जntr

Computer Graphics and Visualisation

Lighting and Shading

 Overhead Projection (OHP) OverviewsDeveloped by

J Irwin
W T Hewitt
T L J Howard

Computer Graphics Unit
Manchester Computing
University of Manchester
Department of Computer Science
University of Manchester

THE UNIVERSITY of MANCHESTER

Produced by the ITTI Gravigs Project
Computer Graphics Unit
Manchester Computing
MANCHESTER M13 9PL

First published by UCoSDA in October 1995
© Copyright The University of Manchester 1995
The moral right of John Irwin, William Terence Hewitt and Toby Leslie John Howard to be identified as the authors of this work is asserted by them in accordance with the Copyright, Designs and Patents Act (1988).

ISBN 1858890640
The training materials, software and documentation in this module may be copied within the purchasing institution for the purpose of training their students and staff. For all other purposes, such as the running of courses for profit, please contact the copyright holders.

For further information on this and other modules please contact:
The ITTI Gravigs Project, Computer Graphics Unit, Manchester Computing.
Tel: 01612756095 Email: gravigs@mcc.ac.uk
To order further copies of this or other modules please contact:
Mrs Jean Burgan, UCoSDA.
Tel: 01142725248 Email: j.burgan@sheffield.ac.uk
These materials have been produced as part of the Information Technology Training Initiative, funded by the Information Systems Committee of the Higher Education Funding Councils.

The authors would like to thank Neil Gatenby for his assistance in providing the source of some material used in this document.

Printed by the Reprographics Department at Manchester Computing from PostScript source supplied by the authors.

Introduction

This course will cover the following topics

- Local illumination modelling
- points light sources
- ambient lighting
- diffuse and specular reflection
- Shading
- flat, Gouraud and Phong
- Texture mapping and transparency
- pattern mapping
- bump mapping
- environment mapping

Specular Refl ection

Not all surfaces exhibit diffuse refl ection

- Surfaces that only show diffuse refl ection are dull and matte
- In reality, many surfaces are shiny
- at certain viewing angles, shiny surfaces produce specular highlights
- highlights occur over a narrow range of angles
- colour of highlight usually same as the illuminating light
- Mirrors are examples of ideal specular refl ection
\square angle of incidence equals angle of refl ection

More Notation!

- \mathbf{N} is surface normal
- L is direction to light source
- \mathbf{V} is direction towards view point
- R is direction of ideal specular refl ection

■ The intensity of specular refl ection depends on the angle ϕ such that $I_{s} \propto f(\phi)$

Phong Model

We can evaluate the cosine term solely in terms of vectors

- With \mathbf{R} and \mathbf{L} normalised

$$
\cos \phi=R \cdot V
$$

■ Hence

$$
I_{s} \propto(R \cdot V)^{n}
$$

- Specular refl ection also depends one, so that

$$
I_{s} \propto W(\theta)(R \cdot V)^{n}
$$

- in practice, we set $W(\theta)=k_{s}$
- k_{s} is the coefficient of specular refl ection
- k_{s} has values in the range 0-1

Illumination Model 3

Refl ection fom a surface with diffuse and specular properties

- I= ambient + diffuse + specular
- $I=k_{d}{ }^{\prime}{ }^{\prime} I_{p}\left[k_{d}(\mathrm{~N} \cdot \mathrm{~L})+k_{s}(\mathrm{R} \cdot \mathrm{V})^{n}\right]$
- Examples
Copyright © University of Manchester 1995
Lighting and Shading: 21 \qquad

Copyright © University of Manchester 1995
Lighting and Shading: 22

Illumination Model 4

Refl ection fom a surface when the attenuation of light is included

- I = ambient + dist-factor(diffuse + specular)
$I=k_{d}{ }^{\prime}{ }^{\prime}+\frac{I_{p}}{d+d_{0}}\left[k_{d}(\mathbf{N} \cdot \mathbf{L})+k_{s}(\mathbf{R} \cdot \mathbf{V})^{n}\right]$
- this represents a linear fall-off of intensity
- d_{0} is a constant, used to prevent infi nite intensity when $d=0$
- Multiple light sources
- use linear superposition
$I=$ ambient $+\sum_{i=1}^{n}$ diffuse $_{i}+\sum_{i=1}^{n}$ specular $_{i}$

