
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/332463886

Text Classification Algorithms: A Survey

Article in Information (Switzerland) · April 2019

DOI: 10.3390/info10040150

CITATIONS

43
READS

3,952

8 authors, including:

Some of the authors of this publication are also working on these related projects:

Crime Prediction View project

Operations Research View project

Kamran Kowsari

University of Virginia

44 PUBLICATIONS 309 CITATIONS

SEE PROFILE

Kiana Jafari Meimandi

University of Virginia

10 PUBLICATIONS 174 CITATIONS

SEE PROFILE

Mojtaba Heidarysafa

University of Virginia

15 PUBLICATIONS 180 CITATIONS

SEE PROFILE

Sanjana Mendu

University of Virginia

6 PUBLICATIONS 54 CITATIONS

SEE PROFILE

All content following this page was uploaded by Kamran Kowsari on 23 April 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/332463886_Text_Classification_Algorithms_A_Survey?enrichId=rgreq-fe030d4b4c6842337be0111b0eb0981e-XXX&enrichSource=Y292ZXJQYWdlOzMzMjQ2Mzg4NjtBUzo3NTA5MjY0MTk3NDI3MjVAMTU1NjA0NjIxODg1OA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/332463886_Text_Classification_Algorithms_A_Survey?enrichId=rgreq-fe030d4b4c6842337be0111b0eb0981e-XXX&enrichSource=Y292ZXJQYWdlOzMzMjQ2Mzg4NjtBUzo3NTA5MjY0MTk3NDI3MjVAMTU1NjA0NjIxODg1OA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Crime-Prediction-2?enrichId=rgreq-fe030d4b4c6842337be0111b0eb0981e-XXX&enrichSource=Y292ZXJQYWdlOzMzMjQ2Mzg4NjtBUzo3NTA5MjY0MTk3NDI3MjVAMTU1NjA0NjIxODg1OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Operations-Research-18?enrichId=rgreq-fe030d4b4c6842337be0111b0eb0981e-XXX&enrichSource=Y292ZXJQYWdlOzMzMjQ2Mzg4NjtBUzo3NTA5MjY0MTk3NDI3MjVAMTU1NjA0NjIxODg1OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-fe030d4b4c6842337be0111b0eb0981e-XXX&enrichSource=Y292ZXJQYWdlOzMzMjQ2Mzg4NjtBUzo3NTA5MjY0MTk3NDI3MjVAMTU1NjA0NjIxODg1OA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kamran_Kowsari?enrichId=rgreq-fe030d4b4c6842337be0111b0eb0981e-XXX&enrichSource=Y292ZXJQYWdlOzMzMjQ2Mzg4NjtBUzo3NTA5MjY0MTk3NDI3MjVAMTU1NjA0NjIxODg1OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kamran_Kowsari?enrichId=rgreq-fe030d4b4c6842337be0111b0eb0981e-XXX&enrichSource=Y292ZXJQYWdlOzMzMjQ2Mzg4NjtBUzo3NTA5MjY0MTk3NDI3MjVAMTU1NjA0NjIxODg1OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Virginia?enrichId=rgreq-fe030d4b4c6842337be0111b0eb0981e-XXX&enrichSource=Y292ZXJQYWdlOzMzMjQ2Mzg4NjtBUzo3NTA5MjY0MTk3NDI3MjVAMTU1NjA0NjIxODg1OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kamran_Kowsari?enrichId=rgreq-fe030d4b4c6842337be0111b0eb0981e-XXX&enrichSource=Y292ZXJQYWdlOzMzMjQ2Mzg4NjtBUzo3NTA5MjY0MTk3NDI3MjVAMTU1NjA0NjIxODg1OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kiana_Jafari_Meimandi?enrichId=rgreq-fe030d4b4c6842337be0111b0eb0981e-XXX&enrichSource=Y292ZXJQYWdlOzMzMjQ2Mzg4NjtBUzo3NTA5MjY0MTk3NDI3MjVAMTU1NjA0NjIxODg1OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kiana_Jafari_Meimandi?enrichId=rgreq-fe030d4b4c6842337be0111b0eb0981e-XXX&enrichSource=Y292ZXJQYWdlOzMzMjQ2Mzg4NjtBUzo3NTA5MjY0MTk3NDI3MjVAMTU1NjA0NjIxODg1OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Virginia?enrichId=rgreq-fe030d4b4c6842337be0111b0eb0981e-XXX&enrichSource=Y292ZXJQYWdlOzMzMjQ2Mzg4NjtBUzo3NTA5MjY0MTk3NDI3MjVAMTU1NjA0NjIxODg1OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kiana_Jafari_Meimandi?enrichId=rgreq-fe030d4b4c6842337be0111b0eb0981e-XXX&enrichSource=Y292ZXJQYWdlOzMzMjQ2Mzg4NjtBUzo3NTA5MjY0MTk3NDI3MjVAMTU1NjA0NjIxODg1OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mojtaba_Heidarysafa?enrichId=rgreq-fe030d4b4c6842337be0111b0eb0981e-XXX&enrichSource=Y292ZXJQYWdlOzMzMjQ2Mzg4NjtBUzo3NTA5MjY0MTk3NDI3MjVAMTU1NjA0NjIxODg1OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mojtaba_Heidarysafa?enrichId=rgreq-fe030d4b4c6842337be0111b0eb0981e-XXX&enrichSource=Y292ZXJQYWdlOzMzMjQ2Mzg4NjtBUzo3NTA5MjY0MTk3NDI3MjVAMTU1NjA0NjIxODg1OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Virginia?enrichId=rgreq-fe030d4b4c6842337be0111b0eb0981e-XXX&enrichSource=Y292ZXJQYWdlOzMzMjQ2Mzg4NjtBUzo3NTA5MjY0MTk3NDI3MjVAMTU1NjA0NjIxODg1OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mojtaba_Heidarysafa?enrichId=rgreq-fe030d4b4c6842337be0111b0eb0981e-XXX&enrichSource=Y292ZXJQYWdlOzMzMjQ2Mzg4NjtBUzo3NTA5MjY0MTk3NDI3MjVAMTU1NjA0NjIxODg1OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sanjana_Mendu?enrichId=rgreq-fe030d4b4c6842337be0111b0eb0981e-XXX&enrichSource=Y292ZXJQYWdlOzMzMjQ2Mzg4NjtBUzo3NTA5MjY0MTk3NDI3MjVAMTU1NjA0NjIxODg1OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sanjana_Mendu?enrichId=rgreq-fe030d4b4c6842337be0111b0eb0981e-XXX&enrichSource=Y292ZXJQYWdlOzMzMjQ2Mzg4NjtBUzo3NTA5MjY0MTk3NDI3MjVAMTU1NjA0NjIxODg1OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Virginia?enrichId=rgreq-fe030d4b4c6842337be0111b0eb0981e-XXX&enrichSource=Y292ZXJQYWdlOzMzMjQ2Mzg4NjtBUzo3NTA5MjY0MTk3NDI3MjVAMTU1NjA0NjIxODg1OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sanjana_Mendu?enrichId=rgreq-fe030d4b4c6842337be0111b0eb0981e-XXX&enrichSource=Y292ZXJQYWdlOzMzMjQ2Mzg4NjtBUzo3NTA5MjY0MTk3NDI3MjVAMTU1NjA0NjIxODg1OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kamran_Kowsari?enrichId=rgreq-fe030d4b4c6842337be0111b0eb0981e-XXX&enrichSource=Y292ZXJQYWdlOzMzMjQ2Mzg4NjtBUzo3NTA5MjY0MTk3NDI3MjVAMTU1NjA0NjIxODg1OA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Review

Text Classification Algorithms: A Survey

Kamran Kowsari 1,2,* ID , Kiana Jafari Meimandi 1 , Mojtaba Heidarysafa 1, Sanjana Mendu 1 ID ,
Laura Barnes 1,2,3 ID and Donald Brown 1,3 ID

1 Department of Systems and Information Engineering, University of Virginia, Charlottesville, VA 22904, USA;
kj6vd@virginia.edu (K.J.M.); mh4pk@virginia.edu (M.H.); sm7gc@virginia.edu (S.M.);
lb3dp@virginia.edu (L.B.); deb@virginia.edu (D.B.)

