsing into similar substrings. The parsing can be
done in O(N log∗ N) time. This parsing has found many applications to compression [191], edit distance
computation [190], dynamic string matching [192], communication-efficient string exchanges [49], string
nearest neighbors [176], streaming embedding [50], etc.

The interest to us here is that the parsing and embedding that underlies many of these applications can
be done in the Time Series model by keeping the “straddling” of the parsing at each level of the tree, similar
to the wavelet example. The space used is O(log N log∗ N) because at each of the O(log N) levels, the
algorithm maintains O(log∗ N) information corresponding to the straddling portion.

The construction above is a generalization of the symmetry breaking technique in [40] for permutations
to sequences which was pioneered as Locally Consistent Parsing (LCP) starting from [191], and has many
variant forms including those in [190, 176, 50] under different names.

All of these results above are in the Time Series Model which is where the tree method finds many
applications. Here is a problem of similar ilk, but it needs new ideas.

Problem 8. Given a signal of size N as a Time Series data stream and parameters B and k, the goal is
to find k points (deviants) to remove so that finding the B largest coefficients for the remaining signal has
smallest sum squared error. This is the wavelet version of the problem studied in [177].

There are other applications, where the tree hierarchy is imposed as an artifact of the problem solving
approach. The k-center [31] and k-median algorithms [120, 33] on the data stream can be seen as a tree
method: building clusters on points, building higher level clusters on their representatives, and so on up the
tree. Similarly, recent work on core sets and other geometric problems (see Survey talk by Piotr Indyk [136]
and Timothy Chan [29]) fall into this category. Yair Bartal’s fundamental result of embedding arbitrary
metrics into tree metrics may find applications in data streams context, by reducing difficult problems to
ones where the tree method can be applied effectively.

0.6.2.3 Other algorithmic techniques

Here is a brief overview of other techniques in data stream algorithmics.

Exponential Histograms. To algorithms designers, it is natural to think of exponential histograms—
dividing a line into regions with boundaries at distance 2i from one end or keep dividers after points of
rank 2i—when one is restricted to use a polylog space data structure. It corresponds to space, rank, or other
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statistics-based partitioning of the domain into geometrically increasing sizes. This technique has been used
in

• one dimensional nearest neighbor problems and facility location [149];
Here, usage is quite simple: exponential histograms are kept based on ranks as well as distance.

• maintaining statistics within a window [66];
Here, a variety of exponential histograms are developed including those that maintain sketches
within the buckets. The complication here is that the exponential bucketing has to be maintained
on last W items seen at any time and hence this requires merging exponential buckets on the
stream.

• problems on geometric streams where space is partitioned in one or higher dimensions into geo-
metrically spaced grids [135, 93].
Here the partitioning is spatial, or distance-based. The additional complication is one needs to
maintain quite sophisticated statistics on points within each of the buckets in small space. This
entails using various (non)standard moments and norm estimation methods within the buckets.

Exponential histograms is a simple and natural strategy which is likely to get used seamlessly in data stream
algorithms.

Monotone Chain in Random Sequences. Consider a sequence S[1, . . . , N ] of integers. Consider the
hashed sequence T [1, . . . , N ] where T [i] = h(S[i]) for a random hash function. Define the monotonic
chain C to be the minimum element and successive minimums, each to the right of the predecessor. What
is the expected length of C? Consider building a treap (See [171, 170]) on S: the list C is the right spine of
this treap. If the hash values are a fully independent, random permutation, then it is well known that [170,
171, 195]:

Theorem 18. With high probability, |C| = Θ(HN ), where HN is the N th Harmonic number, given by
1 + 1/2 + 1/3 + · · · + 1/N = Θ(log N).

However, the hash function that is used in data stream applications are not fully independent; instead,
they have limited independence such as a random polynomial of degree O(log 1/ε) which is ε-min-wise
independent. For a hash function that is chosen randomly from such a family, the expected length of the
right spine and hence that of list C is still Θ(log N) [171, 195].

In data stream algorithms, C can thus be kept track of entirely since its size fits the space constraints.
This approach underlies methods for keeping track of rarity and similarity within recent windows [67],
distinct elements and other predicates on the inverse sample on windows [58], multigraph aggregates on
windows [57] as well as in keeping moments over network neighborhoods [38]. It is a useful primitive in
windowed version of data stream models which is discussed later.

Robust Approximation. This concept is a variation on the local minima/maxima suited for approxi-
mations. Consider constructing a near-optimal B bucket histogram for the signal. We use wavelets and
histograms interchangeably. For some T ≤ O(1/(ε2 log(1/ε))) and any signal A, Rrob, the robust ap-
proximation is the representation formed by greedily taking B log(N) wavelet terms at a time until either
we get TB log(N) terms, or taking an additional B log(N) wavelet terms improves (reduces) the residual
‖A − Rrob‖2

2 by a factor no better than (1 − ε′), where ε′ ≥ Ω(ε2). The power of this robust histogram is
that it can be computed in data stream models including the Turnstile model [105] and:
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Theorem 19. Let H be the best B-bucket histogram representation to Rrob. Then H is a 1 + ε-
approximation to the best B-bucket histogram to A.

Thus, it suffices to do the basic dynamic programming method on the robust representation for solv-
ing the histogram problem. This approach gives the most general data stream algorithms known for the
histogram construction problem in e.g., the Turnstile model.

Theorem 20. [105] There is an algorithm that given parameters B, N , M , ε monitors A with ‖A‖2 ≤ M
in the Turnstile model and answers B-bucket histogram queries with a B bucket H such that ‖A − H‖2 ≤
(1 + O(ε))‖A − Hopt‖2, where Hopt is the best possible B-bucket histogram representation to A. The
algorithm uses space, update time and computing time of O(poly(B, log N, log M, 1/ε)).

The notion of “robust” approximations has found applications in constructing multidimensional his-
tograms [178], rangesum histograms [179], and more recently, weight-optimal histograms [181], under dif-
ferent data stream models. In particular, in [181] a different—weaker—notion of robustness is identified and
used. Robust approximations may find other applications in the future.

As is typical in a nascent area, the techniques above have been rediscovered few times in data stream
algorithms.

0.6.3 Lower Bounds

A powerful theory of lower bounds is emerging for data stream models.

Compressibility argument. In Section 0.2.2 there is an example. One argues that if we have already seen
a portion S of the data stream and have stored a data structure D on S for solving a problem P , then we can
design the subsequent portion of the stream such that solving P on the whole stream will help us recover S
precisely from D. Since not every S can be compressed into small space D, the lower bound on size of D
will follow. This is a basic and simple lower bound argument, often applied to show that exact computation
of various functions is not possible in sublinear space.

Communication Complexity. Communication complexity models have been used to establish lower
bounds for data stream problems. Alon, Matias and Szegedy [10] established the relationship between data
stream and communication complexity models for lower bounds. In particular, consider the multiparty set
disjointness problem where each of the t players is given a set from {1, . . . , N} and told the sets are either
(a) pairwise disjoint or (b) have intersection of size precisely 1. In [10], a lower bound of Ω(N/t4) on the
number of bits needed for one designated player to distinguish between the two cases. Via a reduction, this
shows a lower bound of Ω(N1−5/k) for space complexity of approximating Fk in the cash register model.
The lower bound on communication complexity for the multiparty set disjointness problem was improved
in a nice work by Bar-Yossef et al [17] to Ω(N/t2) and finally to Ω(N/(t log t)) in [27]. For special case
of one way communication complexity where players each speak once in a given order, the lower bound is
Ω(ε2N/t1+ε) [17] which has been improved to Ω(N/t) [27]; this complexity immediately implies a lower
bound of Ω(N1−2/k) space for Fk estimation the cash register data stream model, nearly optimal with the
best known upper bound [138].

Estimating set disjointness and the Index problem are classical, hard problems in Communication Com-
plexity [155] that code the difficulty in estimating some of the basic statistics on data streams. Both have
Ω(N) lower bound on the communication complexity. A useful lower bounding technique is to reduce hard
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problems such as these to the data stream problem under study. An example of this is shown in Theorem 11
for the Index problem. For the set disjointness problem, here is another example.

Consider a stream of multiple signals given by values (i, ai,j) where i’s correspond to the domain [1, N ],
j’s index the different signals and ai,j ≥ 0 give the value of the jth signal at point i. Consider norms that are
cumulative of the multiple signals in the data stream, e.g., the min-dominance norm is

∑
i minj{ai,j}. Anal-

ogously, the max-dominance norm is
∑

i maxj{ai,j}. These estimate norms of the “upper/lower envelope”
of the multiple signals, or alternatively, norms of the “marginal” distribution of tabular data streams. Max-
dominance can be approximated well on data streams using generalization of techniques known for distinct
count estimation [53]. In contrast, it is not possible to compute a useful approximation to the min-dominance
norm.