Colour

So far our models make no mention of colour, only light intensities

- Choose a colour model and apply the illumination model to each colour component
- simple colour model is monitor RGB - surface defi ned byk ${ }_{d R}, k_{d G}$ and $k_{d B}$ - similarly for the light source
- an example for the Red component $I_{R}=k_{d R} I^{\prime} a+\frac{I_{p R}}{d+d_{0}}\left[k_{d R}(\mathbf{N} \cdot \mathbf{L})+k_{s}(\mathbf{R} \cdot \mathbf{V})^{n}\right]$
- assumes specular highlight is the same colour as the light source

■ More sophisticated, spectrally-based colour models are available
\qquad

Polygon Shading

Typically, objects are represented by meshes of polygons

- Our illumination model computes the intensity at a single point on a surface
- How can we compute the intensity across the polygon?
- compute the shade at the centre and use this to represent the whole polygon

- flat shading

- compute the shade at all points - unnecessary and impractical
- compute shade at key points and interpolate for the rest
- Gouraud and Phong shading

Copyright © University of Manchester 1995

Intensity Interpolation

This smooth shading method is also known as Gouraud shading

- Given a polygon and a scan-line, the problem is to determine the intensity at an interior point, such as P

- for this we need the intensity values at the vertices A, B and C

Cook-Torrance Model

This method models features due to small-scale roughness

- Surface modelled as collection of randomly oriented microscopic facets

Copyright © University of Manchester $1995 \quad$ Lighting and Shading: 42

Cook-Torrance Model

- Model accounts for three situations
- facets which refl ect light diectly towards the viewer
- facets which are in shadow of other facets
- facets which refl ect light which itself has been refl ected fom other facets
- these multiple refl ections contribute to the diffuse reflection from the surface
- Specular refl ection coefi cient of the overall surface given by

$$
k_{s}=\frac{D G F}{\pi(\mathbf{N} \cdot \mathbf{V})(\mathbf{N} \cdot \mathbf{L})}
$$

- D is distribution function (Gaussian)
- G is factor accounting for shadowing
- Fis the Fresnel factor
Copyright © University of Manchester 1995

Cook-Torrance Model

- The Fresnel factor gives the fraction of light incident on a facet which is refl ected rather than absorbed.
- defi ned by

$$
F=\frac{1}{2}\left[\frac{\sin ^{2}(\phi-\theta)}{\sin ^{2}(\phi+\theta)}+\frac{\tan ^{2}(\phi-\theta)}{\tan ^{2}(\phi+\theta)}\right]
$$

- θ and ϕ are the angles of incidence and refl ection measued from the facet normal not the overall surface normal \mathbf{N}

■ Cook-Torrance model gives results similar to Phong's except

- for grazing angles of refl ection
- the highlight colour is not the same as light source
- Phong is computationally less expensive

Transparency

Not all materials are opaque. Some objects allow light to be transmitted or refracted

■ Diffuse refraction

- transmitted light is scattered by internal and surface irregularities
- surface appears trans/ucent (frosted glass)
- objects view through a diffuse refractor appear blurred
- Specular refraction
- occurs in truly transparent materials
- the direction of light rays are bent (lens)
- objects viewed through a specular refractor are clearly seen

Copyright © University of Manchester 1995
Lighting and Shading: 45

Transparency

Refractive index

- The refractive index is in general wavelength dependent
- different colours will be bent by different amounts
- this is called dispersion
- we will ignore this effect since it is diffi cult to model and use an average value across the visible spectrum
- Snell's law is significant
- example, light passing from air into heavy glass ($\eta=1.5$) at $\theta=30^{\circ}$, will be bent by 11°

Modelling Transparency

Non-refractive transparency
■ Light paths are not bent

- avoids computational overhead with trigonometric functions in Snell's law
- Then transparent objects will appear invisible!
- Introduce a transmission coefficient t, to measure transparency
- opaque object has $t=1$
- perfectly transparent object has $t=0$
- t could be colour dependent (coloured glass, for example)

 of surfaces, not just polygons
- for example, spheres and cones
Copyright © University of Manchester 1995
Lighting and Shading: 53 \qquad
component plus components due to globally reflected and transmitted light

Ray Tracing

- For a single point light source

$$
I=k_{d} I_{a}+I_{p}\left[k_{d}(\mathbf{N} \cdot \mathbf{L})+k_{s}(\mathbf{R} \cdot \mathbf{V})^{n}\right]+k_{r} I_{r}+k_{f} I_{t}
$$