2 Sensing Systems for Health Lab,University of Virginia, Charlottesville, VA 22911 USA
3 School of Data Science, University of Virginia, Charlottesville, VA 22904, USA
* Correspondence: kk7nc@virginia.edu; Tel.: +1-202-812-3013

Received: 22 March 2019; Accepted: 17 April 2019; Published: 23 April 2019
����������
�������

Abstract: In recent years, there has been an exponential growth in the number of complex documents
and texts that require a deeper understanding of machine learning methods to be able to accurately
classify texts in many applications. Many machine learning approaches have achieved surpassing
results in natural language processing. The success of these learning algorithms relies on their capacity
to understand complex models and non-linear relationships within data. However, finding suitable
structures, architectures, and techniques for text classification is a challenge for researchers. In this
paper, a brief overview of text classification algorithms is discussed. This overview covers different
text feature extractions, dimensionality reduction methods, existing algorithms and techniques, and
evaluations methods. Finally, the limitations of each technique and their application in real-world
problems are discussed.

Keywords: text classification; text mining; text representation; text categorization; text analysis;
document classification

1. Introduction

Text classification problems have been widely studied and addressed in many real applications [1–8]
over the last few decades. Especially with recent breakthroughs in Natural Language Processing
(NLP) and text mining, many researchers are now interested in developing applications that leverage
text classification methods. Most text classification and document categorization systems can be
deconstructed into the following four phases: Feature extraction, dimension reductions, classifier
selection, and evaluations. In this paper, we discuss the structure and technical implementations of
text classification systems in terms of the pipeline illustrated in Figure 1 (The source code and the
results are shared as free tools at https://github.com/kk7nc/Text_Classification).

The initial pipeline input consists of some raw text data set. In general, text data sets contain
sequences of text in documents as D = {X1, X2, . . . , XN}where Xi refers to a data point (i.e., document,
text segment) with s number of sentences such that each sentence includes ws words with lw letters.
Each point is labeled with a class value from a set of k different discrete value indices [7].

Then, we should create a structured set for our training purposes which call this section Feature
Extraction. The dimensionality reduction step is an optional part of the pipeline which could be part of
the classification system (e.g., if we use Term Frequency-Inverse Document Frequency (TF-IDF) as our
feature extraction and in train set we have 200k unique words, computational time is very expensive,
so we could reduce this option by bringing feature space in other dimensional space). The most
significant step in document categorization is choosing the best classification algorithm. The other
part of the pipeline is the evaluation step which is divided into two parts (prediction the test set and

Information 2019, 10, 150; doi:10.3390/info10040150 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0002-6451-4786
https://orcid.org/0000-0002-0766-610X
https://orcid.org/0000-0001-8224-5164
https://orcid.org/0000-0002-9140-2632
http://www.mdpi.com/2078-2489/10/4/150?type=check_update&version=1
https://github.com/kk7nc/Text_Classification
http://dx.doi.org/10.3390/info10040150
http://www.mdpi.com/journal/information

Information 2019, 10, 150 2 of 68

evaluating the model). In general, the text classification system contains four different levels of scope
that can be applied:

1. Document level: In the document level, the algorithm obtains the relevant categories of a full
document.

2. Paragraph level: In the paragraph level, the algorithm obtains the relevant categories of a single
paragraph (a portion of a document).

3. Sentence level: In the sentence level, obtains the relevant categories of a single sentence (a portion
of a paragraph).

4. Sub-sentence level: In the sub-sentence level, the algorithm obtains the relevant categories of
sub-expressions within a sentence (a portion of a sentence)).

Feature Extraction

Dimensionality

Reduction

Classification

(Learning model)

Prediction

(Predict test data)

Evaluation of model

Evaluation

Figure 1. Overview of text classification pipeline.

(I) Feature Extraction: In general, texts and documents are unstructured data sets. However,
these unstructured text sequences must be converted into a structured feature space when using
mathematical modeling as part of a classifier. First, the data needs to be cleaned to omit unnecessary
characters and words. After the data has been cleaned, formal feature extraction methods can be
applied. The common techniques of feature extractions are Term Frequency-Inverse Document
Frequency (TF-IDF), Term Frequency (TF) [9], Word2Vec [10], and Global Vectors for Word
Representation (GloVe) [11]. In Section 2, we categorize these methods as either word embedding or
weighted word techniques and discuss the technical implementation details.

(II) Dimensionality Reduction: As text or document data sets often contain many unique words,
data pre-processing steps can be lagged by high time and memory complexity. A common solution
to this problem is simply using inexpensive algorithms. However, in some data sets, these kinds of
cheap algorithms do not perform as well as expected. In order to avoid the decrease in performance,
many researchers prefer to use dimensionality reduction to reduce the time and memory complexity
for their applications. Using dimensionality reduction for pre-processing could be more efficient than
developing inexpensive classifiers.

In Section 3, we outline the most common techniques of dimensionality reduction, including
Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and non-negative
matrix factorization (NMF). We also discuss novel techniques for unsupervised feature extraction
dimensionality reduction, such as random projection, autoencoders, and t-distributed stochastic
neighbor embedding (t-SNE).

(III) Classification Techniques: The most important step of the text classification pipeline is
choosing the best classifier. Without a complete conceptual understanding of each algorithm, we
cannot effectively determine the most efficient model for a text classification application. In Section 4,
we discuss the most popular techniques of text classification. First, we cover traditional methods of text
classification, such as Rocchio classification. Next, we talk about ensemble-based learning techniques
such as boosting and bagging, which have been used mainly for query learning strategies and text
analysis [12–14]. One of the simplest classification algorithms is logistic regression (LR) which has
been addressed in most data mining domains [15–18]. In the earliest history of information retrieval as

Information 2019, 10, 150 3 of 68

a feasible application, The Naïve Bayes Classifier (NBC) was very popular. We have a brief overview
of Naïve Bayes Classifier which is computationally inexpensive and also needs a very low amount of
memory [19].

Non-parametric techniques have been studied and used as classification tasks such as k-nearest
neighbor (KNN) [20]. Support Vector Machine (SVM) [21,22] is another popular technique which
employs a discriminative classifier for document categorization. This technique can also be used in all
domains of data mining such as bioinformatics, image, video, human activity classification, safety and
security, etc. This model is also used as a baseline for many researchers to compare against their own
works to highlight novelty and contributions.

Tree-based classifiers such as decision tree and random forest have also been studied with
respect to document categorization [23]. Each tree-based algorithm will be covered in a separate
sub-section. In recent years, graphical classifications have been considered [24] as a classification task
such as conditional random fields (CRFs). However, these techniques are mostly used for document
summarization [25] and automatic keyword extraction [26].

Lately, deep learning approaches have achieved surpassing results in comparison to previous
machine learning algorithms on tasks such as image classification, natural language processing, face
recognition, etc. The success of these deep learning algorithms relies on their capacity to model
complex and non-linear relationships within data [27].