Theorem 21. Any algorithm that approximates
∑

i minj{ai,j} to a constant factor requires Ω(N) bits of
storage.

Proof. Consider two parties P and C who each hold a subset (X and Y respectively) of the integers 1 to
N . Suppose that there were some algorithm known to both A and B which allowed the approximation of
the min-dominance norm. Then A generates data stream Str(X) where Str(X)i = (i, 1) iff i ∈ X and
Str(X)i = (i, 0) iff i %∈ X, and passes this stream to the algorithm. Following this, A takes the complete
memory state of the algorithm and communicates it to B. B then proceeds to run the same algorithm based
on this memory state applied to the same transformation of Y , that is, Str(Y ). The result is an approximation
of min-dominance norm for the concatenation of the streams Str(X) and Str(Y ) which is |X ∩ Y |— in
other words, the sum of the minimum values is exactly the intersection size of the two sets, which needs
Ω(N) bits in the communication model. Therefore, the size of the memory state of the proposed streaming
algorithm must be Ω(N) bits.

0.6.4 Summary and Data Stream Principles

The algorithmic ideas above have proved powerful for solving a variety of problems in data streams. On the
other hand, using the lower bound technology, it follows that many of these problems—finding most frequent
items, finding small error histograms, clustering, etc.—have versions that are provably hard to solve exactly
or even to approximate on data streams. However, what makes us successful in solving these problems is
that in real life, there are two main principles that seem to hold in data stream applications.

• Signals in real life have “a few good terms” property.

Real life signals A[0 · · ·N − 1] have a small number B of coefficients that capture most of the
trends in A even if N is large. For example, Figure 4 shows the sum squared error in recon-
structing a distribution with B highest coefficients for various values of B, and two different
distributions: the number of bytes of traffic involving an IP address as the source and as the des-
tination. So, here N = 232, total number of IP addresses possible. Still, with B = 800 or so, we
get the error to drop by more than 50%. For capturing major trends in the IP traffic, few hundred
coefficients prove adequate.
In IP traffic, few flows send a large fraction of the traffic [206]. That is, of the 264 possible
(src, dest) IP flows, if one is interested in heavy hitters, one is usually focused on a small number
(few hundreds?) of flows. This means that one is typically interested in tracking k most frequent
items, for small k, even if N is large.
This phenomenon arises in other problems as well: one is typically interested in a small number
k of facilities or clusters, etc.
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Fig. 4 Decay of SSE of top wavelet coefficients on IP data.

• During unusual events in data streams, exceptions are significantly large.

The number of rare IP flows—flows involving a small number of packets—and the number of dis-
tinct IP flows is significantly large during network attacks. When there are data quality problems
in data streams—say packets are dropped in measurement platform—the problem is abundant,
e.g., the packet drops happen in many places because of correlations.

These two principles are used implicitly in designing many of the useful data stream algorithms. Applied
algorithmicists need to keep these principles in mind while abstracting the appropriate problems to study.

0.7 Streaming Systems

There are systems that (will) process data streams. They fall into two categories.
First, is the hands-on systems approach to data streams. One uses operating system support to capture

streams, and perhaps use special hooks in standard programming languages like C or scripting tools like
perl or database functionality to get additional facility in manipulating streams. The work on telephone
Call Detail Records analysis using Hancock [60]—a special-purpose language—is such an example. Other
researchers work in this framework, and quite successfully process large data sets. Many companies such as
NARUS and others can capture a suitable subset of the stream and use standard database technology atop
for specific analyses.

Second, there are database systems where the internals are directly modified to deal with data streams.
This is an active research area that involves new stream operators, SQL extensions, novel optimization tech-
niques, scheduling methods, the continuous query paradigm, etc., the entire suite of developments needed
for a data stream management system (DSMS). Projects at various universities of this type include Nia-
garaCQ [35], Aurora [1], Telegraph [152], Stanford Stream [11] etc. They seem to be under development,
and demos are being made at conferences. Another system in this category is Gigascope [63] which is oper-
ationally deployed in an IP network. It deal with stream rates generated in IP networks, but it provides only
features suitable for IP network data analysis. It is not yet suitable for general purpose data stream manage-
ment for a variety of data streams. Streambase is a commercial company with its data stream management
system [16].
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One of the outstanding questions with designing and building DSMSs is whether there is a need. One
needs multiple applications, a well-defined notion of stream common to these applications, and powerful
operators useful across applications in order to justify the effort needed to actualize DSMSs. At this fledgling
point, the IP network traffic monitoring is a somewhat well developed application. Financial streams seem
to be another developing application. But more work needs to be done—in applications like text and spatial
data stream scenarios—to bolster the need for DSMSs.

To what extent have the algorithmic ideas been incorporated into the emerging streaming systems? In
the last two years, some significant developments have happened in Gigascope to incorporate data streaming
algorithms. Gigascope is a DSMS specialized for monitoring network feeds. It is programmed using an SQL-
like language, GSQL, allowing the simple specification of complex monitoring tasks. This takes advantage
of the large body of research on query optimization and the specialized application to make many aggressive
performance optimizations. As a result, Gigascope queries often run faster than hand-written code. In order
to obtain high performance in data reduction, Gigascope has a two level architecture (see Figure 5). Query
nodes which are fed by source data streams (e.g., packets sniffed from a network interface) are called low
level queries, while all other query nodes are called high level queries. Data from a source stream is fed
to the low level queries from a ring buffer without copying. Early data reduction by low level queries is
critical for high performance: hence, low level queries need to be fast enough to deal with input stream
rate and yet be rich enough to perform significant reduction in the data rate; the high level queries do
more sophisticated query processing and finish up the computation. What is unique about Gigascope is the
flexible infrastructure it provides in controlling the low and high level queries independently for optimizing
the overall performance better.

Two specific data stream methods have been incorporated into Gigascope.

• CM Sketch has been incorporated into Gigascope as a user-defined function.

In [46], the performance of CM Sketch is shown on live IP traffic streams at close to 2 million
packets (updates) a second with minimal computation load on routers. Careful engineering is
needed to tradeoff the complexity and richness of low-level vs high-level queries to achieve
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this performance and show CM sketch to be usable and effective at these streaming speeds.
Since CM sketch is generic, its optimization within Gigascope helps implement many different
algorithms directly and easily, including those for rangesums, quantiles, heavy hitters, deltoids,
F2 estimation, etc.

• A large class of sampling algorithms have been incorporated into Gigascope as an operator.

There are many different sampling methods for data streams and it is a challenge to incorporate
them all into Gigascope. In particular, the difficulty is not coding them as individual functions
which creates its own challenges, but rather optimizing them carefully for the two-level architec-
ture of Gigascope. In [140], authors abstracted a common template for many of these sampling
methods and implemented that as an operator. They showed that using this template, sampling
methods can be added to Gigascope very easily; further, these methods now work at about 2
million packets (updates) a second with only a small overhead on the processor in the routers.

These two additions are significant: they optimize the performance of the key ingredients on which higher
level stream analyses can be performed. They also show real performance on live IP traffic feeds.

There are following two major challenges in building future DSMSs.

Problem 9. Design and build a scalable, distributed data stream management system with truly distributed,
communication-efficient query processing.

This is the next phase of the challenge in actualizing DSMSs and there is already some emerging
work [16].

Another emerging phase is IP content analysis. Increasingly, IP traffic analysis involves looking at the
contents (not just the headers) of the IP packets for detecting malicious activity. This involves streaming
analysis on the “strings” in packet contents.

Problem 10. Build a scalable DSMS for IP content analyses. Notice that the contents are more voluminous
than the headers; also, string analyses are richer and more computationally intensive than header analyses.
Hence, this is a serious challenge.

0.8 New Directions

This section presents some results and areas that did not get included above. The discussion will reveal
open directions and problems: these are not polished gems, they are uncut ideas. Sampath Kannan has an
interesting talk on open problems in streaming [143]. Piotr Indyk has many open geometric problems in data
stream models [136].

0.8.1 Related Areas

In spirit and techniques, data streaming area seems related to the following areas.

• Sublinear time algorithms: This area focuses typically on sublinear time algorithms. Typically
they rely on powerful oracle access to underlying objects, and devise methods that test objects
and separate them based on whether they are far from having a desired property, or not. See the
survey on sublinear time methods [154]. Typically these results focus on sampling and processing
only sublinear amount of data. As mentioned earlier, sampling algorithms can be simulated by
streaming algorithms, and one can typically do more in streaming models.
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• PAC learning: In [168] authors studied sampling algorithms for clustering in the context of PAC
learning. More detailed comparison needs to be done for other problems such as learning fourier
or wavelet spectrum of distributions between streaming solutions and PAC learning methods.

