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For any given problem there are generally many algorithms that can be devised for it. For
example, for the problem of finding the closest pair of points in the plane, known algorithms
include the quadratic time brute force algorithm of computing the distance between each pair
of points and the Θ(n log n) time divide-and-conquer algorithm. Likewise, for the problem of
sorting n comparable elements, we have already seen insertion sort, mergesort, and quicksort.
We know that insertion sort and quicksort have worst-case O(n2) performance1, whereas
mergesort has worst-case O(n log n) performance. Is it possible to create a sorting algorithm
with a better worst-case asymptotic time complexity? That is, is there a sorting algorithm
with worst-case time complexity of o(n log n)? A similar question can be asked about the
expected time complexity, but here we focus on deterministic (non-randomized) algorithms.

So the question we address is whether there is a better algorithm for a particular problem
of interest. While lower bounds tell us what cannot be done, they are very important in
guiding us in our search for what can be done. Lower bounds provide a way for us to
quantify the intrinsic difficulty of a problem in a way that is not dependent on any particular
algorithm or approach to solve it. Informally, a lower bound characterizes the fastest possible
performance by a correct algorithm to solve a problem. If we do not make a restriction that
the algorithm is correct, then we could not possibly make any claims about it. Also, in order
to define a lower bound for a problem we must make some assumption about the model of
computation. For example, the cost of a computation on a standard digital computer might
be very different than for a “biological computer.”

Comparison-Based Model of Computation

A very natural model of computation for the problem of sorting (as well as many other
problems that are defined over a set of n comparable elements) is the comparison-based
computation model. In this model, there is a collection of n comparable elements, and the
algorithm can only gain information about the relative order of these n elements by making
a comparison between any pair of them. We say that an algorithm is a comparison-based
algorithm if it can be formulated under this model of computation. Observe that insertion
sort, merge sort, and quicksort (along with many others) are all comparison-based sorting
algorithms.

Observe that since each comparison requires at least one statement to be executed, the
total computation time is at least as large as the number of comparisons made. Thus if we
can prove that Ω(f(n)) comparisons are required by any comparison based algorithm to solve
problem P then we have proven an intrinsic limitation of f(n) on how fast an algorithm can
solve P . That is, there could not exist a comparison based algorithm to solve P in o(f(n))
time.

With the exception of only considering comparison-based algorithms, we are not going
to place any other restriction on the algorithm. Thus, we must prove something about

1Randomized quicksort has expected time complexity Θ(n log n).
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algorithms that we have not seen, and that might use very different techniques than we have
ever seen. In this handout, we describe the adversary lower bound technique to create such
lower bounds. While this is a very general technique that can be applied to a wide variety
of models of computation, we limit our discussion here to the comparison-based model.

Adversary Lower Bound Technique

You can think of the adversary lower bound technique as devising a strategy to construct
a worst case input for an unknown correct algorithm to solve problem P. We will view this
process as a game between an algorithm A and an adversary (or devil) D. We assume that
D has unlimited computational power. In each round of this game, algorithm A asks D if
element i is less than element j (for a choice of i and j made by A). The adversary D must
answer “yes” or “no”. This technique can be easily extended to when there are the three
possible answers of <, =, and >.

The goal of algorithm A is to minimize the number of rounds until its computation to
solve P is completed. Observe, that A can do any computation it wants between rounds
without any cost to it. The goal of the adversary D is to maximize the number of rounds
until A could be done. However, D has no control over what comparison A will make.
However, as long as there are at least two possible answers to P that are consistent with all
answers given by D, A cannot be done.

As a simple example, let’s consider playing the game of “20 questions” against the ad-
versary D. In this game, D picks an integer x between 1 and n, and the algorithm A must
determine x by asking questions (to D) of the form “Is the number you have picked less
than y?” We now argue that D can force A to ask at least dlog2 ne questions before A
can be certain about the value for x. We call the way in which the adversary D plays this
game the adversary strategy to be sure we do not confuse it with the algorithm A is using to
determine x. The adversary is allowed to keep changing his mind about x but must answer
in a consistent manner. That is, at the end of the game, the adversary must be able to give
a value for x that is consistent with all answers given throughout the game. So it is possible
that D did indeed have x in mind from the start.

