l 3 THE PROBLEM
OF THE NEXT PERMUTATION

We are requested to write an inner block operating on a global integer
array variable, named ¢, with

clob=1 and chib=n

for some constant value of n (> I). Furthermore it is given that the ordered
sequence of values c(1), ¢(2), ..., c(n) is some permutation of the values
from 1 through », but not the alphabetically last one: n,n — I, ..., 1. The
inner block has to transform the sequence c¢(1), ¢(2), . . ., ¢(n) into its imme-
diate alphabetic successor. (For the notion of “alphabetic order”, see the last
example of the chapter “The Formal Treatment of Some Small Examples™.)
For instance, with » = 9, the sequence

146295873
should be transformed into

146297358

As the above example shows, we may have at the low end a number of
function values that remain unaffected. The transformation to be performed
is restricted to permuting the values at the high end and our first duty seems
to be to find that split, i.e. to determine the value of i, such that

c(k) remains unaffected for 1 < k < i
c(k) is changed for k =i
That value of i is characterized as the maximum value of i (< n) such that
ci)y<ci@+ 1)

107



108 THE PROBLEM OF THE NEXT PERMUTATION

(It could not be larger, for then we would be restricted to permuting an
initially monotonically decreasing sequence, an operation that cannot give
rise to a sequence that is higher in the alphabetic order; it should not be
smaller either, because then we would never generate the immediate alphabe-
tic successor.)
Note. The fact that the initial sequence is not the alphabetically last
one guarantees the existence of an i (0 < i < n) such that ¢(i) < ¢(i + I).
(End of note.)

Having found i, we must find from “the tail”, i.e. among the values c¢(j)
with i + I <<j < n, the new value c(i). Because we are looking for the
immediate successor, we must find that value of jin therangei + 1 < j <n,
such that c¢(j) is the smallest value satisfying

c(j) > (i)

Having found j, we can see to it that c(i) gets adjusted to its final value
by “c:swap(i, j)”. This operation has the additional advantage that the total
sequence remains a permutation of the numbers from 1 through #n; the final
operation is to rearrange the values in the tail in monotonically increasing
order. The overall structure of the program we are considering is now

determine i;

determine j;

c:swap(i, )
sort the tail

(In our example i = 6, j = 8 and the final result would be reached via the
intermediate sequence 1 4629785 3.)

When determining i, we look for a maximum value of i; the Linear Search
Theorem tells us that we should investigate the potential values for i in
decreasing order.

When determining j, we look for a minimum value c(j); the Linear Search
Theorem tells us that we must investigate c¢(j) values in increasing order.
Because the tail is a monotonically decreasing function (on account of the
way in which i was determined), this obligation boils down to inspecting
¢(j) values in decreasing order of j.

The operation “c:swap(i,j)” does not destroy the monotonicity of the
function values in the tail (prove this!) and “sort the tail” reduces to inverting
the order. (In doing so, our program “borrows” the variables i and j that
have done their job. Note that the way in which the tail is reflected works
equally well with an even number as with an odd number of values in the
tail.)



THE PROBLEM OF THE NEXT PERMUTATION 109

begin glovar c; privar i, j;
ivirint:= chib — 1;doc(i)>c(i + 1) — i:=i— I od,
jvirint:= c.hib; do ¢(j) < c(i) — j:=j — 1 od;
c:swap(i, j);
i:=1i+4 1;j:= c.hib;
doi <j— ciswap(i,j);i,j:=i+1,j— 1od

end

Remark 1. Nowhere have we used the fact that the values c¢(1), c(2), . . .,
c(n) were all different from each other. As a result one would expect that
this program would correctly transform the initial sequence into itsimmediate
alphabetic successor also if some values occurred more than once in the
sequence. It does indeed, thanks to the fact that, while determining i and j,
we have formed our guards by “mechanically” negating the required condi-
tion ¢(i) < ¢(i + I) and c(j) > c(i) respectively. I once showed this program,
when visiting a university, to an audience that absolutely refused to accept
my guards with equality included. They insisted on writing, when you knew
that all values were different

doc(i)>ci+1—...
and
doc(j) < c(i)— ...

Their unshakable argument was “that it was much more expensive to test
for equality as well”. I gave up, wondering by what kind of equipment on the
campus they had been brainwashed. (End of remark 1.)

Remark 2. Programmers unaware of the Linear Search Theorem often
code “determine j” erroneously in the following form:

jvirint:=i+ 1;doc(j+ 1) >c(i)—j=j+ 1od

They argue that this program will only assign to j the value j 4 I after it
has been established that this new value is acceptable in view of the goal
¢(j) > c(i). Analyze why their version of “determine j” may fail to work pro-
perly. (End of remark 2.)

Remark 3. One time I had the unpleasant obligation to examine a
student whose inventive powers I knew to be strictly limited. Because he had
studied the above program I asked him to write a program transforming the
initial permutation, known not to be the alphabetically first, into its immedi-
ate alphabetic predecessor. I hope that this exercise takes you considerably
less than the hour he needed. (End of remark 3.)

Remark 4. This program is a particular friend of mine, because I remem-
ber having tackled this problem in my student days, in the Stone Age of



110 THE PROBLEM OF THE NEXT PERMUTATION

machine code programming (even without index registers: in the good old
von Neumann tradition, programs had to modify their own instructions in
store!). And I also remember that, after a vain struggle of more than two
hours, I gave up! And that at a moment when I was already an experienced
programmer! A few years ago, needing an example for lecturing purposes,
I suddenly remembered that old problem and solved it without hesitation
(and could even explain it the next morning to a fairly inexperienced audience
within twenty minutes). That now one can explain within twenty minutes to
an inexperienced audience what twenty years before an experienced pro-
grammer could not find shows the dramatic improvement of the state of the
art (to the extent that it is now even hard to believe that then I could not
solve this problem!). (End of remark 4.)

Remark 5. Equivalent to our criterion for i (“the maximum value of
i (< n), such that c(i) < c(i + 1)) is “the maximum value of i (< n) such
that (Ej: i <j << n:c(i) < c(j))”. The latter criterion is, however, less easily
usable and whoever starts with the latter one had better discover the other
one (in one way or another). (End of remark 5.)