• On line algorithms: Data stream algorithms have an on line component where input is revealed
in steps, but they have resource constraints that are not typically incorporated in competitive
analysis of on line algorithms.

• Markov methods. Some data streams may be thought of as intermixed states of multiple markov
chains. Thus we have to reason about maximum likelihood separation of the markov chains [20]
or reasoning about individual chains [145] under resource constraints of data streams. This view
needs to be developed a lot further.

0.8.2 Functional Approximation Theory

One of the central problems of modern mathematical approximation theory is to approximate functions
concisely, with elements from a large candidate set D called a dictionary; D = {φi}i∈I of unit vectors that
span RN . Our input is a signal A ∈ RN . A representation R of B terms for input A ∈ RN is a linear
combination of dictionary elements, R =

∑
i∈Λ αiφi, for φi ∈ D and some Λ, |Λ| ≤ B. Typically, B 5 N ,

so that R is a concise approximation to signal A. The error of the representation indicates by how well it
approximates A, and is given by ‖A− R‖2 =

√∑
t |A[t] − R[t]|2. The problem is to find the best B-term

representation, i.e., find a R that minimizes ‖A− R‖2. A signal has a R with error zero if B = N since D
spans RN .

The popular version of this problem is one where the dictionary is a Fourier basis, i.e., φi’s are appropri-
ate sinusoidal functions. Haar wavelets comprise another special case. Both these special cases are examples
of orthonormal dictionaries: ||φi|| = 1 and φi ⊥ φj . In this case, |D| = N . For orthonormal dictionaries
when B = N , Parseval’s theorem holds:

∑

i

A[i]2 =
∑

i

α2
i .

For B < N , Parseval’s theorem implies that the best B term representation comprises the B largest inner
products | 〈A,φ〉 |’s over φ ∈ D.

In functional approximation theory, we are interested in larger—redundant—dictionaries, so called be-
cause when D > N , input signals have two or more distinct zero-error representation using D. Different
applications have different natural dictionaries that best represent the class of input signals they generate.
There is a tradeoff between the dictionary size and the quality of representation when dictionary is properly
chosen. Choosing an appropriate dictionary for an application is an art. So, the problem of determining an
approximate representation for signals needs to be studied with different redundant dictionaries.

There are three directions: studying specific dictionaries derived from applications, studying the problem
for an arbitrary dictionary so as to be completely general, or studying modified norms.

Studying specific dictionaries. One specific dictionary of interest is Wavelet Packets. Let W0(x) = 1 for
0 ≤ x < 1. Define W1,W2, . . . as follows.

W2n(x) = Wn(2x) + Wn(2x − 1)
W2n+1(x) = Wn(2x) − Wn(2x − 1)

Wavelet packets comprises vectors defined by wj,n,k(x) = 2j/2Wn(2jx − k) for different values of j, n, k.
They are richer than the well known Haar wavelets, and hence, they potentially give better compression.
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As before, the problem is to represent any given function A as a linear combination of B vectors from the
wavelet packets. Two such vectors w and w′ are not necessarily orthogonal, hence merely choosing the B
largest | 〈A, wj,n,k〉 |’s does not optimally solve the problem.

A gem of a result on this problem is in [209]: the author proves that the best representation of A using B
terms can be obtained using O(B2 log N) orthogonal terms. Representing signals using orthogonal wavelet
packet vectors is solvable. This result may be improvable by allowing some approximation to the best B
term representation.

Problem 11. There are a number of other special dictionaries of interest—beamlets, curvelets, ridgelets,
segmentlets—each suitable for classes of applications. Design efficient algorithms to approximate the best
representation of a given function using these dictionaries.

Studying general dictionaries. On the other extreme, one may be interested in studying the sparse ap-
proximation problem under any general, arbitrary dictionary. A paper that seems to have escaped the atten-
tion of approximation theory researchers is [182] which proves this general problem to be NP-Hard. This
was reproved in [68].

In what follows, we show a simple inapproximability result. Formally, consider the general sparse ap-
proximation problem (GSAP). Let A be the target signal and let M be the matrix in which the columns are
the dictionary vectors. As before, the objective is to find the minimum error in approximating A with at
most B vectors from M. The standard satisfiability problem (SAT) is to determine for a given boolean for-
mula in its Conjunctive Norm Form, whether there is an assignment to boolean variables so that the formula
evaluates to TRUE (it is a YES instance) or there does not exist such as an assignment (it is a NO instance).
This is an NP-Hard problem [97].

Theorem 22. There exists a reduction from SAT to GSAP such that: if SAT is a YES instance, the minimum
error in GSAP is zero; if SAT is a NO instance, the minimum error in GSAP is strictly greater than zero.

Proof. Given a collection S1, . . . , Sm of sets over some domain [1, n], a set cover is a collection S of sets
S%i’s for *i ∈ [1,m], such that each element i ∈ [1, n] is contained in some set S%i . The exact set cover is
one in which each element i ∈ [1, n] is contained in precisely one of the sets in S. For any given η < 1,
there exists a reduction from SAT to exact set cover, s.t., for a YES instance of SAT, there is an exact set
cover of size ηd; for a NO instance, there doest not exist any set cover of size d. Here, d is a function of the
parameters of the SAT instance.

The reduction from SAT to GSAP proceeds via the reduction to set cover above. Given an instance of set
cover with elements [1, n] and m sets S1, . . . , Sm, we define the n × m matrix M by setting M [i][j] = Q
iff i ∈ Sj , and 0 otherwise. Here Q is some large number. In the target A, all n coordinates are set to Q.
Further, set B in the GSAP problem to be the d in the reduction from SAT to the set cover.

If the SAT instance is YES, there is an exact cover of size ηd. The vector y, where y[i] = 1 if and
only if Sj is in the set cover and is 0 otherwise, satisfies |My − A| = 0, giving zero error to the GSAP
problem with at most ηd terms. If the SAT is NO, consider any solution to the GSAP problem comprising
columns i1, i2, . . . , id to represent A with coefficients α1,α2, . . . ,αd, respectively. Define vector y such
that y[ik] = αk for all k = 1, . . . , d, with the rest of the coordinates being zero. Define set S to be collection
of sets Sj , s.t. y[j] %= 0. The cardinality of S is no larger than d. Since in a negative instance there does not
exist any set cover of size d, it implies that there exist an element i not covered by S. Then My[i] = 0 and
as a result, My[i] − A[i] = −Q. The minimum error then is greater than zero.
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The theorem above immediately gives a number of hardness results. First, it shows that the GSAP prob-
lem is NP-hard since there is a polynomial reduction from SAT to the set cover and our reduction above
is also in polynomial time. This gives an alternative proof to [182, 68]. Second, it shows that any B vector
solution to GSAP will not be able to approximate the error to any multiplicative term since it is NP-hard to
even distinguish the zero error case. Further, since there is a polynomial time algorithm to reduce SAT to the
set cover with any constant η, the theorem shows that it is NP-hard to design an algorithm for GSAP that
produces the minimum error even if allowed to pick cB vectors, for constant c ≥ 1. Further, using the results
in [158, 82], it will follow that unless NP ∈ DTIME(NO(log log N)), there does not exist a polynomial time
algorithm for GSAP that produces a reasonable approximation to the optimal error even if allowed to pick
Ω(B log N) vectors. Thus, if one considers (α,β) approximations to the GSAP where one uses αB vectors
and tries to get an error at most β times the optimal, we can only hope for a narrow set of feasible values
for α and β with polynomial algorithms. As a side remark, the hardness above holds for other error norms
besides the L2-norm, including L1 and L∞ norms.

On the positive side, [182] has the following very nice result. Say to obtain a representation with error
ε one needs B(ε) terms. Let D be the N × |D| matrix obtained by having φi as the ith column for each i.
Let D+ be the pseudoinverse of D. (The pseudoinverse is a generalization of the inverse and exists for any
(m,n) matrix. If m > n and A has full rank n, then A+ = (AT A)−1AT .) The author in [182] presents a
greedy algorithm that finds a representation with error no more than ε but using

O(B(ε/2)||D+||22 log(||A||2))
terms. [182] deserves to be revived: many open problems remain.

Problem 12. Improve [182] to use fewer terms, perhaps by relaxing the error achieved. Is there a nontrivial
non-greedy algorithm for this problem?

Problem 13. A technical problem is as follows: The algorithm in [182] takes |D| time for each step of
the greedy algorithm. Using dictionary preprocessing, design a faster algorithm for finding an approximate
representation for a given signal using the greedy algorithm. Instead of finding the “best”, the approach
may be to find “near-best” in each greedy step and prove that the overall approximation does not degrade
significantly.