(IV) Evaluation: The final part of the text classification pipeline is evaluation. Understanding
how a model performs is essential to the use and development of text classification methods. There are
many methods available for evaluating supervised techniques. Accuracy calculation is the simplest
method of evaluation but does not work for unbalanced data sets [28]. In Section 5, we outline the
following evaluation methods for text classification algorithms: Fβ Score [29], Matthews Correlation
Coefficient (MCC) [30], receiver operating characteristics (ROC) [31], and area under the ROC
curve (AUC) [32].

In Section 6, we talk about the limitations and drawbacks of the methods mentioned above.
We also briefly compare the steps of pipeline including feature extractions, dimensionality reduction,
classification techniques, and evaluation methods. The state-of-the-art techniques are compared in this
section by many criteria such as architecture of their model, novelty of the work, feature extraction
technique, corpus (the data set/s used), validation measure, and limitation of each work. Finding the
best system for an application requires choosing a feature extraction method. This choice completely
depends on the goal and data set of an application as some feature extraction techniques are not
efficient for a specific application. For example, since GloVe is trained on Wikipedia and when used
for short text messages like short message service (SMS), this technique does not perform as well as
TF-IDF. Additionally, limited data points that this model cannot be trained as well as other techniques
due to the small amount of data. The next step or in this pipeline, is a classification technique, where
we briefly talk about the limitation and drawbacks of each technique.

In Section 7, we describe the text and document classification applications. Text classification
is a major challenge in many domains and fields for researchers. Information retrieval systems [33]
and search engine [34,35] applications commonly make use of text classification methods. Extending
from these applications, text classification could also be used for applications such as information
filtering (e.g., email and text message spam filtering) [36]. Next, we talk about adoption of document
categorization in public health [37] and human behavior [38]. Another area that has been helped by
text classification is document organization and knowledge management. Finally, we will discuss
recommender systems which are extensively used in marketing and advertising.

2. Text Preprocessing

Feature extraction and pre-processing are crucial steps for text classification applications. In this
section, we introduce methods for cleaning text data sets, thus removing implicit noise and allowing

Information 2019, 10, 150 4 of 68

for informative featurization. Furthermore, we discuss two common methods of text feature extraction:
Weighted word and word embedding techniques.

2.1. Text Cleaning and Pre-processing

Most text and document data sets contain many unnecessary words such as stopwords,
misspelling, slang, etc. In many algorithms, especially statistical and probabilistic learning algorithms,
noise and unnecessary features can have adverse effects on system performance. In this section,
we briefly explain some techniques and methods for text cleaning and pre-processing text data sets.

2.1.1. Tokenization

Tokenization is a pre-processing method which breaks a stream of text into words, phrases,
symbols, or other meaningful elements called tokens [39,40]. The main goal of this step is the
investigation of the words in a sentence [40]. Both text classification and text mining require a parser
which processes the tokenization of the documents, for example:
sentence [41]:

After sleeping for four hours, he decided to sleep for another four.

In this case, the tokens are as follows:

{ “After” “sleeping” “for” “four” “hours” “he” “decided” “to” “sleep” “for” “another” “four” }.

2.1.2. Stop Words

Text and document classification includes many words which do not contain important
significance to be used in classification algorithms, such as {“a”, “about”, “above”, “across”, “after”,

“afterwards”, “again”,. . .}. The most common technique to deal with these words is to remove them from
the texts and documents [42].

2.1.3. Capitalization

Text and document data points have a diversity of capitalization to form a sentence. Since
documents consist of many sentences, diverse capitalization can be hugely problematic when
classifying large documents. The most common approach for dealing with inconsistent capitalization
is to reduce every letter to lower case. This technique projects all words in text and document into
the same feature space, but it causes a significant problem for the interpretation of some words
(e.g., “US” (United States of America) to “us” (pronoun)) [43]. Slang and abbreviation converters can
help account for these exceptions [44].

2.1.4. Slang and Abbreviation

Slang and abbreviation are other forms of text anomalies that are handled in the pre-processing
step. An abbreviation [45] is a shortened form of a word or phrase which contain mostly first letters
form the words, such as SVM which stands for Support Vector Machine.

Slang is a subset of the language used in informal talk or text that has different meanings such as
“lost the plot”, which essentially means that they’ve gone mad [46]. A common method for dealing
with these words is converting them into formal language [47].

2.1.5. Noise Removal

Most of the text and document data sets contain many unnecessary characters such as punctuation
and special characters. Critical punctuation and special characters are important for human
understanding of documents, but it can be detrimental for classification algorithms [48].

Information 2019, 10, 150 5 of 68

2.1.6. Spelling Correction

Spelling correction is an optional pre-processing step. Typos (short for typographical errors) are
commonly present in texts and documents, especially in social media text data sets (e.g., Twitter). Many
algorithms, techniques, and methods have addressed this problem in NLP [49]. Many techniques
and methods are available for researchers including hashing-based and context-sensitive spelling
correction techniques [50], as well as spelling correction using Trie and Damerau–Levenshtein distance
bigram [51].

2.1.7. Stemming

In NLP, one word could appear in different forms (i.e., singular and plural noun form) while the
semantic meaning of each form is the same [52]. One method for consolidating different forms of a
word into the same feature space is stemming. Text stemming modifies words to obtain variant word
forms using different linguistic processes such as affixation (addition of affixes) [53,54]. For example,
the stem of the word “studying” is “study”.

2.1.8. Lemmatization

Lemmatization is a NLP process that replaces the suffix of a word with a different one or removes
the suffix of a word completely to get the basic word form (lemma) [54–56].

2.2. Syntactic Word Representation

Many researchers have worked on this text feature extraction technique to solve the loosing
syntactic and semantic relation between words. Many researchers addressed novel techniques for
solving this problem, but many of these techniques still have limitations. In [57], a model was
introduced in which the usefulness of including syntactic and semantic knowledge in the text
representation for the selection of sentences comes from technical genomic texts. The other solution
for syntactic problem is using the n-gram technique for feature extraction.

2.2.1. N-Gram

The n-gram technique is a set of n-word which occurs “in that order” in a text set. This is not a
representation of a text, but it could be used as a feature to represent a text.

BOW is a representation of a text using its words (1-gram) which loses their order (syntactic).
This model is very easy to obtain and the text can be represented through a vector, generally of a
manageable size of the text. On the other hand, n-gram is a feature of BOW for a representation of a
text using 1-gram. It is very common to use 2-gram and 3-gram. In this way, the text feature extracted
could detect more information in comparison to 1-gram.

An Example of 2-Gram

After sleeping for four hours, he decided to sleep for another four.

In this case, the tokens are as follows:

{ “After sleeping”, “sleeping for”, “for four”, “four hours”, “four he” “he decided”, “decided to”,
“to sleep”, “sleep for”, “for another”, “another four” }.

An Example of 3-Gram

After sleeping for four hours, he decided to sleep for another four.

In this case, the tokens are as follows:

{ “After sleeping for”, “sleeping for four”, “four hours he”, “ hours he decided”, “he decided to”,
“to sleep for”, “sleep for another”, “for another four” }.

Information 2019, 10, 150 6 of 68

2.2.2. Syntactic N-Gram

In [58], syntactic n-grams are discussed which is defined by paths in syntactic dependency or
constituent trees rather than the linear structure of the text.

