
Cache-oblivious algorithms

Irene Finocchi
Dept. of Computer and Science
Sapienza University of Rome

Towards a theoretical model

• Improve temporal and spatial locality
• Take care of data access patterns and block data
• Parameter tuning (cache size, block size,

associativity, page replacement, etc)

 How can we formalize these ideas and get a
theoretical model in which we are able to
analyze cache-efficiency?

Cache-oblivious model (1999)

Open question for quite a while
Ideas in the air, not a systematic theory

3

Idea:
• design cache-friendly algorithms without knowing
 cache parameters (internal details of the memory
 hierarchy)
• analyze algorithms using cache parameters

Simple idea, with several surprisingly powerful
consequences.

Introduced by Frigo, Leiserson, Prokop &
Ramachandran in FOCS‘99

Cache-oblivious model

4

Implications of cache obliviousness

• If cache-oblivious algs perform well between two levels of the
memory hierarchy, then must automatically work well between
any two adjacent levels of the hierarchy.
 we design algorithms in a two-level model, and
 algorithms automagically adapt to the whole hierarchy

• Self-tuning: cache-oblivious algs work well on all machines
without modification (still subject to some tuning, e.g., where to
trim base case of recursion) code portability

• In contrast to external-memory model, cache-oblivious algs
cannot explicitly manage the cache

5

How can we design algs that minimize number of
block transfers if we do not know the page-
replacement strategy?

An adversarial page replacement strategy could
always evict next block that will be accessed…

Cache-oblivious model assumes an ideal cache:
• page replacement is optimal
• cache is fully associative

Ideal cache model

6

Optimal Page Replacement:
Page replacement strategy knows the future
and always evicts page that will be accessed
farthest in future.

Real-world caches do not know the future,
and employ more realistic page replacement
strategies such as evicting the least-recently-
used block (LRU) or evicting the oldest block
(FIFO).

Assumption 1

7

Full Associativity
Any block can be stored anywhere in cache
(all cache lines in the same set, S=1, E=C/B)

Most caches have limited associativity:
memory addresses can be mapped to a small
subset of cache lines (i.e., to lines in the same
set).

Typical real-world caches: 8-way, 16-way,
even less (depends on platform)

Assumption 2

8

Frigo et al. justify the ideal-cache model by a
collection of reductions that modify an ideal-cache
alg to operate on a more realistic cache model.

Running time of the alg. degrades somewhat, but in
most cases by only a constant factor.

(Hey, wait a minute! We are doing algorithm
engineering: we’re interested in constants!)

Won’t go into the details of the proofs.

Justification of ideal cache model

9

First reduction: replacement strategy
Remove optimal (omniscient) replacement strategy
that uses information about future requests.

If an alg makes T memory transfers on cache of size
M/2 with optimal replacement, then it makes at most
2T memory transfers on cache of size M with LRU or
FIFO replacement (and same block size B).

I.e., LRU and FIFO do just as well as optimal replacement up
to constant factors of memory transfers and cache size. This
competitiveness property of LRU and FIFO goes back to a
1985 paper of Sleator and Tarjan.

Justification of assumption 1

10

Second reduction: associativity and automatic page
replacement

Convert full associativity into direct-mapped cache
and automatic replacement into manual memory
management

Justification of assumption 2

11

Recall C = S x E x B, here S=1

Commonly assumed that cache is taller than wide,
i.e., number of cache lines, E=C/B, larger than size
B of each line:

 C = Ω (B2
)

Already seen in external-memory algorithms.
Usually true in practice

Another assumption: tall cache

