
Science of Computer Programming 2 (1982) 207-214

North-Holland

207

A NOTE ON A STANDARD STRATEGY FOR
DEVELOPING LOOP INVARIANTS AND LOOPS

David GRIES

Department of Computer Science, Cornell University, Ithaca, NY 14853, U.S.A.

Communicated by M. Sintzoff

Received December 1982

Revised March 1983

Abstract. A by-now-standard strategy for developing a loop invariant and loop was developed
in [l] and explained in [2]. Nevertheless, its use still poses problems for some. The purpose of

this paper is to provide further explanation. Two problems are solved that, without this further

explanation, seem difficult.

1. Introduction

A standard strategy for developing a loop invariant and loop can indeed be

powerful in the hands of one who understands it fully. Those with less experience,

however, have difficulty applying it in the seemingly complex situations where it

is really needed. This may be due, at least partially, to the way the strategy is

presented. The purpose of this note is to present the strategy in a slightly different

and less formal manner.

We begin by discussing the proof of correctness of a loop. We then develop a

rather trivial algorithm in order to describe the strategy in its simplest form. Finally,

we proceed to illustrate a more difficult part of the strategy using two examples.

2. Proving a loop correct

E.W. Dijkstra’s guarded command loop with precondition Q and postcondition

R, (Q} do B + S od {R}, is proved correct using an invariant relation P and a bound

function t, which gives an upper bound on the number of iterations still to perform

(see e.g. [l, 21):

(1) P is true initially: Q*P;

(2) P is a loop invariant: P A B dwp(S, P);

(3) Upon termination R is true: P A 1 B JR ;

(4) If another iteration can be performed, then t > 0: P A B Jt > 0;
(5) t is decreased by at least one with each iteration: using a fresh variable t

we have

{PAB}tl:=t;S{t<tl}.

1.

0167-6423/82/$2.75 @ 1982, Elsevier Science Publishers B.V. (North-Holland)

208 D. Gries

3. Developing a loop using the standard strategy

TO illustrate the strategy for developing a loop, let us develop an algorithm for

storing in variable p the sum of the elements of array b[O: n - I], where 0 G II. The

postcondition of the algorithm is

R: p=(Ck:O<k<n:b[k]).

Recognizing the need for iteration (or recursion), we try to develop a loop invariant

P first-by generalizing R to include a state that can be easily established. In this

case, generalizing R can be done by replacing constant II of R by a fresh variable

i and placing suitable bounds on i:

P: O<i<n/\p=(Ck:Ock<i:b[k]).

P is easily established using i, p := 0,O. Further, (P A i = n)+R, so we can take

i # n as the guard of the loop.

The bound function t, an upper bound on the number of iterations still to perform,

is n -i. To reduce the bound function at each iteration, choose the command

i := i + 1, yielding, thus far,

i,p:=O,O;

doi#n+ .*.i:=i+lod

The last step is to ensure that P is indeed a loop invariant, i.e. (P A i f n)+
wp(i := i + 1, P). To do this, we first calculate wp(i := i + 1, P) and rearrange it to

prepare for comparison with P A i # n :

O<i+l~nAp=C(k:O~k<i+l:b[k])

=O<i+l~n~p=C(k:O~k<i:b[k])+b[i]

Comparing this predicate with P, we see that adding b[i] to p within the loop body

will allow P to remain invariantly true, and we end up with the algorithm

i, p := 0,O;

doi#n+p:=p+b[i];i:=i+lod

The steps in this development are fairly standard, and we discuss only those pertinent

to this paper, i.e. those dealing with the development of invariant P. The first step

was the following:

(6) Find the (first approximation to the) invariant by generalizing the post-

condition R.

Some techniques for generalizing a predicate are discussed in [I] and [2].

The second point is that once a way is found to reduce the bound function-in

our case i:=i+l-the invariance of P must be shown: for S the loop body

A note on a strategy for developing loops 209

determined so far, P A B 3 wp(S, P) must be true. If not, S must be modified, and

to determine the modification one investigates the difference between P A B and

W (S, P).
This part of the strategy can be described as follows:

(7) Determine the conditions under which decreasing the bound function will

falsify the invariant, and modify the loop body S to prevent such falsification.

Note that a loop developed strictly in this fashion has the form

{invariant: P, bound function : t}

doB+{PAB}

Establish wp(‘Decrease t’, P);

{wp(‘Decrease t’, P))

Decrease I

Steps (6) and (7) are often easy to apply. However, in some cases applying (7) may

seem difficult or may lead to inefficient and clumsy algorithms. At this point, more

direction is needed: this direction is summarized as follows:

(8) Determine what further information is needed in order to make application

of (7) more effective, and represent that information in fresh variables, thus

modifying P.

It is essential that the further information to be stored in fresh variables can be

extracted from the ‘scanned portion’ of the variables, so that it can be extracted

as one goes along.