Both these questions have been addressed for a fairly general (but not fully general) dictionaries. Dic-
tionary D has coherence µ if ‖φi‖ = 1 for all i and for all distinct i and j, | 〈φi,φj〉 | ≤ µ. For orthogonal
dictionaries, µ = 0. Thus coherence is a generalization. Nearly exponentially sized dictionaries can be gen-
erated with small coherence. For dictionaries with small coherence, good approximation algorithms have
been shown:

Theorem 23. [107, 108] Fix a dictionary D with coherence µ. Let A be a signal and suppose it has a
B-term representation over D with error ‖A− Ropt‖, where B < 1/(2µ). Then, in iterations polynomial
in B, we can find a B-term representation R such that

‖A− R‖ ≤
√

1 +
2µB2

(1 − 2µB)2
‖A − Ropt‖ .

The concept of coherence has been generalized recently in [205].
Further in [107, 108], authors used approximate nearest neighbor algorithms to implement the iterations

in Theorem 23 efficiently, and proved that approximate implementation of the iterations does not degrade
the error estimates significantly. This is a powerful framework, and efficient algorithms for other problems
in Functional Approximation Theory may use this framework in the future.
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Different Norms. An interesting direction is nonuniform sparse approximation. Formally, there is an im-
portance function π where π[i] is the importance of i and it is assumed to be nonnegative, all normalized to
1. The goal is to minimize

επR =
∑

i

π[i] (R[i] − A[i])2.

The problem of nonuniform sparse approximation is as follows:

Problem 14. Given a signal A ∈ RN , importance function π, and a dictionary D = {φi}i∈I of unit vectors
that span RN , find a representation R of B terms for A given by R =

∑
i∈Λ αiφi, for φi ∈ D and some Λ,

|Λ| ≤ B, B 5 N , such that επR is minimized.

Nonuniform sparse approximation is well motivated in many applications where sparse approximation finds
uses. As an example, consider how Haar wavelet synopses get used in databases and data analysis. A signal
A is represented using a B-term wavelet synopsis. Then its representation R is used as the (succinct)
approximation or the surrogate of A. When the signal is queried using point queries, i.e., queries are of
the form “A[i] =?”, the approximation R[i] is returned instead. If all point queries are equally likely, then
average of the squared error of using R[i] rather than A[i] is precisely εR, thus, the rationale to minimize
εR. However, in practice, all point queries are not equally likely. In general, there is bias in how points are
queried that depends on the application and the nature of the signal. So, there is a workload π where π[i] is
the probability of i being queried. In the general workload case then, one wants to minimize, analogous to
the uniform workload case, the total squared-error over all i’s, but now normalized for the probability of a
point i being queried, or equivalently the probability of incurring the error on i. That gives the nonuniform
sparse approximation problem above. Study of nonuniform sparse approximation problems is discussed
in [174] where additional motivations are given.

Curiously, no prior algorithmic result is known for these problems. In particular, even for orthonormal
basis such as Haar or Fourier, Parseval’s theorem no longer applies. Hence new algorithms are needed. This
is a rich new area in sparse approximations. Typical heuristics for solving these problems involve modifying
the dictionary so it is orthonormal with respect to the error [165], but that does not necessarily provide an
optimal solution.

Recently some algorithmic results have been obtained under the assumption that αi = 〈A,ψi〉 for i ∈ Λ,
where ψ’s are the Haar wavelet vectors [96]. Under this restriction, a dynamic programming approach gives
a quadratic time algorithm. Also, recently, non-euclidean norms including the L∞-norm for error have been
studied. [116]

Sparse approximation theory has in general focused on the class of functions for which the error has a
certain decay as N → ∞. See [69] and [203] for many such problems. But from an algorithmicists point of
view, the nature of problems discussed above are more clearly more appealing. This is a wonderful area for
new algorithmic research; a starting recipe is to study [69] and [203], formulate algorithmic problems, and
to solve them. Recently there has been some exciting developments in “compressed sensing” where a small
(polylog) number of measurements suffice to reconstruct a sparse signal [71]. See [218] for a webpage of
a slew of results of this genre that have emerged. From a Computer Science point of view, this seems to be
a collection of results that rely on group testing by adaptive or nonadaptive means. More work needs to be
done to relate simple algorithmic principles such as group testing to the mathematical procedures in these
papers.

Here are two further, unconventional directions: Can one design new wavelets based on rich two dimen-
sional tiling such as hierarchical, p × p or others? Current wavelet definitions rely on rather restricted set of
two dimensional tiling such as quadtrees, but the space of two dimensional tilings are much richer. There
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are complexity results known for computing such two dimensional tilings and some can be approximated
nicely in near-linear time [175]. Also, can one design new one dimensional wavelets based on the 2 − 3
tree decomposition based on LCP parsing described here earlier? In both cases, this gives vectors in the
dictionary defined over intervals that are not just dyadic as in Haar wavelets. Exploring the directions means
finding if there are classes of functions that are represented compactly using these dictionaries, and how to
efficiently find such representations.

0.8.3 Data Structures

Many of us have heard of the puzzle that leaves Paul at some position in a singly linked list, and he needs
to determine if the list has a loop. He can only use O(1) pointers. The puzzle is a small space exploration
of a list, and has been generalized to arbitrary graphs even [22]. One of the solutions relies on leaving a
“finger” behind, doing 2i step exploration from the finger each i, i = 1, . . .; the finger is advanced after
each iteration. This puzzle underlies the discussion in Section 0.2.3 and has the flavor of finger search trees
where the goal is to leave certain auxiliary pointers in the data structure so that a search for an item helps
the subsequent search. Finger search trees is a rich area of research, e.g., see [39].

Recently, a nice result has appeared [23]. The authors construct O(log n) space finger structure for an
n node balanced search tree which can be maintained under insertions and deletions; searching for item of
rank j after an item of rank i only takes O(log |j − i|) time. (Modulo some exceptions, most finger search
data structures prior to this work needed Ω(n)) bits.) This is a streaming result and hopefully this result will
generate more insights into streaming data structures. In particular, two immediate directions are to extend
these results to external memory or to geometric data structures such as segment trees, with appropriate
formalization.

Here is a specific data structural traversal problem.

Problem 15. We have a graph G = (V,E) and a memory M , initially empty. Vertices have to be explicitly
loaded into memory M ; at most k vertices may reside in M at any time. We say an edge (vi, vj) ∈ E is
evaluated when both vi and vj are in the memory M at the same time. What is the minimum number of
loads needed to evaluate all the edges of the graph G?

For k = 2, a caterpillar graph can be loaded optimally easily. For k = 3, Fan Chung pointed out
that the dual of the graph obtained by looking at triangles of G may have certain structure for it to be
loaded optimally. This problem arises in query optimization for tertiary databases [194]. As stated above,
the problem only addresses the small space (synopses) aspect of the issue, but ideally, one would like an
algorithm for doing the entire evaluation that uses one or few passes over the tape resident data, connecting
it with the streaming algorithms.

0.8.4 Computational Geometry

Computational Geometry is a rich area. Problems in computational geometry arise because there are
applications—earth observations for example—that naturally generate spatial data streams and spatial
queries. Also, they arise implicitly in modeling other real life scenarios. For example, flows in IP networks
may be thought of intervals [start time, end time], text documents may be mapped to geometric intervals via
tries, etc.

Consider the problem of estimating the diameter of points presented on a data stream. Indyk [133, 134]
considers this problem in the cash register model where points in d dimensions arrive over time. His algo-
rithm uses O(dn1/(c2−1)) space and compute time per item and produces c-approximation to the diameter,
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for c >
√

2. The algorithm is natural. Choose * random vectors v1, . . . , v% and for each vi, maintain the two
points with largest and smallest projection along vi over all point p’s. For sufficiently large *, computing
diameter amongst these points will give a c-approximation. For d = 2, a better algorithm is known. Take
any point in the stream as the center and draw sectors centered on that point of appropriate angular width.
Within each sector, we can keep the farthest point from the center. Then diameter can be estimated from the
arcs given by these points. One gets an ε-approximation to the diameter with O(1/ε) space and O(log(1/ε))
compute time per inserted point [86]. In an improvement, [127] presents an adaptive sampling approach that
gives the same approximation with space only O(ε−1/2). All these results work in the cash register model.

Since the appearance of these early results, a number of new streaming algorithms have been developed
in the cash register model including convex hulls [127], approximate range counting in d dimensions over
rectangle and halfplane ranges [200], ε-nets and its applications to various geometric depth estimates [14],
etc. More generally, a number of results have been designed based on various core-sets. See [5] for an
excellent survey of these results. In small dimensional applications like d = 2 or 3, keeping certain radial
histograms, i.e., histograms that emanate in sectors from centers and use bucketing within sectors, seems to
find many applications in practice [52].