2.3. Weighted Words

The most basic form of weighted word feature extraction is TF, where each word is mapped to a
number corresponding to the number of occurrences of that word in the whole corpora. Methods that
extend the results of TF generally use word frequency as a boolean or logarithmically scaled weighting.
In all weight words methods, each document is translated to a vector (with length equal to that of
the document) containing the frequency of the words in that document. Although this approach is
intuitive, it is limited by the fact that particular words that are commonly used in the language may
dominate such representations.

2.3.1. Bag of Words (BoW)

The bag-of-words model (BoW model) is a reduced and simplified representation of a text
document from selected parts of the text, based on specific criteria, such as word frequency.

The BoW technique is used in several domains such as computer vision, NLP, Bayesian spam
filters, as well as document classification and information retrieval by Machine Learning.

In a BoW, a body of text, such as a document or a sentence, is thought of like a bag of words.
Lists of words are created in the BoW process. These words in a matrix are not sentences which
structure sentences and grammar, and the semantic relationship between these words are ignored
in their collection and construction. The words are often representative of the content of a sentence.
While grammar and order of appearance are ignored, multiplicity is counted and may be used later to
determine the focus points of the documents.

Here is an example of BoW:

Document

“As the home to UVA’s recognized undergraduate and graduate degree programs in systems
engineering. In the UVA Department of Systems and Information Engineering, our students are
exposed to a wide range of range”

Bag-of-Words (BoW)

{“As”, “the”, “home”, “to”, “UVA’s”, “recognized”, “undergraduate”, “and”, “graduate”, “degree”,
“program”, “in”, “systems”, “engineering”, “in”, “Department”, “Information”,“students”, “ ”,“are”,
“exposed”, “wide”, “range” }

Bag-of-Feature (BoF)

Feature = {1,1,1,3,2,1,2,1,2,3,1,1,1,2,1,1,1,1,1,1}

2.3.2. Limitation of Bag-of-Words

Bag0of-words models encode every word in the vocabulary as one-hot-encoded vector e.g., for
the vocabulary of size |Σ|, each word is represented by a |Σ| dimensional sparse vector with 1 at index
corresponding to the word and 0 at every other index. As vocabulary may potentially run into millions,
bag-of-word models face scalability challenges (e.g., “This is good” and “Is this good” have exactly the
same vector representation). The technical problem of the bag-of-word is also the main challenge for
the computer science and data science community.

Term frequency, also called bag-of-words, is the simplest technique of text feature extraction.
This method is based on counting the number of words in each document and assigning it to the
feature space.

Information 2019, 10, 150 7 of 68

2.3.3. Term Frequency-Inverse Document Frequency

K. Sparck Jones [59] proposed Inverse Document Frequency (IDF) as a method to be used in
conjunction with term frequency in order to lessen the effect of implicitly common words in the corpus.
IDF assigns a higher weight to words with either high or low frequencies term in the document.
This combination of TF and IDF is well known as Term Frequency-Inverse document frequency
(TF-IDF). The mathematical representation of the weight of a term in a document by TF-IDF is given in
Equation (1).

W(d, t) = TF(d, t) ∗ log(
N

d f (t)
) (1)

Here N is the number of documents and d f (t) is the number of documents containing the term t
in the corpus. The first term in Equation (1) improves the recall while the second term improves the
precision of the word embedding [60]. Although TF-IDF tries to overcome the problem of common
terms in the document, it still suffers from some other descriptive limitations. Namely, TF-IDF cannot
account for the similarity between the words in the document since each word is independently
presented as an index. However, with the development of more complex models in recent years,
new methods, such as word embedding, have been presented that can incorporate concepts such as
similarity of words and part of speech tagging.

2.4. Word Embedding

Even though we have syntactic word representations, it does not mean that the model captures
the semantics meaning of the words. On the other hand, bag-of-word models do not respect the
semantics of the word. For example, words “airplane”, “aeroplane”, “plane”, and “aircraft” are often
used in the same context. However, the vectors corresponding to these words are orthogonal in the
bag-of-words model. This issue presents a serious problem to understanding sentences within the
model. The other problem in the bag-of-word is that the order of words in the phrase is not respected.
The n-gram does not solve this problem so a similarity needs to be found for each word in the sentence.
Many researchers worked on word embedding to solve this problem. The Skip-gram and continuous
bag-of-words (CBOW) models of [61] propose a simple single-layer architecture based on the inner
product between two word vectors.

Word embedding is a feature learning technique in which each word or phrase from the vocabulary
is mapped to a N dimension vector of real numbers. Various word embedding methods have been
proposed to translate unigrams into understandable input for machine learning algorithms. This work
focuses on Word2Vec, GloVe, and FastText, three of the most common methods that have been
successfully used for deep learning techniques. Recently, the Novel technique of word representation
was introduced where word vectors depend on the context of the word called “Contextualized Word
Representations” or “Deep Contextualized Word Representations”.

2.4.1. Word2Vec

T. Mikolov et al. [61,62] presented "word to vector" representation as an improved word embedding
architecture. The Word2Vec approach uses shallow neural networks with two hidden layers,
continuous bag-of-words (CBOW), and the Skip-gram model to create a high dimension vector for
each word. The Skip-gram model dives a corpus of words w and context c [10]. The goal is to maximize
the probability:

arg max
θ

∏
w∈T

[
∏

c∈c(w)

p(c | w; θ)

]
(2)

where T refers to Text, and θ is parameter of p(c | w; θ).

Information 2019, 10, 150 8 of 68

Figure 2 shows a simple CBOW model which tries to find the word based on previous words,
while Skip-gram tries to find words that might come in the vicinity of each word. The weights between
the input layer and output layer represent v× N [63] as a matrix of w.

h = WTc = WT
k,. := vT

wI (3)

This method provides a very powerful tool for discovering relationships in the text corpus as well
as similarity between words. For example, this embedding would consider the two words such as
“big” and “bigger” close to each other in the vector space it assigns them.

W(t)

W(t-2)

W(t-1)

W(t+1)

W(t+2)

Input Projection Output

W(t-2)

W(t-1)

W(t+1)

W(t+2)

W(t)

Input Projection Output

Skip-gramCBOW

Figure 2. The continuous bag-of-words (CBOW) architecture predicts the current word based on the
context, and the Skip-gram predicts surrounding words based on the given current word [61].

Continuous Bag-of-Words Model

The continuous bag-of-words model is represented by multiple words for a given target of words.
For example, the word “airplane” and “military” as context words for “air-force” as the target word.
This consists of replicating the input to hidden layer connections β times which is the number of
context words [61]. Thus, the bag-of-words model is mostly used to represent an unordered collection
of words as a vector. The first thing to do is create a vocabulary, which means all the unique words in
the corpus. The output of the shallow neural network will be wi that the task as “predicting the word
given its context”. The number of words used depends on the setting for the window size (common
size is 4–5 words).

Continuous Skip-Gram Model

Another model architecture which is very similar to CBOW [61] is the continuous Skip-gram
model, however this model, instead of predicting the current word based on the context, tries to
maximize classification of a word based on another word in the same sentence. The continuous
bag-of-words model and continuous Skip-gram model are used to keep syntactic and semantic
information of sentences for machine learning algorithms.

2.4.2. Global Vectors for Word Representation (GloVe)

Another powerful word embedding technique that has been used for text classification is Global
Vectors (GloVe) [11]. The approach is very similar to the Word2Vec method, where each word is

Information 2019, 10, 150 9 of 68

presented by a high dimension vector and trained based on the surrounding words over a huge corpus.
The pre-trained word embedding used in many works is based on 400,000 vocabularies trained over
Wikipedia 2014 and Gigaword 5 as the corpus and 50 dimensions for word presentation. GloVe also
provides other pre-trained word vectorizations with 100, 200, 300 dimensions which are trained over
even bigger corpora, including Twitter content. Figure 3 shows a visualization of the word distances
over a sample data set using the same t-SNE technique [64]. The objective function is as follows:

f (wi − wj, w̃k) =
Pik
Pjk

(4)

where wi refers to the word vector of word i, and Pik denotes to the probability of word k to occur in
the context of word i.

