Grafi: rappresentazioni in memoria

corso di laurea in Matematica

Informatica Generale, Ivano Salvo

Lezione 21(b) [5/12/23]

Rappresentazioni in memoria

Usualmente i **nodi** di un grafo finito di n nodi vengono **rappresentati implicitamente** con i numeri in [1, n] (o [0, n)).

Altre informazioni sui nodi (ad esempio il **colore**) possono essere rappresentate da un **vettore indicizzato sui nodi**.

Ci sono numerosi modi di rappresentare gli **archi di un grafo** in memoria. Tra questi, noi vedremo:

- liste di adiacenza
- matrice di adiacenza
- matrice di incidenza
- liste di archi

Al solito, la struttura dati può essere più o meno buona a seconda delle operazioni che sono richieste per risolvere un determinato problema.

Sono listate in **ordine di diffusione** e in particolare le **prime due** sono di gran lunga **le più usate**, a meno di validi motivi per scegliere altre rappresentazioni.

Liste di adiacenza

Questa rappresentazione consiste in un vettore di liste.

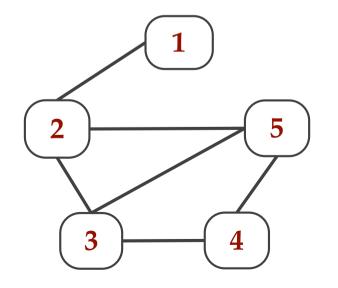
Il vettore adj, per ogni nodo v, contiene un puntatore alla testa della lista dei nodi adiacenti a v.

Rappresentando un grafo **non orientato**, ogni **arco** (u, v) **appare due volte**: nella lista adj[u] troveremo il nodo v, e nella lista adj[v] troveremo il nodo u.

Nei grafi orientati ogni arco appare una sola volta.

Altre informazioni (esempio: peso dell'arco) possono essere codificate anch'esse nella lista.

L'occupazione in memoria è $\theta(n+m)$



Esempio: Il grafo a sinistra può essere rappresentato dal seguente vettore *adj*:

$$adj[1] = [2]$$
 adj $2 \bullet$ 2

Matrice di adiacenza

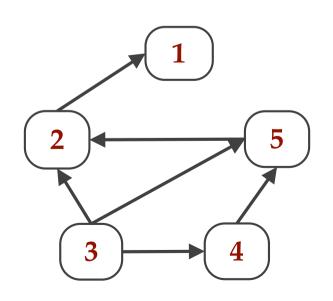
Questa rappresentazione consiste di una matrice \mathbf{A} di dimensione $n \times n$ indicizzata sui nodi del grafo.

L'arco (u, v) è presente se a[u][v]=1.

Nei grafi **non orientati**, la matrice è **simmetrica**, cioè a[u][v]=a[v][u].

Anche qui, informazioni come il peso possono essere rappresentate nella matrice, sostituendo 1 con w(u, v).

L'occupazione di memoria è $\theta(n^2)$.



Esempio: La matrice rappresenta (numeri verdi) il grafo diretto a sinistra.

Tutti i numeri la versione non orientata.

	1	2	3	4	5
1		1			
2 3	1		1		1
3		1		1	1
4 5			1		1
5		1	1	1	

Matrice di incidenza

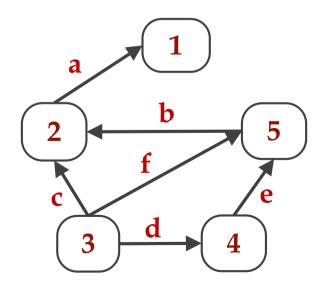
Questa rappresentazione consiste di una matrice \mathbf{I} di dimensione $n \times m$, righe indicizzate sui nodi e colonne indicizzate sugli archi.

Si mette un 1 in I[u][e] se u è un estremo dell'arco e.

Nei **grafi orientati**, è possibile mettere **-1** nel nodo di **partenza** e **1** in quello di **arrivo**, cioè se $e = u \rightarrow v$, I[u][e] = -1 e I[v][e] = 1.

Anche qui, informazioni come il peso possono essere rappresentate nella matrice, sostituendo 1 con w(u, e).

L'occupazione di memoria è $\theta(n \cdot m)$.



Esempio: Ricordando che nella versione **non orientata** ho tutti 1...

	a	b	C	d	e	f
1	-1					
2	1	-1	-1			
3			1	1		1
4				-1	1	
5		1			-1	-1

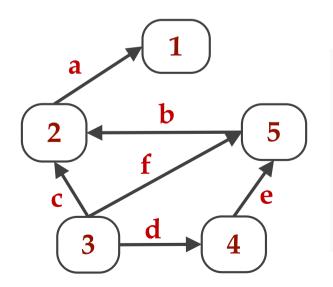
Liste di archi

A dispetto del nome, in questa rappresentazione ho un **vettore** *L* di lunghezza *m* che contiene **per ogni arco la coppia di vertici**. Equivalentemente posso usare due vettori di vertici.

I grafi orientati si rappresentano nello stesso modo, solo che si interpreta uno dei due vettori come il nodo da cui esce e l'altro come il nodo in cui entra l'arco.

Il peso può essere rappresentato aggiungendo un campo o in un terzo vettore.

L'occupazione di memoria è $\theta(m)$.