In an earlier version of this survey, it was mentioned that there were only a few nontrivial results for the
computational geometry problems in the Turnstile model. To understand the challenge, consider points on
a line being inserted and deleted, all insertions and deletions coming only at the right end (the minimum
point is fixed). Maintaining the diameter reduces to maintaining the maximum value of the points which is
impossible with o(n) space when points may be arbitrarily scattered. Instead, if the points are in the range
1 · · ·R: then, using O(log R) space, we can approximate the maximum to 1 + ε factor. This may be an
approach we want to adopt in general, i.e., have a bounding box around the objects and using resources
polylog in the area of the bounding box (or in terms of the ratio of min to the max projections of points
along suitable set of lines).

This line of reasoning has led to new geometric results on Turnstile data streams for minimum spanning
tree weight estimation, bichromatic matching, facility location and k-median clustering [135, 93, 92]. Many
open problems remain. Some are discussed in [136]. Also, in some of the geometric problems, making
multiple passes gives additional power [30, 127].

0.8.5 Graph Theory

The graph connectivity problem plays an important role in log space complexity. See [189] for history and
new development. However, graph problems have not been thoroughly studied in the data stream model
where (poly)log space requirement comes with other constraints such as the number of passes.

In [19], authors studied the problem of counting the number of triangles in the cash register model.
Graph G = (V,E) is presented as a series of edges (u, v) ∈ E in no particular order. The problem is to
estimate the number of triples (u, v, w) with an edge between each pair of vertices. Let Ti, = 0, 1, 2, 3,
be the number of triples with i total edges between the pairs of vertices. Consider the signal A over the
triples (u, v, w), u, v, w ∈ V , where A[(u, v, w)] is the number of edges in the triple (u, v, w). Let Fi =∑

(u,v,w)(A[(u, v, w)])i . It is simple to observe that
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Solving, T3 = F0 − 1.5F1 + 0.5F2. Now, F1 can be computed precisely. But F0 and F2 can only be
approximated. This needs a trick of considering the domain of the signal in a specific order so that each
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item in the data stream, i.e., an edge, entails updating a constant number of intervals in the signal. Using
appropriate rangesum variables, this can be done efficiently, so we find a use for the rangesum variables
from Section 0.6.1. As a result T3 can be approximated. In fact, this method works in the Turnstile model as
well even though the authors in [19] did not explicitly study that model.

The general problem that is interesting is to count other subgraphs, say constant sized ones. Certain
small subgraphs appear in web graphs intriguingly [187], and estimating their number may provide insights
into the web graph structure. Web crawlers spew nodes of the web graph in data streams. So, it is a nicely
motivated application.

In an interesting paper [25], authors study a data stream graph problem where they consider indegrees
of nodes, compute various statistics and use that to estimate the density of minors such as small bipartite
cliques. When one crawls webpages, the edges leading out of each page can all be seen at once; however,
edges directed into a page is distributed over the entire stream. Hence, focusing on indegrees makes it a
challenging data stream problem. [25] shows results of using data stream algorithm on the graph obtained
from Wikipedia which is an interesting new data source.

Another class of problems that have been studied are on multigraphs. In IP traffic analysis, each node (IP
address) represents a communicant, and a (directed or undirected) edge—a packet (sp, dp, bp) with source
sp, destination dp and number of bytes bp—connects two communicants sp and dp. A stream of packets can
therefore be viewed as a series of edges, and this depicts a multigraph since the same pair of communicants
may appear many times distributed over the edge stream. Properties of this multigraph are important for
network managers: for example, nodes of high degree are those that communicate with a large number of
other participants in the network; identifying such nodes (called superspreaders [207]) in an IP network can
indicate unusual activity on that host, such as port scans or virus activity, even though the overall traffic
volume for that host may still be low since each scan requires only a few packets. So, one has to study
degrees and moments based on the number of different communicants connected to a node rather than the
total volume of communications between hosts. In particular, the frequency moments of interest are

Mk =
∑

j

(|{dk|sk = j}|)k

(in contrast to Fk =
∑

j(#k | sk = j)k). In other words, degree of node j is defined to be |{dk|sk = j}|
and not (#k | sk = j).

Streaming algorithms have been designed for basic problems on multigraph streams such as estimating
large degrees, estimating Mk’s, and summarizing the degree distribution by quantiles [57]. The idea is to
embed one type of stream data structure such as a sample within a different type of data structure such as a
sketch. In particular, for the problem of estimating individual degrees (using which solutions can be derived
for the other problems), the solution involves the CM Sketch data structure where instead of a count, we
maintain a distinct count estimator. This is shown in Figure 6.

Many of the known bounds for multigraph problems are not tight and need to be improved. Further, M2

estimation can be thought of as a cascaded computation F2(F0) where F0 is applied in k’s and F2 is applied
on the resulting sums. Of interest are arbitrary cascaded computations P (Q) for different norms P and Q;
several open problems remain in understanding the full complexity of P (Q) cascaded computations.

Graph problems need to be explored more extensively in data stream models. But they appear to be
difficult in general. Even connectivity is impossible in space constraints of streaming models; there is a
fairly general formulation of this difficulty in [88]. One has to find novel motivations and nifty variations of
the basic graph problems. Here is a potential direction.

Problem 16. Consider the semi-streaming model, i.e., one in which we have space to store vertices, say
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O(|V |polylog(|V |) bits, but not enough to store all the edges. So we have o(|E|) bits. Solve interesting (in
particular, dense) graph problems in this model.

In the past one year, many nice algorithmic results have been shown in the semi-streaming model. This
includes approximations to matching problems [87], spanners, the diameter and the shortest path prob-
lems [87, 88, 78]. While many problems still remain open, these papers have developed some nice ideas for
dealing with graph problems. These papers also study tradeoffs between the number of passes and the space
complexity of each pass. Here is an example of a problem of interest on massive graphs.

Problem 17. Formulate a notion of a community in a graph where edges arrive with timestamps. Design
streaming algorithms to detect or count the communities or estimate their statistics. An example of a com-
munity is a subgraph that is more densely connected within itself. An intriguing new notion of community
is that it is a subset of vertices that are connected in each time slice for a suitable notion of a time slice [159].
Other definitions may be useful too.

0.8.6 Databases

Databases research community has considered streaming extensively, far too much to be summarized here.
Here are a few interesting directions.

Set Histograms. In approximate query processing, the following problem is relevant.

Problem 18. Consider a signal A where A[i] is a subset of 1, . . . , U . Each query is a range query [i..j] for
which the response is |

⋃
i≤k≤j A[k]|. Build a histogram of B buckets that is (near-)optimal for this task in

the data streaming models.

The problem above has to be carefully formalized. Histograms have been studied extensively in Statistics
and find many applications in commercial databases. In general they study signals where A[i] is the number
of tuples in a database with value i. Instead, if we interpret A[i] as the set of memory pages that contain
records with value i, histogram described in the problem above is relevant. In database parlance, this is an
attempt at modeling the page selectivity of queries.
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Multidimensional Histograms. In databases, signals are often multidimensional and the following prob-
lem is relevant.

Problem 19. Consider two dimensional signal At[i][j], i, j ∈ [1, N ]. Design practical algorithms for build-
ing (near) optimal two dimensional histogram with B partitions in data stream models.

Readers should not think of this as a straightforward generalization of one dimensional problem to
multiple dimensions. There are many ways to partition two dimensional arrays. While the one dimensional
problem is polynomial time solvable, two dimensional problems are NP-hard for most partitions. Further,
as argued earlier, even if one-dimensional domains are small enough to fit in to given memory, streaming
algorithms may well be appropriate for the multidimensional version.

In [175], authors proposed efficient approximation algorithms for a variety of two dimensional his-
tograms for the non-streaming case. In the Turnstile case, [204] proposed a polylog space, 1+ε approxima-
tion algorithm with O(B log N) buckets, taking Ω(N2) time. Using the ideas in [175] and robust histograms
from [105], a truly streaming algorithm was presented in [179] i.e., one that is a B bucket, 1 + ε approxi-
mation using both polylog space as well as polylog time. Still, the algorithms are quite complicated; simple
and practical algorithms are of great interest for dimensions d ≥ 2.

Rangesum Histograms. Say a query is a pair of points (*, r) and the ideal answer is A[*, r) =∑
%≤i<r A[i]. An answer from a standard histogram H would be H[*, r) =

∑
%≤i<r H[i]. The sum square

error of a histogram is
∑

%,r

|A[*, r) − H[*, r)|2 .