- k_{r} is the global specular refl ection coefficient (usually equal to k_{s})
- k_{f} is the global specular transmission coefficient
- I_{r} and I_{+}are the intensities coming from directions \mathbf{R} and \mathbf{T}
- The global terms are calculated by spawning secondary-rays from intersection point in directions \mathbf{R} and \mathbf{T}
- fi nd intersection of secondary-rays with objects in the scene
- apply intensity calculations again at new intersections

Ray Tracing

Intensity calculations at each point of intersection must take into account shadows

- First construct the shadow ray
- origin at intersection point and direction towards the light source
- Test shadow ray against objects in scene
- if hit is found and intersection is nearer than the light source, then point is in shadow
- shadowed point does not contribute local illumination, except ambient

■ Multiple light sources

- shadow ray for each source

Copyright © University of Manchester 1995
Lighting and Shading: 57 \qquad

Ray Tracing

The ray-tree

- In practice, need to set-up maximum depth to which rays are traced
- otherwise spend too much time on rays which contribute little to image
- but if we have insuffi cient depth, will cause artifacts
- Three ways to control ray-tree depth
- rays may leave scene
- return ' backgrund' intensity
- set absolute ray-tree depth
- use adaptive depth control
- set threshold intensity returned by secondary-rays

Object Intersections

A major part of the ray-tracing algorithm is concerned with fi nding intersections with objects in the scene

- Each newly created ray must be tested against every object surface
- if intersections are found, which one is the nearest?
- Need effi cient intersection algorithms for all types of object
- sphere, polygon, cone, box, cylinder, torus, etc
- will illustrate how to calculate intersections with a sphere

Sphere Intersection

Vector equation of a ray

- Arbitrary ray defi nedparametrically as

$$
\mathbf{r}=\mathbf{O}+\mathbf{D} t
$$

- \mathbf{r} is position vector of point with parameter \dagger
- O is position vector of ray origin
- \mathbf{D} is unit vector in ray direction
- Parameter t is real-valued
- represents a ' distance' along ray
- for all primary rays the origin lies at the view point
- We require values of t at intersection points which are positive
lighting and Shading: 61 \qquad

Sphere Intersection

- Vector equation of a sphere

$$
(\mathbf{r}-\mathbf{C}) \cdot(\mathbf{r}-\mathbf{C})=R^{2}
$$

- \mathbf{C} is position vector of sphere centre
- R is the sphere's radius
- Substitute ray equation and solve for the parameter t, giving

$$
\begin{gathered}
t^{2}-2 t \mu+\left[\lambda-R^{2}\right]=0 \\
\mu=\mathbf{D} \cdot \mathbf{T} \\
\lambda=\mathbf{T} \cdot \mathbf{T} \\
\mathbf{T}=\mathbf{C}-\mathbf{O}
\end{gathered}
$$

This is a quadratic in t, so

$$
\begin{gathered}
t=\mu \pm \sqrt{\gamma} \\
\gamma=\mu^{2}-\lambda+R^{2}
\end{gathered}
$$

Copyright © University of Manchester $1995 \quad$ Lighting and Shading: 62

Hierarchical Bounding Volumes

What is a bounding volume?

- Is a simple primitive which has smallest volume enclosing object
usually spheres and axis-aligned boxes
- During ray intersection test
- fi rst test the bounding volume
- usually easier and faster
- if bounding volume intersected then test the actual object
- Spheres are very popular
- very effi cient since we only need to know if intersection takes place, NOT where the intersection points are

Copyright © University of Manchester 1995
Lighting and Shading: 65
$65 \quad \square$

Hierarchical Bounding Volumes

Hierarchical scheme?

- Clusters of bounding volumes within larger bounding volume
- intersect ray with outer volume
- then with inner volumes if necessary
- Can have any number of levels of bounding volumes
- Hierarchical scheme effi cient for scenes with non-uniform distribution of objects
- ray doesn't do much work in areas which it is not ' looking' at
- Very good speed-up in rendering time

3D Spatial Subdivision

More powerful partitioning schemes use the idea of voxels

- Voxels are axis-aligned rectangular prisms which are like bounding volumes except...
- fi ll all of space occupied by scene
- are non-overlapping
- do not necessarily completely enclose any particular object
- Two varieties of spatial subdivision
- uniform
- all voxels are the same size
- stacked together
- non-uniform
- octrees
- voxel hierarchy