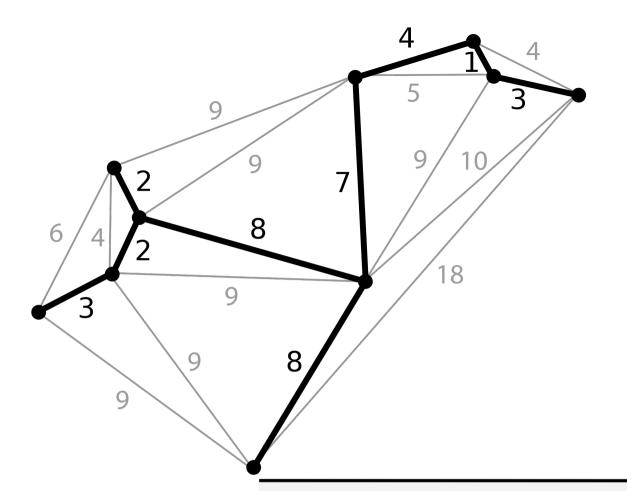
Esempio: La lista di archi è identica per versione orientata/non orientata.

a	b	C	d	e	f
2	5	3	3	4	3
1	2	2	4	5	5

Confronto tra rappresentazioni

Vediamo ora di riassumere l'occupazione in memoria di un grafo e la complessità di alcune operazioni semplici: vedremo che le 4 rappresentazioni viste possono avere pestazioni molto diverse.

Operazione Strutt. Dati	Occupaz. memoria	$\begin{array}{c} calcolare \\ deg(v) \end{array}$	$(u, v) \in E$?
Liste di Adiacenza	$\theta(n+m)$	$\theta(deg(v))$ si scorre $adj[v]$	θ(deg(u)) scorre adj[u]
Matrice di Adiacenza	$\Theta(n^2)$	$\theta(n)$ si scorre <i>riga v</i>	$\theta(1)$ legge $a[u][v]$
Matrice di Incidenza	$\theta(n\cdot m)$	$\theta(m)$ si scorre <i>riga</i> v	$\theta(m)$ si scorre riga u poi stessa col. v
Lista di Archi	$\Theta(m)$	$\theta(m)$ si scorre vettore	$\theta(m)$ si scorre vettore



Alberi come grafi

Alberi come grafi

I disegni con pallocchi e linee che congiungono i pallocchi dovrebbero suggerire che anche gli alberi sono grafi. E così è.

In realtà, abbiamo visto sempre un particolare tipo di albero, detto **albero radicato**, con un nodo speciale detto **radice** e **archi orientati**.

Gli **alberi radicati** sono **LA struttura induttiva**, mentre i grafi spesso non si mostrano molto maneggevoli per induzione.

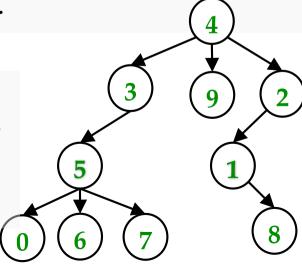
Ma visti come grafi, gli alberi che grafi sono?

Tutti i nodi sono legati alla radice e c'è un **unico cammino** tra radice-foglia e, in generale, **un unico cammino** tra **due nodi**..

Un albero è un grafo connesso e aciclico.

Notate che la direzione delle frecce è completamente determinata dalla scelta della radice.

Come se appendete una catenella...



Caratterizzazioni degli Alberi (1)

Proposizione: Sia A un albero (V, E).

- 1. togliendo un arco ad *A*, si ottiene un grafo sconnesso.
- 2. aggiungendo un arco ad *A*, si genera un ciclo;

Dim: (1) Rimuoviamo l'arco (u, v). Essendo aciclico, c'è un unico cammino tra ciascuna coppia di nodi u a v. In particolare, u e v **dopo la rimozione** saranno in due **componenti connesse diverse**, altrimenti il cammino da u a v più l'arco (u, v) genererebbe un ciclo.

(2) Aggiungiamo l'arco (u, v). L'albero è un grafo connesso e quindi **prima dell'aggiunta**, c'è già **un cammino da** u **a** v. E quindi l'arco (u, v) **genera un ciclo**.

Caratterizzazione degli Alberi (2)

Proposizione: Sia G = (V, E) un grafo.

Allora, le seguenti affermazioni sono equivalenti:

- 1. Gè un albero;
- 2. *G* è connesso e |E| = |V| 1.

Dim: (1 \Rightarrow 2, Induz.) La proposizione è banale per |V| = 1 o |V| = 2. Togliendo un arco, otteniamo due componenti connesse (E_1 , V_1) e (E_2 , V_2) e per ipotesi induttiva hanno $|E_1|$ = $|V_1|$ - 1 e $|E_2|$ = $|V_2|$ - 1. Il grafo completo ha invece 1+ $|E_1|$ + $|E_2|$ archi, cioè 1+ $|V_1|$ - 1 + $|V_2|$ - 1 = $|V_1|$ + $|V_2|$ - 1 = |V| - 1 archi.

 $(2 \Rightarrow 1)$ supponiamo ci sia un ciclo $u_1, u_2, ..., u_k, u_1 (k > 1)$.

Il **ciclo** ha k archi e quindi non contiene tutti i nodi, altrimenti k = |V|, contro le ipotesi.

Visto che il grafo è connesso, costruiamo una sequenza di insiemi in cui $C_0 = \{u_1, u_2, ..., u_k\}$ è il ciclo e $C_{i+1} = C_i \cup \{z\}$, con $(u, z) \in E$, $u \in C_i$ e $z \in V \setminus C_i$ in modo che $C_{n-k} = V$.

Ma ciò è assurdo, perché servono n - k archi (gli z sono tutti distinti) e quindi avrei n archi nel grafo, contro l'ipotesi che siano n - 1.

That's all Folks!

corso di laurea in Matematica

Informatica Generale, Ivano Salvo

Esercizi lez. **21**(b) [5/12/23]