A rangesum histogram minimizes the error above. Rangesum histograms are harder to optimally construct
since even given bucket boundaries, it is challenging to find heights for a bucket without considering other
buckets. This dependence defeats standard dynamic programming approaches.

Transform A to the prefix array, P(A). A piecewise-constant representation for A becomes a piecewise
linear connected representation for P(A) since the latter is an integral of the former. While the piecewise
constant function may have “jumps” between successive constant pieces, the linear pieces join without gaps
in the piecewise linear connected representation since it is the area sum underneath the piecewise constant
representation. Also, the square error summed over all range queries (*, r) for A transforms to N times the
sum square error over all point queries in P(A). As a result, to get a piecewise-constant representation that
minimizes the sum square error of range queries to A, we only need to find a piecewise linear connected
representation H that minimizes the sum square error of point queries to P(A), then output ∆(H), where
∆(H)[i] = H[i+ 1]−H[i]. Unfortunately, we do not know how to find optimal piecewise linear connected
representations. But we do know how to find nearly optimal representations from the larger class general
piecewise-linear B-bucket representations, not necessarily connected, by generalizing the machinery of ro-
bust histograms described earlier. Since H is not connected, ∆(H) obtained this way is not necessarily a
B-bucket piecewise-constant representation, but it is a (2B − 1)-bucket piecewise-constant representation,
where the discontinuities in H each give rise to a bucket of size one in∆(H). Using this approach (2, 1+ε)
approximation to rangesum histograms were obtained in streaming models [178]. (An (α,β) approximation
using α times more buckets and β times more error.) A different algorithm gives (1, 1 + ε) approximation
in the non-streaming case.

Problem 20. Is there a polynomial time algorithm for constructing optimal rangesum histograms?
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Problem 21. Devise a streaming algorithm that finds B-term Haar wavelet representation R for the A such
that

∑
%,r |A[*, r) − R[*, r)|2 is minimized where R[*, r] is the estimation for rangesum query [*, r) using

R.

Despite the progress in [178], several fundamental questions such as those above remain open about
rangesum histograms (and wavelets).

The three different histograms discussed above led to technical questions. From a database point of
view, there are many conceptual questions to be resolved: how to scale continuous queries, how to develop
a notion of stream operator that is composable so complex stream queries can be expressed and managed,
etc. Here is a direction that is likely to be of interest.

Problem 22. A Stream In, Stream Out (SISO) query is one in which both the inputs as well as the outputs
are streams—in contrast, in much of the problems studies so far, the output is an aggregate value or a
(multi)set. An example of a SISO query is what is known as the “join” (related to the cartesian product) of
two streams in local time windows. What is an approximation for a Stream In, Stream Out (SISO) query?
Can one develop a theory of rate of input stream and rate of output stream for various SISO queries? Both
probabilistic and adversarial rate theories are of relevance.

0.8.7 Hardware

An important question in data streaming is how to deal with the rate of updates. Ultimately, the rate of
updates may be so high that it is not feasible to capture them on storage media, or to process them in
software. Hardware solutions may be needed where updates, as they are generated, are fed to hardware
units for per-item processing. This has been explored in the networking context for a variety of per-packet
processing tasks (see e.g. [196]) previously, but more needs to be done. Consider:

Problem 23. Develop hardware implementation of the projection and sampling based algorithms described
in Section 0.6 for various data stream analyses.

Problem 24. There are certain tasks such as IP packet lookup and packet classification that are optimized on
hardware and high speed memory within a router. Design algorithms for traffic analyses that use these prim-
itives. In particular, the heavy hitters and quantile estimation problems seem suitable candidates. See [215]
for some recent work.

Here is a related topic. The trend in the graphics hardware is to provide a programmable pipeline. Thus,
graphics hardware that will be found in computing systems may be thought of as implementing a stream
processing programming model. Tasks will be accomplished in multiple passes through a highly parallel
stream processing machine with certain limitations on what instructions can be performed on each item at
each pixel in each pass. See [130] for an example and [121] for stream-related results. Generic graphics
hardware may not be suitable for processing data streams coming in at a high rate, but stream algorithms may
find applications in using graphics hardware as a computing platform for solving problems. A lot remains to
be explored here; see the thoughtful perspective on the theory and systems of the graphics card as a stream
processor by Suresh Venkatsubramanian [208], and the graphics perspective in [164].

0.8.8 Streaming Models

Models make or mar an area of foundational study. We have a thriving set of streaming models already, but
some more are likely, and are needed.



0.8. New Directions 53

0.8.8.1 Permutation Streaming

This is a special case of the cash register model in which items do not repeat. That is, the input stream is a
permutation of some set, and items may arrive in a unordered way. (This fits Paul’s prediliction of permuting
from Section 0.2.1.) There is also some theoretical justification: permutations are special cases of sequences
and studying permutation edit distance may well shed light on the hard problems in string processing on
streams.

A few problems have been studied in this model. In [59], authors studied how to estimate various per-
mutation edit distances. The problem of estimating the number of inversions in a permutation was studied
in [7].

Here is an outline of a simple algorithm to estimate the number of inversions [122]. Let At be the
indicator array of the seen items before seeing the tth item, and It be the number of inversions so far. Say
the tth item is i. Then

It+1 = It + |{j | j > i & At[j] = 1}|.

Estimating |{j | j > i & At[j] = 1}| for any i, up to 1 + ε accuracy can be thought of as the following
problem.

Problem 25. Let PA be the prefix sum version of A and 0 < φ < 1. The low-biased quantiles of A are the
set of values PA[.φjn/] for j = 1, . . . , log1/φ n. The ε-approximate low-biased quantiles is a set of some
k items q1, . . . , qk which satisfy

PA[(1 − ε)φjn] ≤ qj ≤ PA[(1 + ε)φjn]

for any ε < 1. The problem is to determine approximate low-biased quantiles in the data stream models.

Directly using known quantile algorithms would mean we would use accuracy φlog1/φ n taking total
space φ− log1/φ n log(ε||A||1) which would be highly space inefficient. The authors in [122] use random-
ization and an elegant idea of oversampling to retain certain smallest number of them; they obtain an
O( 1

ε3 log2(ε||A||1)) space randomized algorithm for ε < φ, in the cash register model. An open problem
here is what is the best we can do deterministically, or in the Turnstile model.

Here is a problem that arises in practice, in permutation-like streaming.

Problem 26. Each IP flow comprises multiple consecutively numbered packets. We see the packets of the
various flows in the Cash Register model. Sometimes packets may get transmitted out of order because of
retransmissions in presence of errors, i.e., packets may repeat in the stream. The problem is to estimate the
number of flows that have (significant number of) out of order packets at any time. Space used should be
smaller than the number of distinct IP flows. This problem may be thought of as estimating the distance of
an IP packet stream from the ideal permutation of consecutively numbered packets.

0.8.8.2 Windowed Streaming

It is natural to imagine that the recent past in a data stream is more significant than distant past. How to
modify the streaming models to emphasize the data from recent past? There are currently two approaches.

First is combinatorial. Here, one specifies a window size w, and explicitly focuses only on the most
recent stream of size w, i.e., at time t, only consider a sliding window of updates at−w+1, . . . , at. Items
outside this window fall out of consideration for analysis, as the window slides over time. The difficulty
of course is that we can not store the entire window, only o(w), or typically only o(polylog(w)) bits are
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allowed. This model was proposed in [66] and is natural, but it is somewhat synthetic to put a hard bound
of w on the window size, for example, irrespective of the rate of arrival of the stream. Still, this model is
convenient to work with and a number of results are currently known, e.g. for quantile and heavy hitter
estimations [12].

The other model is telescopic. Here, one considers the signal as fixed size blocks of size w and λ-ages
the signal. Let Ai represent the signal from block i. We (inductively) maintain βi as the meta-signal after
seeing i blocks. When the i + 1th block is seen, we obtain

βi+1 = (1 − λi+1)βi + λi+1Ai+1.

If we unravel the inductive definition, we can see that the signal from a block has influence on the meta-
signal in the future that decreases exponentially. This model has certain linear algebraic appeal, and it also
leverages the notion of blocks that is inherent in many real life data streams. The original suggestion is
in [61] where the block amounted to a days worth of data, and λi’s were kept mostly fixed. The drawback
of this model is clearly that it is difficult to interpret the results in this model in an intuitive manner. For
example, if we computed the rangesum of the metasignal βi[a · · · b], what does the estimate mean for the
data stream at any given time?