Man

Woman

Uncle

Aunt

King

Queen

Niece

Nephew

Figure 3. GloVe: Global Vectors for Word Representation.

2.4.3. FastText

Many other word embedding representations ignore the morphology of words by assigning a
distinct vector to each word [65]. Facebook AI Research lab released a novel technique to solve this
issue by introducing a new word embedding method called FastText. Each word, w, is represented as
a bag of character n-gram. For example, given the word “introduce” and n = 3, FastText will produce
the following representation composed of character tri-grams:

< in, int, ntr, tro, rod, odu, duc, uce, ce >

Note that the sequence <int>, corresponding to the word here is different from the tri-gram “int”
from the word introduce.

Suppose we have a dictionary of n-grams of size G, and given a word w which is associated as a
vector representation zg to each n-gram g. The obtained scoring function [65] in this case is:

s(w, c) = ∑
g∈gw

zT
g vc (5)

where gw ∈ {1, 2, . . . , G} .
Facebook published pre-trained word vectors for 294 languages which are trained on Wikipedia

using FastText based on 300 dimension. The FastText used the Skip-gram model [65] with default
parameters.

Information 2019, 10, 150 10 of 68

2.4.4. Contextualized Word Representations

Contextualized word representations are another word embedding technique which is based
on the context2vec [66] technique introduced by B. McCann et al. The context2vec method uses
bidirectional long short-term memory (LSTM). M.E. Peters et al. [67] built upon this technique to
create the deep contextualized word representations technique. This technique contains both the main
feature of word representation: (I) complex characteristics of word use (e.g., syntax and semantics)
and (II) how these uses vary across linguistic contexts (e.g., to model polysemy) [67].

The main idea behind these word embedding techniques is that the resulting word vectors are
learned from a bidirectional language model (biLM), which consist of both forward and backward LMs.

The forward LMs are as follows:

p(t1, t2, . . . , tN) =
N

∏
k=1

p(tk|t1, t2, . . . , tk−1) (6)

The backward LMs are as follows:

p(t1, t2, . . . , tN) =
N

∏
k=1

p(tk|tk+1, tk+2, . . . , tN) (7)

This formulation jointly maximizes the log-likelihood of the forward and backward directions
as follows:

N

∑
k=1

 log p(tk|t1, . . . , tk−1; Θx,
−→
Θ LSTM, Θs)+

log p(tk|tk+1, . . . , tN ; Θx,
←−
Θ LSTM, Θs)

 (8)

where Θx is the token representation and Θx refers to the softmax layer. Then, ELMo is computed as a
task-specific weighting for all biLM layers as follows:

ELMotask
k = E(Rk; Θtask) = γtask

L

∑
j=0

stask
j hLM

k,j (9)

where hLM
k,j is calculated by:

hLM
k,j =

[−→
h LM

k,j ,
←−
h LM

k,j

]
(10)

where stask stands for softmax-normalized weights, and γtask is the scalar parameter.

2.5. Limitations

Although the continuous bag-of-words model and continuous Skip-gram model are used to keep
syntactic and semantic information of per-sentences for machine learning algorithms, there remains
the issue how to keep full meaning of coherent documents for machine learning.

Example:

Document: {“Maryam went to Paris on July 4th, 2018. She missed the independence day fireworks and
celebrations. This day is a federal holiday in the United States commemorating the Declaration of Independence
of the United States on July 4, 1776. The Continental Congress declared that the thirteen American colonies
were no longer subject to the monarch of Britain and were now united, free, and independent states. She wants
to stay in the country for next year and celebrate with her friends.”}

Sentence level of this document:

S1: {“Maryam went to Paris on July 4th, 2018.”}
S2: {“She missed the independence day fireworks and celebrations.”}
S3: {“This day is a federal holiday in the United States commemorating the Declaration of Independence of the

Information 2019, 10, 150 11 of 68

United States on July 4, 1776.”}
S4: {“The Continental Congress declared that the thirteen American colonies were no longer subject to the
monarch of Britain and were now united, free, and independent states.”}
S5: {“She has a plan for next year to stay in the country and celebrate with her friends.”}

Limitation:

Figure 4 shows how the feature extraction fails for per-sentence level. The purple color shown
in figure is the brief history of “This day”. Furthermore, “This day” refers to “July 4th”. In S5, “She”
refers to the S1 “Maryam”.

Figure 4. Limitation of document feature extraction by per-sentence level.

3. Dimensionality Reduction

Text sequences in term-based vector models consist of many features. Thus, time complexity and
memory consumption are very expensive for these methods. To address this issue, many researchers
use dimensionality reduction to reduce the size of feature space. In this section, existing dimensionality
reduction algorithms are discussed in detail.

3.1. Component Analysis

3.1.1. Principal Component Analysis (PCA)

Principal component analysis (PCA) is the most popular technique in multivariate analysis and
dimensionality reduction. PCA is a method to identify a subspace in which the data approximately
lies [68]. This means finding new variables that are uncorrelated and maximizing the variance to
“preserve as much variability as possible” [69].

Suppose a data set x(i); i = 1, ..., m is given and x(i) ∈ Rn for each i (n � m). The jth column of
matrix X is vector, xj that is the observations on the jth variable. The linear combination of xjs can be
written as:

m

∑
j=1

ajxj = Xa (11)

where a is a vector of constants a1, a2, ..., am. The variance of this linear combination can be given as:

var(Xa) = aTSa (12)

where S is the sample co-variance matrix. The goal is to find the linear combination with maximum
variance. This translates into maximizing aTSa− λ(aTa− 1), where λ is a Lagrange multiplier.

Information 2019, 10, 150 12 of 68

PCA can be used as a pre-processing tool to reduce the dimension of a data set before running a
supervised learning algorithm on it (x(i)s as inputs). PCA is also a valuable tool as a noise reduction
algorithm and can be helpful in avoiding the over-fitting problem [70]. kernel principal component
analysis (KPCA) is another dimensionality reduction method that generalizes linear PCA into the
nonlinear case by using the kernel method [71].

3.1.2. Independent Component Analysis (ICA)

Independent component analysis (ICA) was introduced by H. Jeanny [72]. This technique was
then further developed by C. Jutten and J. Herault [73]. ICA is a statistical modeling method
where the observed data are expressed as a linear transformation [74]. Assume that 4n linear
mixtures (x1, x2, . . . , xn) are observed where independent components:

xj = aj1s1 + aj2s2 + . . . + ajnsn ∀j (13)

The vector-matrix notation is written as:

X = As (14)

Denoting them by ai, the model can also be written [75] as follows:

X =
n

∑
i=1

aisi (15)

3.2. Linear Discriminant Analysis (LDA)

LDA is a commonly used technique for data classification and dimensionality reduction [76]. LDA
is particularly helpful where the within-class frequencies are unequal and their performances have been
evaluated on randomly generated test data. Class-dependent and class-independent transformation
are two approaches to LDA in which the ratio of between class variance to within class variance and
the ratio of the overall variance to within class variance are used respectively [77].