Conscious application of (8) can indeed be useful. To illustrate this, let us turn

to two ‘difficult’ problems. For purposes of comparison, the reader may want to

try developing the algorithms using her own methods before reading the idealized

developments.

4. A first example: The minimum-sum section

A minimum-sum section of an array b is a non-empty sequence of adjacent

elements whose sum is a minimum. For example, the minimum-sum section of

array b[O: 4]= (5, -3,2, -4, 1) is b[l: 3]= (-3, 2, -4); its sum is -5. The minimum-

sum section of array b = (5, -3,5, -4, 1) is b[3: 3]= (-4); its sum is -4. The two

minimum-sum sections of b = (5,2,5,4,2) are b[l: l] and b[4: 41.
Desired is a program that, given a nonempty array b[O: n - 11, stores in variable

s the sum of a minimum-sum section of 6. Let Si,j denote the sum of section b[i: j]:

Si,j = (C k: i c k ~j: b[k]).

210 D. Gries

Then the postcondition R is

R: s =min(i,j: O~icj<n: Si,j).

It is obvious that each element of b must be referenced to determine a minimum-sum

section and its sum, and our first thought is to reference them in increasing order

of subscript value. Using strategy (6) as our guide, we find a first approximation

to the invariant P by replacing in R constant n by a fresh variable k (and placing

bounds on k):

P: l~k~n~S=min(i,j:O~~i~<k:Si,j).

The initialization is obvious, as is, the bound function IZ -k. And we write

k, s := 1, b[O];

dok#n+ *a .k:=k+lod

Next, applying (7), we determine the conditions under which P may be falsified by

execution of the loop body. First calculate and rearrange wp(k := k + 1, P). We

rearrange the predicate so that it is easy to compare with P A k # n ’

wp(k:=k+l,P)

=l~k+l~n~S=min(i,j:O~i~j<k+l:Si,i)

=lsk+lcnl\

s = min(i,j: Osi pi < k: Si,j)min min(i: OS i s k: Si,J (9)

The first conjunct of (9) is implied by P A k f n, but the second is not. Comparing

the second conjuncts of P and (9), we see that l(P+Q) holds precisely when the

value

min(i: Osick: Si,k)

is less than s-i.e. when a section b[i: k] for some i has sum is less than s.

At this point, it looks like determining whether a section b[i: k] with Si,k <s

exists may take time at least proportional to k. What can we do to make it more

efficient? Turning to strategy (S), we ask what additional information can help.

Suppose we know min(i: 0 s i < k: Si.k_1). Then min(i: 0 G i G Sk) can be calculated

in constant time: it is the minimum of min(i: 0 G i <k: Si,k-1) + b[k] and b[k]. We

introduce a variable c and change P accordingly:

AS =min(i,j: Osi<j<k: Si,i)

AC =min(i: Osi<k:Si.k-l)v

’ Throughout, the minimum and maximum functions min and max are written as binary infix
operators.

A note on a strategy for developing loops 211

Note that P implies that s SC. It is then a simple task to modify and complete the

algorithm:

k, s, c := 1,6[0], 6[0];

dok#n+c:=minc+b[k]b[k];

s:=sminc;

k:=k+l

od

This algorithm has the following history. Shamos of Carnegie-Mellon University

saw a statistician using an 0(n3) algorithm that determined the bounds of a

minimum-sum section as well as its sum. Shamos and Jon Bentley developed an

O(n *) algorithm and, about a week later, an O(n log n) algorithm. Two weeks after

having first seen the problem, they discussed it with another statistician, who

immediately gave them linear algorithm. Bentley, while discussing programming

methodology at Cornell, challenged us with this problem. The linear algorithm was

developed basically as shown above-the usual starts and restarts to get familiar

with the problem are not shown, and a less formal notation was used-and, in fact,

it was the only algorithm considered.

The determination of a minimum-sum section itself has been omitted simply to

omit detail not germane to the topic at hand. The reader may find it interesting to

solve the same problem with a slight change: empty sections should also be

considered. Thus, if the array contains only positive values, the minimum-sum

section is the empty section and its sum is 0.

5. A second example: Finding the largest square

We proceed with this problem in the same manner as with the last. We will,

however, use a two-dimensional ‘picture’ notation for part of the invariant, which

may make it easier to understand the development. This notation can be translated

easily into the predicate calculus.

Given a rectangular, Boolean array 6[0: m - 1,0: n - 11, where m, n > 0, calculate

the size-i.e. length of a side-of a largest square of adjacent true elements. In

what follows, we abbreviate ‘square of adjacent true elements’ by ‘tsquare’. Thus,

we write the postcondition R as

R : s is the size of the largest tsquare in b[O: m - 1, n - 11.

In the worst case, it will be necessary to reference each element of the array, so

we consider ways of referencing each element. Row-by-row traversal is simple, so

212 D. Gries

we generalize R to the invariant P = Pl A P2, where

Pl: OSismAOSj<n

and

P2: b 0 i n-l

0
s is size of largest

tsquare in this section

i

m-l
as yet unscanned

Thus, b [i, j] is the next element to be scanned. The bound function t is the number

of elements in the lower, unscanned, section. The obvious way to proceed towards

termination is to scan element b[i, j], changing j (and i, if necessary) accordingly.