Another natural model is the hierarchical block model described by Divesh Srivastava. Informally, we
would like to analyze the signal for the current day at the granularity of a few minutes, the past week at the
granularity of hours, the past month at the granularity of days, the past year at the granularity of weeks, etc.
That is, there is a natural hierarchy in many of the data streams, and we can study the signals at progressively
higher level of aggregation as we look back in to the past. There are very interesting research issues here,
in particular, how to allocate a fixed amount of space one has amongst the different signal granularities for
samples, sketches or other synopses.

0.8.8.3 The Reset Model

In the reset data stream model, we have the signal A as before. Each update that appears on a stream (i, x)
implies a reset, that is, A[i] = x; in contrast, in standard data stream models, each update would have
implied A[i] = A[i] + x. The reset model was introduced in [129].

Motivation for this model arises from the self-tuning approach to selectivity estimation in databases [2].
The query processor has a “summary” that describes some (not necessarily the current) state of the data
distribution in the database. It selects query plans for execution using the summary; but when a query is
executed, as a by-product, it gets to know the actual values the query intersects. The query optimizer needs
to use this feedback to update its knowledge of the data distribution. Each time it knows an actual value, it
corresponds to a reset. The goal is for the query optimizer to estimate various parameters of interest on the
data distribution under this stream of resets. This precisely corresponds to the reset model of data streams.

The reset model is more challenging than the standard data stream models. For example, estimating F1
is trivial to calculate precisely in standard data stream models. In contrast, it can not be calculated precisely
in the reset model. Consider any set S provided as the input to an algorithm in the reset model. We can then
reset A[1] = 1 for each i in turn: F1 will not change after ith reset iff A[i] = 1 prior to the reset. So, we
can recover the entire set S which means that the state of the algorithm after seeing S could not have used
o(|S|) space. Hence, we seek approximate algorithms when restricted to small space.

Say the update stream is monotone if an update always causes A[i] to increase. If the input is not mono-
tone, it provably impossible to estimate F1 under streaming constraints. Algorithms have been presented
in [129] for F1 estimation, sampling with probability proportional to F1, and property testing for (non-
)monotonicity of a reset stream. While this is a good start, much remains to be done in this model.
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0.8.8.4 Distributed Continuous Computation

Consider the following simple game. Paul and Carole see a set of items, denoted Pt and Ct respectively
at time t, that continously changes over time t. There is a central monitor M who needs to estimate mt =
|Pt∪Ct|, at all times t. Thus the query ”|Pt∪Ct| =?” is a continuous query that needs an answer at all times
t; in contrast, problems we have studied so far correspond to one-shot queries that need an answer at time
t when they are posed and not subsequently. The goal is to design a distributed protocol for the continous
query above that minimizes the total number of bits communicated until time t, for each t. Paul and Carole
do not communicate with each other directly; instead, they communicate with M over private channels.

Obviously if mt has to be exact during each t, then Paul and Carole have to send their new updates each
instant to M and this is inefficient. However, if mt is allowed to be approximate, then some communication
can be eliminated.

This game captures an emerging perspective that streaming systems are being employed in monitoring
applications such as tracking events and exceptions in IP traffic networks or sensor networks, hence, they
need to support continuous queries over distributed networks. A number of heuristic solutions have been
proposed recently for set unions such as the game above and other set expressions, quantiles, heavy hitters
and sketch-maintenance [161, 95, 45, 44].

However, a solid theory is missing. Formulating the appropriate measure of complexity of these dis-
tributed continuous protocols is an interesting challenge—note that standard communication complexity
only measures the cost of a distributed one-shot computation and does not apply to the distributed, contin-
uous case. Also, novel distributed continuous protocols are needed for sophisticated monitoring problems.
This is a great opportunity to develop an influential theory.

0.8.8.5 Synchronized Streaming

A puzzle, due to Howard Bergerson, is as follows. Imagine the first one thousand vigintillion minus one
natural numbers arranged in two lists, one in numerical order and the other in lexicographic order. How
many (if any) numbers have their positions same in both lists? There is nothing special about vigintillion,
any n will do.

This has a Paul-Carole North American version. Carole counts up 1, . . . , n. Paul counts too, but in
permuted order given by the lexicographic position of numbers when written in English. For example, if
n = 4, Carole goes 1, 2, 3, 4 but Paul goes Four,One,Three,Two. Both count in lock step. When, if
ever, do they say “Jinx!”?

This puzzle contains the elements of what we call the synchronized streaming model. Say we wish to
compute a function on two signals A1 and A2 given by a data stream. All updates to both the signals are
simultaneous and identical except possibly for the update values. That is, if the tth item in the data stream
that specifies A1 is (i, C1(i)), then the tth item in the data stream that specifies A1 is (i, C2(i)), too. Both
these updates are seen one after the other in the data stream. Our goal as before is to compute various
functions of interest on A1 and A2 satisfying the desiderata of streaming algorithms.

The interest is in if the synchronized model can accomplish more than some of the standard stream
models. For example, if the two signals are two strings read left to right in synchronized streaming, one
can estimate if their edit distance if at most k, using O(k) space. In contrast, this is difficult to do in a
generic streaming model. Recently, improved bounds were presented in synchronized streams model for
weighted histogram construction [181]. Synchronized streaming is quite natural; more research is needed
on this model.
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0.8.9 Data Stream Quality Monitoring.

Any engineer having field experience with data sets will confirm that one of the difficult problems in reality
is dealing with poor quality data. Data sets have missing values, repeated values, default values in place
of legitimate ones, etc. Researchers study ways to detect such problems (data quality detection) and fixing
them (data cleaning). This is a large area of research, see the book [64].

In the traditional view of databases, one sets integrity constraints and any violation is considered a data
quality problem and exceptions are raised. Bad quality data (e.g., age of a person being more than 200) is
never loaded into the database. This is a suitable paradigm for databases that are manually updated by an
operator. Recently, the attention has shifted to data cleaning within a database such as correlating different
schemas and finding related attributes.

In the area of data streams, data quality problems are likely to be manifold. For example, in network
databases, data quality problems have to do with missing polls, double polls, irregular polls, disparate traffic
at two ends of a link due to unsynchronized measurements, out of order values, etc. Now it is unrealistic
to set integrity constraints and stop processing a high speed data feed for each such violation; furthermore,
appearance of such problems in the feed might by itself indicate an abnormal network phenomena and clean-
ing it off in the database may hide valuable evidence for detecting such phenomena. Developing algorithms
to detect one data quality problem after another after the stream is captured in databases is simply not a
scalable or graceful approach.

One needs a principled approach to dealing with data quality problems on streams. In particular, the data
quality problems immediately impact one’s analyses since the analyses are being done real time. For starters,
one needs data quality monitoring tools. They monitor the state of the data stream using probabilistic, ap-
proximate constraints and measuring statistics: strong deviation from expected statistics may be projected
as a ping for the database administrator or the user to react. To be useful, the tool has to be configured to
monitor most suitable statistics and thresholds need to be set to release suitable number of pings while sup-
pressing false alarms. This is an engineering challenge. There are many ways the database and users may
deal with these pings: writing their queries in an informed way is a choice for stored database applications.
For data streams, one needs a way to automatically rewrite ongoing queries based on data quality problems.
There has been some recent progress on data quality monitoring tools [65, 151], but these do not scale to IP
traffic speeds yet.

In general, our communities have approached data quality problems as “details” and dealt with individual
problems as the need arises. There is a need to develop more principled methods—theory and systems—for
dealing with poor quality data.

Here is a specific technical problem not restricted to streams.

Problem 27. Given a set S of strings s1, . . . , sn and set T of strings t1, . . . , tn, find a matching (i.e., one-
to-one mapping) f : S → T such that

∑
i d(si, f(si)) is (approximately) minimized. Let d(x, y) be the

edit distance between strings x and y. This problem can be done by computing d(si, tj) for all pairs i, j
and finding min cost matching, but the goal is to get a substantially subquadratic (say near linear) time
approximate algorithm. The underlying scenario is S and T are identical lists of names of people, but with
some errors; f is our posited (likely) mapping of names of people in one list to the other.

0.8.10 Fish-eye View

Here is a fish-eye view of other areas where streaming problems abound. The discussion will be elliptical:
one needs to mull over these discussions to formulate interesting technical open problems.
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0.8.10.1 Linear Algebra

Matrix functions need to be approximated in data stream model. For example:

Problem 28. Given a matrix A[1 · · · n, 1 · · · n] in the Turnstile Model (i.e., via updates to A), find an ap-
proximation to the best rank-k representation to At at any time t. More precisely, find D∗ such that

||At − D∗|| ≤ f( min
D, rank(D)≤k

||At − D||)

using suitable norm ||.|| and function f .