Let xi ∈ Rd which be d-dimensional samples and yi ∈ {1, 2, ..., c} be associated target or
output [76], where n is the number of documents and c is the number of categories. The number of
samples in each class is calculated as follows:

Sw =
c

∑
l=1

sl (16)

where
Si = ∑

x∈wi

(x− µi)(x− µi)
T , µi =

1
Ni

∑
x∈wi

x (17)

The generalization between the class scatter matrix is defined as follows:

SB =
c

∑
i=1

Ni(µi − µ)(µi − µ)T (18)

where
µ =

1
N ∑
∀x

x (19)

Respect to c− 1 projection vector of wi that can be projected into W matrix:

W = [w1|w2| . . . |wc−1] (20)

yi = wT
i x (21)

Information 2019, 10, 150 13 of 68

Thus, the µ (mean) vector and S matrices (scatter matrices) for the projected to lower dimension
as follows:

S̃w =
c

∑
i=1

∑
y∈wi

(y− µ̃i)(y− µ̃i)
T (22)

S̃B =
c

∑
i=1

(µ̃i − µ̃)(µ̃i − µ̃)T (23)

If the projection is not scalar (c− 1 dimensions), the determinant of the scatter matrices will be
used as follows:

J(W) =
|S̃B|
|S̃W |

(24)

From the fisher discriminant analysis (FDA) [76,78], we can re-write the equation as:

J(W) =
|WTSBW|
|WTSWW| (25)

3.3. Non-Negative Matrix Factorization (NMF)

Non-negative matrix factorization (NMF) or non-negative matrix approximation has been shown
to be a very powerful technique for very high dimensional data such as text and sequences analysis [79].
This technique is a promising method for dimension reduction [80]. In this section, a brief overview
of NMF is discussed for text and document data sets. Given a non-negative n×m in matrix V is an
approximation of:

V ≈WH (26)

where W = Rn×r and H = Rr×m. Suppose (n + m) r < nm, then the product WH can be regarded
as a compressed form of the data in V. Then vi and hi are the corresponding columns of V and H.
The computation of each corresponding column can be re-written as follows:

ui ≈Whi (27)

The computational time of each iteration, as introduced by S. Tsuge et al. [80], can be written
as follows:

Hij = Hij
(WTV)ij

(WTWH)ij
(28)

Wij = Wij
(VHT)ij

(WHHT)ij
(29)

Thus, the local minimum of the objective function is calculated as follows:

F = ∑
i

∑
j
(Vij − (WH)ij)

2 (30)

The maximization of the objective function can be re-written as follows:

F = ∑
i

∑
j
(Vij log((WH)ij)− (WH)ij) (31)

Information 2019, 10, 150 14 of 68

The objective function, given by the Kullback–Leibler [81,82] divergence, is defined as follows:

Hij = Hij ∑
k

Wkj
Vkj

(WH)kj
(32)

Ŵij = Wij ∑
k

Vik
(WH)ik

Hjk (33)

Wij =
Ŵij

∑k Ŵkj
(34)

This NMF-based dimensionality reduction contains the following 5 steps [80] (step VI is optional
but commonly used in information retrieval:

(I) Extract index term after pre-processing stem like feature extraction and text cleaning as
discussed in Section 2. Then we have n documents with m features;

(II) Create n documents (d ∈ {d1, d2, . . . , dn}), where vector aij = Lij × Gi where Lij refers to local
weights of i−th term in document j, and Gi is global weights for document i;

(III) Apply NMF to all terms in all documents one by one;
(IV) Project the trained document vector into r-dimensional space;
(V) Using the same transformation, map the test set into the r-dimensional space;
(VI) Calculate the similarity between the transformed document vectors and a query vector.

3.4. Random Projection

Random projection is a novel technique for dimensionality reduction which is mostly used for
high volume data set or high dimension feature spaces. Texts and documents, especially with weighted
feature extraction, generate a huge number of features. Many researchers have applied random
projection to text data [83,84] for text mining, text classification, and dimensionality reduction. In this
section, we review some basic random projection techniques. As shown in Figure 5, the overview of
random projection is shown.

3.4.1. Random Kitchen Sinks

The key idea of random kitchen sinks [85] is sampling via monte carlo integration [86]
to approximate the kernel as part of dimensionality reduction. This technique works only for
shift-invariant kernel:

K(x, x′) =< φ(x), φ(x′) >≈ K(x− x′) (35)

where shift-invariant kernel, which is an approximation kernel of:

K(x− x′) = z(x)z(x′) (36)

K(x, x′) =
∫

RD
P(w)eiwT(x−x′) (37)

where D is the target number of samples, P(w) is a probability distribution, w stands for random
direction, and w ∈ RF×D where F is the number of features and D is the target.

Information 2019, 10, 150 15 of 68

w

Figure 5. The plot on the left shows how we generate random direction, and the plot on the right
shows how we project the data set into the new space using complex numbers.

K(x, x′) = K(x− x′) ≈ 1
D

D

∑
j=1

eiwT
j (x−x′) (38)

1
D

D

∑
j=1

eiwT
j (x−x′)

=
1
D

D

∑
j=1

eiwT
j xeiwT

j x′
=

1√
D

D

∑
j=1

eiwT
j x 1√

D

D

∑
j=1

eiwT
j x′

(39)

k(x− x′) ≈ φ(x)φ(x′) (40)

φ(x) = cos(wTx + bi) (41)

where the bi is uniform random variable (bi ∈ [0, π]).

3.4.2. Johnson Lindenstrauss Lemma

William B. Johnson and Joram Lindenstrauss [87,88] proved that for any n point Euclidean space
can be bounded in k = O(logn

ε2) for any u and v ∈ n and n ∈ Rd: ∃ f : Rd → Rk|ε ∈ [0, 1]. With
x = u− v to the lower bound of the success probability.

(i− ε)||u− v||2 ≤ || f (u)− f (v)||2 ≤ (i + ε)||u− v||2 (42)

Johnson Lindenstrauss Lemma Proof [89]:

For any V sets of data point from n where V ∈ n and random variable w ∈ Rk×d:

Pr[success] ≥ 1− 2m2e
−k(ε2−ε3)

4 (43)

If we let k = 16logn
ε2 :

1− 2m2e
−k(ε3−ε3)

4 ≥ 1− 2m2e
(− 8logn

ε2)(ε2−ε3)

4

1− 2m2e
− 16logn

ε2)(ε3−ε3)

4 =

1− 2m4ε−2 > 1− 2m−
1
2 > 0

(44)

Information 2019, 10, 150 16 of 68

Lemma 1 Proof [89]:

Let Ψ be a random variable with k degrees of freedom, then for ε ∈ [0, 1]

Pr[(1− ε)k ≤ Ψ ≤ (1 + ε)k] ≥ 1− 2e
−k(ε2−ε3)

4 (45)

We start with Markov’s inequality [90]:

Pr[(Ψ ≥ (1− ε)k)] ≤ E[Ψ]

(1− ε)k
(46)

Pr[eλΨ ≥ eλ(1−ε)k)] ≤ E[eλΨ]

eλ(1−ε)k

E[eλΨ] = (1− 2λ)−
k
2

(47)

where λ < 0.5 and using the fact of (1− ε) ≤ eε− (ε2−ε3)
2 ; thus, we can proof Pr[(Ψ ≥ (1− ε)k)] ≤

E[Ψ]
(1−ε)k and the Pr[(Ψ ≤ (1 + ε)k)] ≤ E[Ψ]

(1+ε)F is similar.