3D Spatial Subdivision

Uniform subdivision - Voxel Grids

- Constructing the voxel grid
- surround the scene with a bounding cuboid
- split cuboid into $L \times M \times N$ smaller cuboids - these are the voxels
- for each voxel keep a list of objects which encroach into its space
- Tracing a ray through the voxel grid
- determine which voxels the ray passes through
- only perform intersection tests on those objects which are in the voxel list
- next, an illustration in 2D

3D Spatial Subdivision

Tracing a ray through the voxel grid

- We wish to fi nd the fi rst intersection
- follow the ray voxel-by-voxel
- if object is part of two adjacent voxels, keep results of intersection test
- if object is hit, but intersection point is outside current voxel, then continue
- only if intersection point occurs within the current voxel can we stop

Copyright © University of Manchester 1995
Lighting and Shading: 69

3D Spatial Subdivision

Non-uniform subdivision - Octrees

- Hierarchical tree of non-overlapping voxels of various sizes
- emphasises the spatial distribution of objects in a scene
- Constructing the octree
- surround scene with bounding cuboid
- divide into eight equal-sized sub-volumes or voxels
- keep list of objects associated with each sub-volume
- if maximum number of objects/voxel is above threshold, then subdivide again
- Subdivision only occurs where there are lots of objects

3D Spatial Subdivision

Tracing a ray through an octree

- Procedure similar to uniform case
- six voxels are considered before valid intersection is found
- only three distinct intersection tests are actually made
- ray passes through large, empty regions of the scene very quickly
- useful work done only in high density regions
Copyright © University of Manchester 1995
Lighting and Shading: 73 \qquad

Image Aliasing

What is aliasing?

- Eye-rays passing through image plane samples the light distribution
- discrete representation is only approximate
- if we try to reconstruct the light distribution, distortions occur
- this is aliasing

Copyright © University of Manchester 1995
Lighting and Shading: 81 \qquad

- A_{i} is the area of the patch

Radiosity

Form-factors

- Assuming radiosity is constant across patch

$$
F_{j i}=\frac{1}{A_{j}} \int_{A_{j}} \int_{A_{i}} \frac{\cos \phi_{i} \cos \phi_{j}}{\pi R^{2}} H_{j i} d A_{i} d A_{j}
$$

- $H_{j i}$ is a visibility factor equal to 1 if $d A_{j}$ can see $d A_{i}$, otherwise 0

Computing Form-Factors

There are no known analytical solutions to the form-factor integral equation

$$
F_{j i}=\frac{1}{A_{j}} \int_{A_{j}} \int_{A_{i}} \frac{\cos \phi_{i} \cos \phi_{j}}{\pi R^{2}} H_{j i} d A_{i} d A_{j}
$$

- We need a numerical technique
- but double integrals are still tough
- Assume the distance between patches is large compared to their size
- inner integral is approximately constant

$$
F_{j i}=\int_{A_{i}} \frac{\cos \phi_{i} \cos \phi_{j}}{\pi R^{2}} H_{j i} d A_{i}
$$

- form-factor from $d A_{j}$ to A_{i}

Copyright © University of Manchester 1995
Lighting and Shading: 85

Computing Form-Factors

We evaluate the simplifi ed fam-factor integral using a projection method

- The hemi-cube algorithm is one such method
- half a cube of side 2 is centred about a patch j
- each face is discretised uniformly into a number of pixels (user controllable)
- commonly 50×50 or 100×100

Copyright © University of Manchester $1995 \quad$ Lighting and Shading: 86

Computing Form-Factors

The hemi-cube algorithm

- Next step is to project every other patch onto the surface of the hemi-cube...

Computing Form-Factors

The hemi-cube algorithm

- Finally, we determine the form-factors by summing the delta-form-factors of the pixels which each patch projects to

$$
F_{j i}=\sum_{q} \Delta F_{q}
$$

- delta-factors can be pre-calculated

■ This gives us n form-factors relative to one patch

- repeat operation with another hemicube centred about another patch
- do this for all patches in scene
- ... and determine which pixels are covered
- if two patches project to the same pixel, the nearest one is stored
- this accounts for the $H_{j i}$ term

Computing Form-Factors
Delta-form-factors

- For a pixel on the top-face

$$
\Delta F_{q}=\frac{1}{\pi\left[x^{2}+y^{2}+1\right]^{2}} \Delta A
$$

Copyright © University of Manchester 1995
Lighting and Shading: 89

Computing Form-Factors

Delta-form-factors

- For a pixel on a side-face

$$
\Delta F_{a}=\frac{z}{\pi\left[x^{2}+z^{2}+1\right]^{2}} \Delta A
$$

Copyright © University of Manchester 1995
Lighting and Shading: 90

Extrapolation

- We extrapolate the radiosity values at the centre of the patches to the patch vertices
- There are 3 distinct cases:
- internal vertices (e.g. vertex E)
- edge vertices (e.g. vertex B)
- corner vertices (e.g. vertex A)