A result of this type has been proved in [3, 72] using appropriate sampling for a fixed A, and recent progress
is in [72] for a similar problem using a few passes, but there are no results in the Turnstile Model. A lot of
interesting technical issues lurk behind this problem. One may have to be innovative in seeking appropriate
||.|| and f . Other linear algebraic functions are similarly of interest such as estimating eigenvalues, determi-
nants, inverses, matrix multiplication and its applications to maxcut, clustering and other graph problems;
see the tomes [73, 74, 75] for sampling solutions to many of these problems for the case when A is fully
stored.

0.8.10.2 Statistics

Prior work in data streams has shown how to estimate simple statistical parameters on data streams. We
need vastly more sophisticated statistical analyses in data stream models. In statistics, researchers refer to
“recursive computing” which resonates with the cash register model of computation. There is an inspiring
article by Donoho [70] which is a treasure trove of statistical analyses of interest with massive data. Here is
a general task:

Problem 29. Assume a model for the signal A and estimate its parameters using one of well known methods
such as regression fitting or maximum likelihood estimation or expectation maximization and Bayesian
approach on the data stream models.

As an example, consider the A where A[i] is the number of bytes sent by IP address i. This signal was
observed to have self-similarity [147]. For each p = 0, 1, . . . , log N − 1, define

N(p) =
∑

j

(
k=2p−1∑

k=0

A[j2p + k])2.

In principle, the fractal dimension of the signal over an infinite domain is defined as

D2 ≡ lim
p→∞

log N(p)
p

(1)

In practice, for finite domains, a plot of log N(p) vs p is used: if the signal is self-similar, the plot will be a
straight line and its slope will be D2. In general, estimating the slope of the best line fit by the least squares
method gives an estimate for D2.

Let us consider the problem of estimating D2 on a data stream. A suitable algorithm is to (a) use one
of the sketches to estimate N(p) accurately to 1 ± ε by N̂(p) for each p with probability at least 1 − δ,
(b) use the least squares method with pairs (p,N̂(p)) for all p and (c) get an estimate D̂2. This has been
used previously as a heuristic [212]. In fact, this algorithm provably approximates the fractal dimension to
desired accuracy as shown below.
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Theorem 24. [150] With probability at least 1 − δ log N ,

|D̂2 − D2| ≤
3ε

(1 + log N)(1 − ε)
.

Hence, fixing δ and ε appropriately, one gets a highly precise estimate for D2. Similar approach will
work for other statistical parameter estimators that rely on least squares for straight line fit. It will be of in-
terest to design such algorithms with provable accuracy bounds for estimating more sophisticated statistical
parameters on the data stream model. Some preliminary work on Bayesian methods for massive data sets
appears in [15].

0.8.10.3 Complexity Theory

Complexity theory has already had a profound impact on streaming. Space-bounded pseudorandom
generators—developed chiefly in the complexity theory community—play an important role in streaming
algorithms. No doubt more of the tools developed for small space computations will find applications in
data streaming. Lower bounds in read-once branching programs [188] for example may have applications.

In a recent talk with David Karger, the question arose whether quantum phenomenon can compress
computations into much smaller space than conventional computations, i.e., whether quantum memory is
more plentiful than conventional memory.

A question likely to have been in researchers’ minds is the following: D. Sivakumar has some notes.

Problem 30. Characterize the complexity class given by a deterministic logspace verifier with one-way
access to the proof.

0.8.10.4 Privacy Preserving Data Mining

Peter Winkler gives an interesting talk on the result in [81] which is a delightful read. Paul and Carole each
have a secret name in mind, and the problem is for them to determine if their secrets are the same. If not,
neither should learn the other’s secret. The paper [81] presents many solutions, and attempts to formalize
the setting. (In particular, there are solutions that involve both Paul and Carole permuting the domain, and
those that involve small space pseudorandom generators.) Yao’s “two millionaires” problem [214] is related
in which Paul and Carole each have a secret number and the problem is to determine whose secret is larger
without revealing their secrets.

These problems show the challenge in the emerging area of privacy preserving data mining. We have
multiple databases (sets or multisets). Owners of these databases are willing to cooperate on a particular
data mining task such as determining if they have a common secret, say for security purposes or because it
is mandated. However, they are not willing to divulge their database contents in the process. This may be
due to regulatory or proprietary reasons. They need privacy-preserving methods for data mining.

This is by now a well researched topic with positive results in very general settings [99]. However,
these protocols have high complexity. There is a demand for efficient solutions, perhaps with provable
approximations, in practice. In the past two years, a number of such protocols have been designed and
analyzed in theory and database community; see [185] and examples of [6, 94, 139, 199] for a sample of
recent developments.

An interesting direction is to formalize approximate notions of privacy and security in distributed set-
tings. In [83] authors formalized the notion of approximate privacy preserving data mining and presented
some solutions, using techniques similar to ones used in data stream algorithms. A lot remains to be done.
For example, a problem of interest in databases is the following.
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Problem 31. Paul has m secrets, and Carole has n secrets. Find an approximate, provably privacy-
preserving protocol to find the common secrets. As before, the unique secrets of Paul or Carole should
not be revealed to each other.

Other problems arise in the context of banking, medical databases or credit transactions. This gives
new problems, for example, building decision trees and detecting outliers, in a privacy-preserving way. For
example:

Problem 32. Paul, Carole and others have a list of banking transactions (deposits, withdrawal, transfers,
wires etc.) for each of their customers. Say the customers have common IDs across the lists. Design an
approximate, provably privacy-preserving protocol to find the “heavy hitters”, i.e., customers who executed
the largest amount in transactions in the combined list of all transactions.

0.9 Historic Notes

Data stream algorithms as an active research agenda emerged only over the past few years, even though the
concept of making few passes over the data for performing computations has been around since the early
days of the Automata Theory. Making one or few passes for selection and sorting [146] got early attention.
There was a gem of a paper by Munro and Paterson [172] in 1980 that specifically focused on multi-pass
algorithms; it presented one pass algorithms and multi-pass lower bounds on approximately finding quan-
tiles of a signal. Gibbons and Matias at Bell Labs synthesized the idea of Synopsis Data Structures [207]
that specifically embodied the idea of a small space, approximate solution to massive data set problems. The
influential paper of Alon, Matias and Szegedy [10] used limited independence for small space simulation
of sophisticated, one-pass norm estimation algorithms. The paper by Henzinger, Raghavan and Rajago-
plan [125] formulated one (and multiple) pass model of a data stream and presented a complexity-theoretic
perspective; this is an insightful paper with several nuggets of observations some of which are yet to be
developed. Feigenbaum at AT& T Research identified and articulated the case for the network traffic data
management as a data stream application [84]; a detailed, and pivotal case was made for this application
by Estan and Varghese [80]. From these beginnings, the area has flourished. This survey has focused on
algorithmic foundations. A database perspective is at [13].

0.10 Concluding Remarks

In How Proust can Change Your Life, Alain de Botton wrote about “the All-England Summarise Proust
Competition hosted by Monty Python ... that required contestants to précis the seven volumes of Proust’s
work in fifteen seconds or less, and to deliver the results first in a swimsuit and then in evening dress.” I
have done something similar with data stream algorithms in what amounts to an academic 15 seconds sans
a change of clothes.

Data streams are more than the topic de jour in Computer Science. Data sources that are massive, auto-
matic (scientific and atmospheric observations, telecommunication logs, text) data feeds with rapid updates
are here to stay. We need the TCS infrastructure to manage and process them. That presents challenges to al-
gorithms, databases, networking, and systems. Ultimately, that translates into new questions and methods in
Mathematics: approximation theory, statistics and probability. A new mindset—say, seeking only the strong
signals, working with distribution summaries—is needed, and that means a chance to reexamine some of
the fundamentals. Fittingly, the seminal work of Alon, Matias and Szegedy [10] on data stream processing
has been awarded the Godel Prize recently.

Several tutorials, workshops and special journal issues focused on data streams have occurred already,
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and many more academic adventures will happen over time. The data stream agenda now pervades many
branches of Computer Science including databases, networking, knowledge discovery and data mining, and
hardware systems. Industry is in synch too, with DSMSs and special hardware to deal with data speeds.
In a recent National Academy of Sciences meeting [219], data stream concerns emerged from physicists,
atmospheric scientists and statisticians, so it is spreading beyond Computer Science. Unlike a lot of other
topics we—algorithmicists—focused on, data streams is an already accepted paradigm in many areas of
Computer Science and beyond. (As a bonus, data streams may be the vehicle that induces people outside
theoretical computer science to accept “approximation” as a necessary strategem and seek principled ways
of approximating computations, an acceptance that is far from being universal now.) If we keep the spirit of
stream data phenomenon in mind and be imaginative in seeking applications and models, potential for new
problems, algorithms and mathematics is considerable.
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