(1 + ε)

eε
≤
(

eε− (ε2−ε3)
2

eε

) k
2
= e

−k(ε3−ε3)
4 (48)

Pr[(1− ε)k ≤ Ψ ≤ (1 + ε)k] ≤
Pr[(1− ε)k ≥ Ψ ∪Ψ ≤ (1 + ε)k] =

2e
−k(ε3−ε3)

4

(49)

Lemma 2 Proof [89]:

Let w be a random variable of w ∈ Rk×d and k < d, x is data points x ∈ Rd then for any ε ∈ [0, 1] :

Pr[(1− ε)||x||2 ≤ || 1√
k

wx||2 ≤

(1 + ε)||x||2] ≥ 1− 2e
−k(ε3−ε3)

4

(50)

In Equation (50), 1√
k
wx is the random approximation value and x̂ = wx, so we can rewrite the

Equation (50) by Pr[(1− ε)||x||2 ≤ || 1√
k

x̂||2 ≤ (1 + ε)||x||2] ≥ 1− 2e
−k(ε3−ε3)

4 .

Call ζi =
x̂i
||x|| ∼ N(0, 1) and Ψ = ∑k

i=1 ζ2
i thus:

Pr[(1− ε)k ≤ ||
k

∑
i=0

ζi||2 ≤ (1 + ε)k] =

Pr[(1− ε)k ≤ ||w||2 ≤ (1 + ε)k]

(51)

where we can prove Equation (51) by using Equation (45):

Pr[(1− ε)k ≤ Ψ ≤ (1 + ε)k] ≥ 1− 2e
−k(ε3−ε3)

4 (52)

3.5. Autoencoder

An autoencoder is a type of neural network that is trained to attempt to copy its input to its
output [91]. The autoencoder has achieved great success as a dimensionality reduction method via the
powerful reprehensibility of neural networks [92]. The first version of autoencoder was introduced

Information 2019, 10, 150 17 of 68

by D.E. Rumelhart et al. [93] in 1985. The main idea is that one hidden layer between input and
output layers has fewer units [94] and could thus be used to reduce the dimensions of a feature space.
Especially for texts, documents, and sequences that contain many features, using an autoencoder could
help allow for faster, more efficient data processsing.

3.5.1. General Framework

As shown in Figure 6, the input and output layers of an autoencoder contain n units where x = Rn,
and hidden layer Z contains p units with respect to p < n [95]. For this technique of dimensionality
reduction, the dimensions of the final feature space are reduced from n → p. The encoder
representation involves a sum of the representation of all words (for bag-of-words), reflecting the
relative frequency of each word [96]:

a(x) = c +
|x|

∑
i=1

W.,xi , φ(x) = h(a(x)) (53)

where h(.) is an element-wise non-linearity such as the sigmoid (Equation (79)).

X X

Z

Decoder

Encoder

Figure 6. This figure shows how a simple autoencoder works. The model depicted contains the
following layers: Z is code and two hidden layers are used for encoding and two are used for decoding.

3.5.2. Conventional Autoencoder Architecture

A convolutional neural networks (CNN)-based autoencoder can be divided into two main
steps [97] (encoding and decoding).

Om(i, j) = a
(D

∑
d=1

2k+1

∑
u=−2k−1

2k+1

∑
v=−2k−1

F(1)
md (u, v)Id(i− u, j− v)

)
∀m = 1, · · · , n (54)

Information 2019, 10, 150 18 of 68

where F ∈ {F(1)
1 , F(1)

2 , . . . , F(1)
n , } which is a convolutional filter, with convolution among an input

volume defined by I = {I1, · · · , ID} which learns to represent input combining non-linear functions:

zm = Om = a(I ∗ F(1)
m + b(1)m) m = 1, · · · , m (55)

where b(1)m is the bias, and the number of zeros we want to pad the input with is such that:
dim(I) = dim(decode(encode(I))). Finally, the encoding convolution is equal to:

Ow = Oh = (Iw + 2(2k + 1)− 2)− (2k + 1) + 1

= Iw + (2k + 1)− 1
(56)

The decoding convolution step produces n feature maps zm=1,...,n. The reconstructed results Î is
the result of the convolution between the volume of feature maps Z = {zi=1}n and this convolutional
filters volume F(2) [97–99].

Ĩ = a(Z ∗ F(2)
m + b(2)) (57)

Ow = Oh =(Iw + (2k + 1)− 1)−
(2k + 1) + 1 = Iw = Ih

(58)

where Equation (58) shows the decoding convolution with I dimensions. Input’s dimensions are equal
to the output’s dimensions.

3.5.3. Recurrent Autoencoder Architecture

A recurrent neural network (RNN) is a natural generalization of feedforward neural networks to
sequences [100]. Figure 7 illustrate recurrent autoencoder architecture. A standard RNN compute the
econding as a sequences of output by iteration:

ht = sigm(Whxxt + Whhht−1) (59)

yt = Wyh
ht (60)

where x is inputs (x1, ..., xT) and y refers to output (y1, ..., yT). A multinomial distribution (1-of-K
coding) can be output using a softmax activation function [101]:

p(xt,j = 1 | xt−1,...,x1) =
exp(wjht)

∑K
j′=1 exp(wj′ht)

(61)

By combining these probabilities, we can compute the probability of the sequence x as:

p(x) =
T

∏
t=1

p(xt | xt−1, ..., x1) (62)

Information 2019, 10, 150 19 of 68

...

...

...

...

...

Figure 7. A recurrent autoencoder structure.

3.6. T-distributed Stochastic Neighbor Embedding (t-SNE)

T-SNE is a nonlinear dimensionality reduction method for embedding high-dimensional data.
This method is mostly commonly used for visualization in a low-dimensional feature space [64],
as shown in Figure 8. This approach is based on G. Hinton and S. T. Roweis [102]. SNE works by
converting the high dimensional Euclidean distances into conditional probabilities which represent
similarities [64]. The conditional probability pj|i is calculated by:

pj|i =
exp

(
− ||xi−xj ||2

2σ2
i

)
∑k 6=i exp

(
− ||xi−xk ||2

2σ2
i

) (63)

where σi is the variance of the centered on data point xi. The similarity of yj to yi is calculated
as follows:

qj|i =
exp

(
−||yi − yj||2

)
∑k 6=i exp (−||yi − yk||2)

(64)

The cost function C is as follows:

C = ∑
i

KL(pi|Qi) (65)

where KL(Pi|Qi) is the Kullback–Leibler divergence [103], which is calculated as:

KL(Pi|Qi) = ∑
j

pj|i log
pj|i
qj|i

(66)

The gradient update with a momentum term is as follows:

γ(t) = γ(t−1) + η
δC
δγ

+ α(t)
(

γ(t−1)−γ(t−2)
)

(67)

where η is the learning rate, γ(t) refers to the solution at iteration t, and α(t) indicates momentum at
iteration t. Now we can re-write symmetric SNE in the high-dimensional space and a joint probability
distribution, Q, in the low-dimensional space as follows [64]:

C = KL(P||Q) = ∑
i

∑
j

pij log
pij

qij
(68)

Information 2019, 10, 150 20 of 68

in the high-dimensional space pij is:

pij =

exp
(
− ||xi−xj ||2

2σ2

)
∑k 6=l exp

(
− ||xi−xl ||2

2σ2

) (69)

The gradient of symmetric S is as follows:

δC
δyi

= 4 ∑
j
(pij − qij)(yi − yj) (70)

Figure 8. This figure presents the t-distributed stochastic neighbor embedding (t-SNE) visualization of
Word2vec of the Federal Railroad Administration (FRA) data set.