Copyright © University of Manchester 1995
Lighting and Shading: 93 \qquad

Extrapolation

■ Corner vertices: fi nd neaæst internal vertex and note average of corner vertex and its internal vertex is the patch radiosity

- for example

$$
B_{1}=\left(B_{A}+B_{E}\right) / 2
$$

- hence

$$
B_{A}=2 B_{1}-B_{E}
$$

Copyright © University of Manchester 1995
Lighting and Shading: 94

Progressive Refi nement

Formulation

- Recall the energy equilibrium equation...

$$
A_{i} B_{i}=A_{i} E_{i}+\rho_{i} \sum_{j=1}^{n} B_{j} F_{j i} A_{j}
$$

- ...and consider the interaction between two patches i and j

$$
B_{i}\left(\text { due to } B_{j}\right)=\rho_{i} B_{j} F_{j i} \frac{A_{j}}{A_{j}}
$$

- So applying a single hemi-cube at patch j we can fi nd the contribution of this patch to the rest of the scene
- but to be used in some iterative scheme, it's better to consider changes in radiosity

Progressive Refi nement

Formulation

- Write this as

$$
B_{i}\left(\text { due to } \Delta B_{j}\right)=\rho_{i} \Delta B_{j} F_{j i} \frac{A_{j}}{A_{j}}
$$

- ΔB_{j} is the unshot radiosity of patch j
- due to its emission of light
- or light received from other patches
- We use the progressive refi nement method in the following way
- For each patch keep track of two radiosity values
- current radiosity estimate, B_{j}
- unshot radiosity, ΔB_{j}
- initially both these are equal to E_{j}

Copyright © University of Manchester 1995
Lighting and Shading: 97

Lighting and Shading: 98

Progressive Refi nement

Formulation

- Choose patch with largest unshot energy - unshot energy is $\Delta B_{j} A_{j}$
- Shoot this energy to all other patches as described before
- each patch will received a certain amount of energy which is added to both B_{j} and ΔB_{j}
- Set the unshot radiosity of the shooting patch to zero
- With new estimates of B_{j}, render an image
- Repeat this cycle again and again, rendering an image after each step

Progressive Refi nement

Formulation

- After each step, all the ΔB_{j} will be underestimates
- but each step reduces the relative size of the ΔB_{j}
- hence the radiosity estimates, B_{j}, slowly converge to their full-matrix values
- The cycle is repeated until the total unshot energy in the whole scene falls below some predefi ned value

Progressive Refi nement

Ambient contribution

- With progressive refi nement, fi rst few images will generally be dark
- not all the energy has been distributed
- only surfaces in the direct line of sight of the light source(s) are illuminated
- An ambient radiosity term, $B_{\text {amb }}$, is introduced for display purposes only
- based upon how much unshot energy remains and how this could be distributed
- when rendering, use $\rho_{j} B_{a m b}+B_{j}$, instead of B_{j}
- this value plays no part in subsequent refi nements $O B_{j}$

Progressive Refi nement

Calculating the ambient term

- First estimate the form-factors

$$
F_{j i}^{\text {est }}=\frac{A_{i}}{\sum_{k=1}^{n} A_{k}}
$$

Next, determine average refl ectance of the scene

$$
\rho_{a v}=\frac{\sum_{j=1}^{n} \rho_{j} A_{j}}{\sum_{j=1}^{n} A_{j}}
$$

- from this we can write the overall interrefl ection coefi cient as

$$
1+\rho_{a v}+\rho_{a v}^{2}+\rho_{a v}^{3}+\ldots=\frac{1}{1-\rho_{a v}}
$$

These materials have been produced as part of the Information Technology Training Initiative, funded by the Information Systems Committee of the Higher Education Funding Councils.

For further information on this and other modules please contact:
The ITTI Gravigs Project, Computer Graphics Unit, Manchester Computing.
Tel: 01612756095 Email: gravigs@mcc.ac.uk
To order additional copies of this or other modules please contact:
Mrs Jean Burgan, UCoSDA.
Tel:0114 2725248 Email:j.burgan@sheffield.ac.uk

