

Corso di laurea in Matematica

Insegnamento di Informatica generale Canale Lb – Z

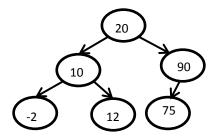
Docente: G. Bongiovanni

Esame scritto del 19 settembre 2013

ESERCIZIO 1. (10 punti)

Data la seguente equazione di ricorrenza:

 $T(n) = 7T(n/7) + \Theta(n)$


 $T(1) = \Theta(1)$

- a. (3 punti) si risolva l'equazione applicando il metodo del teorema principale;
- b. (7 punti) si risolva l'equazione applicando il metodo iterativo.

ESERCIZIO 2. (10 punti)

Progettare una funzione che, preso un albero binario di ricerca T già esistente, implementato tramite puntatori e contenente chiavi intere, crei una lista contenente le chiavi di T e ordinata in modo decrescente.

Ad esempio, considerando il seguente albero:

La funzione deve costruire la lista: 90 -> 75 -> 20 -> 12 -> 10 -> -2 -||

Si consiglia di utilizzare i tipi di dato e le funzioni ausiliarie visti a lezione per gestire le liste e gli alberi binari; tutti i tipi di dati e le funzioni utilizzate devono essere riportate.

Dell'algoritmo progettato:

- a. (2 punti) si dia la descrizione a parole;
- b. (6 punti) si dia il codice C;
- c. (2 punti) si valuti la complessità della soluzione proposta.

ESERCIZIO 3. (10 punti)

Dati due vettori V_1 e V_2 di dimensione rispettivamente n_1 ed n_2 , con $n_1 > n_2$, già allocati dinamicamente e contenenti valori interi, scrivere una funzione C che verifichi se il vettore V_2 è sottovettore di V_1 .

Ad esempio, se:

$$V_1 = 2 \ \underline{4} \ \underline{6} \ \underline{3} \ \underline{1} \ \underline{5}$$

$$V_2 = 4 6 3$$

la risposta corretta è 1 (true).

Viceversa, se:

$$V_1 = 2 \ 4 \ 5 \ 6 \ 3 \ 5$$

$$V_2 = 4 6 3$$

la risposta corretta è 0 (false).

Dell'algoritmo progettato:

- a. (2 punti) si dia la descrizione a parole;
- b. (6 punti) si dia il codice C;
- c. (2 punti) si valuti la complessità della soluzione proposta.