Here is an adversary strategy that leads to the stated lower bound. The adversary
maintains a list L of all possible values that are still legal for x. So initially the n integers
{1, 2, 3, . . . , n − 1, n} are placed in L. Each time A asks D if x < y, D counts how many of
of the integers in L are greater than x. If at least half of the numbers in L are greater than
x then D will respond “yes,” and otherwise D will respond “no.” If D responds “yes” (i.e.,
x < y) then all elements in the list that are ≥ y must be removed from L (or otherwise the
adversary would be lying). Likewise, if D responds “no” (i.e., x ≥ y) then all elements in
the list that are < y must be removed from L.

Observe that a correct algorithm A cannot know the value of x (and thus not finish
executing) until L contains only a single item. (If there are two or more items in L then
whatever A outputs could be the wrong one.) We must now determine how many rounds
the adversary D can force before L could possibly reach size 1. Initially |L| = n. Now let’s
consider any single round of this game and let |L| = s. Since D responds in a way that least
half of the items are consistent with the response, at the next round |L| ≥ ds/2e. Let Li be
the list after round i where L0 is the initial list. Then we have that
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• |L0| = n, and

• |Li+1| ≥ d|Li|/2e for i > 0

From this it follows that i = dlog2 ne is the smallest possible value for i for which |Li| = 1.
(This could be proven by induction.) Let’s do an example to illustrate this where n = 100.
By recursive definition:

|L0| = 100, |L1| ≥ 50, |L2| ≥ 25, |L3| ≥ 13, |L4| ≥ 7, |L5| ≥ 4, |L6| ≥ 2, |L7| ≥ 1

Thus after 6 rounds A could not be done since there must be at least two values for x
that are consistent with all answers given so far. Thus for this problem when n = 100, the
best any algorithm A can do is to make 7 questions. Notice that we have not placed any
restrictions at all on A. We have just shown that regardless of the algorithm A, the adversary
strategy described above guarantees that A could not possibly be done until at least 7 rounds.
Observe that dlog2 100e = 7. In general, any algorithm to solve this problem requires at least
dlog2 ne questions. Note that we have not shown that there exists an algorithm that could
achieve this bound, we are just saying it is the best possible.

Ω(n log n) Lower Bound for the Sorting Problem

We now apply the adversary lower bound technique to the problem of sorting n comparable
elements. Notice that there are n! different permutations (and thus solutions) that the
sorting algorithm must decide between. The adversary D maintains a list L of all of the
permutations that are consistent with the comparisons that the algorithm has made so far.
Initially L contains all n! permutations. The adversary’s strategy for responding to “Is
element i less than element j” is as follows. Let Lyes be the permutations in L for which
element i is less than element j, let Lno be the permutations in L for which element i is
greater than or equal to element j. (So L = Lyes ∪ Lno). Then the adversary responds
“yes” exactly when |Lyes| ≥ |Lno|. In other words, the adversary answers in such a way to
keep L as large as possible. Then the adversary updates L so that only those permutations
consistent with this answer remain. So if “yes” is answered then the permutations in Lno

are removed, and if “no” is answered the permutations in Lyes are removed.
Since at least half of the permutations in L remain, and the algorithm cannot be done

until |L| = 1, the number of comparisons required is at least dlog(n!)e. Another way to
view this game, is the permutation that remains at the end of this game is an input that
causes algorithm A to make at least dlog(n!)e comparisons. If this adversary played against
a different algorithm, then the final permutation in L might be different.

By Stirling’s approximation n! ≥ (n/e)n where e is Euler’s constant. So the number of
comparisons required by any comparison-based sorting algorithm is at least

dlog2(n!)e ≥ dlog2((n/e)ne ≥ dn log2 n − n log2 ee = Ω(n log n).

Thus the worst-case asymptotic time complexity for any comparison-based sorting al-
gorithm is Ω(n log n). A similar, though more involved, technique can be used to show a
Ω(n log n) lower bound on the expected time complexity for any comparison-based sorting
algorithm.
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