According to strategy (7), we now have the task of maintaining P when b[i, j] is

scanned. We first determine the conditions under which P is falsified:

P is falsified if there is a tsquare with lower right corner b[i, j]
whose side is longer than s.

Calculating the size of the largest tsquare with lower right corner b[i, j] seems

to be a fairly complicated task, so we turn to strategy (8) for some inspiration.

What useful information can we save in fresh variables? There are several alterna-

tives. Among them are

(1) Maintain the sizes of the largest tsquares with lower right corners b[i, j - l]

and b[i - 1, j]-from them it is easy to calculate the size of the largest tsquure with

lower right corner b[i, j];
(2) Maintain the size of the largest tsquure with lower right hand corner b [i - 1, j -

11, the length of the column of true values ending in b[i - 1, i], and the length of

the row of true values ending in b[i, j - 11.

In any case, since the problem will occur with each new column, the information

will be needed for each column. Let us implement the first alternative. Add a

conjunct P3 to the invariant that describes a one-dimensional array c[-1: n - 11,

where element c[-l] is introduced to remove a case analysis:

P: Pl~P2hP3,

A note on a strategy for developing loops 213

where

P3: c[-l]=O

r\(Vk:Oskk<i:c[k]

= size of largest tsquare with lower right corner 6[i, k])

A(Vk:j<k<n:c[k]

= size of largest tsquare with lower right corner 6[i - 1, k]).

P3 must be maintained as 6[i, j] is scanned, and thus we must determine how to

change c[j]. Suppose 6[i, j] is true. Consider the three cases c[j - l] > c[j], c[j - l] =

c[j] and c[j - l]<c[j], the last two of which are drawn below. (The first case is

similar to the last.) Letting p = c[j - l] min c[j] , we see in each case that the size

of the largest rsquare with lower right corner b[i,j] is either p + 1 or p, depending

on whether 6[i -p, j -p] is true or false, respectively.
i

C[j -- I] = c[j] 4j - ll<cCil

With this informatlon, the algorithm is written as follows:

i, j, s := 0, 0,O;

(Vk: -1 <k <n: c[k]:=O);
doi#m+

if 76[i,j]+c[j]:=O
0 6[i, j] -+ var p: integer;

p:=c[j-l]minc[j];
if lb[i-p,j-p]+c[j]:=p
0 6[i-p,j-p]+c[j]:=p+l
fi

;,i, .
IS size of largest square with lower right corner 6[i, j]}

s :=s max c[j];
ifj=n-l+i,j:=i+l,O

Oj<n-1+;:=j+1

fi

od

214 D. Gries

The execution time of this algorithm is O(m *n). Again, this was essentially the

only algorithm thought of during the development, although several ways of

maintaining the necessary information were thought of. I learned of the problem

from Ed Cohen of Prime, but discovered that it, and its appearance in [4], can be

traced to W. H. J. Feijen.

6. Discussion

This strategy for developing loop invariants and loops has been used often in

the past; in fact, at times it seems the only reasonable way to proceed. A good

example of its use is in the development of an algorithm for the longest upsequence

problem, due originally to Dijkstra [0], which can also be found in [2]. There, the

strategy had to be applied a number of times until it became obvious how the

invariant had to be generalized. Reference [3] discusses the same strategy but in

a more limited context.

However, many experienced and unexperienced programmers have been unable

to solve effectively either of the two problems shown above, partially because they

were unable to apply these problem-solving techniques in a conscious manner.

Hence, this paper.

Acknowledgment

I am grateful to Fred Schneider for criticizing a draft of this paper and to J. Misra

for pointing out reference [31-a paper I had refereed but forgotten! Thanks also

to members of IFIP WG2.3 for comments on a presentation of this material at our

Mohonk meeting, to “members of class CS600 at Cornell, many of whom were able

to solve the two problems in a manner similar to the one shown after having been

taught the strategy, and to the Tuesday Afternoon Club in Eindhoven, especially

Edsger W. Dijkstra and Netty van Gasteren, for their comments on the problems

and the standard techniques and for criticisms of a draft of this paper.

References

[0] E. W. Dijkstra, Some beautiful arguments using mathematical induction, Actu Informat. 13 (1980)

1-8.
[l] E.W. Dijkstra, A Discipline of Programming (Prentice-Hall, Englewood Cliffs, NJ, 1976).

[2] D. Gries, The Science of Programming (Springer, New York, 1981).
[3] J. Misra, A technique of algorithm construction on sequences, IEEE Trans. Software Engrg. 4 (1)

(1978) 65-69.
[4] J. Reynolds, The Craft of Programming (Prentice-Hall, Englewood Cliffs, NJ, 1981).