4. Existing Classification Techniques

In this section, we outline existing text and document classification algorithms. First, we describe
the Rocchio algorithm which is used for text classification. Then, we address two popular techniques
in ensemble learning algorithms: Boosting and bagging. Some methods, such as logistic regression,

Information 2019, 10, 150 21 of 68

Naïve Bayes, and k-nearest neighbor, are more traditional but still commonly used in the scientific
community. Support vector machines (SVMs), especially kernel SVMs, are also broadly used as a
classification technique. Tree-based classification algorithms, such as decision tree and random forests
are fast and accurate for document categorization. We also describe neural network based algorithms
such as deep neural networks (DNN), CNN, RNN, deep belief network (DBN), hierarchical attention
networks (HAN), and combination techniques.

4.1. Rocchio Classification

The Rocchio algorithm was first introduced by J.J. Rocchio [104] in 1971 as method of using
relevance feedback to query full-text databases. Since then, many researchers have addressed and
developed this technique for text and document classification [105,106]. This classification algorithm
uses TF-IDF weights for each informative word instead of boolean features. Using a training set
of documents, the Rocchio algorithm builds a prototype vector for each class. This prototype is an
average vector over the training documents’ vectors that belong to a certain class. It then assigns
each test document to the class with the maximum similarity between the test document and each of
the prototype vectors [107]. The average vector computes the centroid of a class c (center of mass of
its members):

~µ(c) =
1
|Dc| ∑

d∈Dc

~vd (71)

where Dc is the set of documents in D that belongs to class c and~vd is the weighted vector representation
of document d. The predicted label of document d is the one with the smallest Euclidean distance
between the document and the centroid:

c∗ = arg min
c
‖~µc −~vd‖ (72)

Centroids can be normalized to unit-length as follows:

~µc =
∑d∈Dc ~vd

‖∑d∈Dc ~vd‖
(73)

Therefore, the label of test documents can be obtained as follows:

c∗ = arg min
c

~µc ·~vd (74)

Limitation of Rocchio Algorithm

The Rocchio algorithm for text classifcation contains many limitations such as the fact that the
user can only retrieve a few relevant documents using this model [108]. Furthermore, this algorithms’
results illustrate by taking semantics into consideration [109].

4.2. Boosting and Bagging

Voting classification techniques, such as bagging and boosting, have been successfully developed
for document and text data set classification [110]. While boosting adaptively changes the distribution
of the training set based on the performance of previous classifiers, bagging does not look at the
previous classifier [111].

4.2.1. Boosting

The boosting algorithm was first introduced by R.E. Schapire [112] in 1990 as a technique for
boosting the performance of a weak learning algorithm. This technique was further developed by
Freund [113,114].

Information 2019, 10, 150 22 of 68

Figure 9 shows how a boosting algorithm works for 2D data sets, as shown we have labeled the
data, then trained by multi-model architectures (ensemble learning). These developments resulted
in the AdaBoost (Adaptive Boosting) [115]. Suppose we construct Dt such that D1(i) = 1

m given Dt

and ht:

Dt+1(i) =
Dt(i)

Zt
×
{

e−αt i f yi = ht(xi)

eαt i f yi 6= ht(xi)

=
Dt(i)

Zt
exp(−αyihi(xi))

(75)

where Zt refers to the normalization factor and αt is as follows:

αt =
1
2

ln
(

1− εt

εt

)
(76)

ErrorDataset

Train Test Train Test

...

Error

Figure 9. This figure is the boosting technique architecture.

As shown in Algorithm 1, training set S of size m, inducer τ and integer N as input. Then this
algorithm find the weights of each xj, and finally, the output is the optimal classifier (C∗).

Algorithm 1 The AdaBoost method

input : training set S of size m, inducer τ, integer N

for i = 1 to N do
Ci = τ(S′)

εi =
1
m ∑

xj∈S′ ;Ci(xj)/∈yi

weight(x)

if εi >
1
2 then

set S’ to a bootstrap sample from S with weight 1 for
all instance and go top

endif
βi =

εi
1−εi

for xi ∈ S′ do
if Ci(xj) = yi then

weight(xj) = weight(xj).βi
endif

endfor
Normalize weights of instances

endfor

C∗(x) = arg max
y∈Y

∑
i,Ci(x)=y

log
1
βi

output : Classifier C∗

Information 2019, 10, 150 23 of 68

The final classifier formulation can be written as:

H f (x) = sign
(

∑
t

αtht(x)
)

(77)

4.2.2. Bagging

The bagging algorithm was introduced by L. Breiman [116] in 1996 as a voting classifier method.
The algorithm is generated by different bootstrap samples [111]. A bootstrap generates a uniform
sample from the training set. If N bootstrap samples B1, B2, . . . , BN have been generated, then we have
N classifiers (C) which Ci is built from each bootstrap sample Bi. Finally, our classifier C contain or
generated from C1, C2, ..., CN whose output is the class predicted most often by its sub-classifiers, with
ties broken arbitrarily [111,116]. Figure 10 shows a simple bagging algorithm which trained N models.
As shown in Algorithm 2, We have training set S which is trained and find the best classifier C.

..
.

Error

Error

..
.

Dataset
Train N

 models

Test

Test

Figure 10. This figure shows a simple model of the bagging technique.

Algorithm 2 Bagging

input : training set S, inducer τ, integer N

for i = 1 to N do
S′ = bootstrap sample from S
Ci = τ(S′)

endfor

C∗(x) = arg max
y∈Y

∑
i,Ci=y

1

output : Classifier C∗

4.2.3. Limitation of Boosting and Bagging

Boosting and bagging methods also have many limitations and disadvantages, such as the
computational complexity and loss of interpretability [117], which means that the feature importance
could not be discovered by these models.

4.3. Logistic Regression

One of the earliest methods of classification is logistic regression (LR). LR was introduced and
developed by statistician David Cox in 1958 [118]. LR is a linear classifier with decision boundary of
θTx = 0. LR predicts probabilities rather than classes [119,120].

Information 2019, 10, 150 24 of 68

4.3.1. Basic Framework

The goal of LR is to train from the probability of variable Y being 0 or 1 given x. Let us have
text data which is X ∈ Rn×d. If we have binary classification problems, the Bernoulli mixture models
function should be used [121] as follows:

L(θ | x) = p(y | x; θ) =
n

∏
i=1

β(yi | sigm(xiθ)) =

n

∏
i=1

sigm(xi)
yi (1− sigm(xi))

1−yi =

n

∏
i=1

[
1

1 + e−xiθ

]yi[
1− 1

1 + e−xiθ

](1−yi)

(78)

where xiθ = θ0 + ∑d
j=1(xijθj), and sigm(.) is a sigmoid function which is defined as shown in

Equation (79).

sigm(η) =
1

1− e−η =
eη

1− eη (79)

4.3.2. Combining Instance-Based Learning and LR

The LR model specifies the probability of binary output yi = {0, 1} given the input xi. we can
consider posterior probability as:

π0 = P(y0 = +1 | yi) (80)

where:
π0

1− π0
=

P(yi | y0 = +1)
P(yi | y0 = +1)

.
p0

1− p0
(81)

where p is the likelihood ratio it could be re-written as:

π0

1− π0
= p.

p0

1− p0
(82)

log
(

π0

1− π0

)
= log(p) + w0 (83)

with respect to:
w0 = log(p0)− log(1− p0) (84)

To obey the basic principle underlying instance-based learning (IBL) [122], the classifier should be
a function of the distance δi. p will be large if δi → 0 then yi = +1, and small for yi = −1. p should be
close to 1 if δi → ∞; then, neither in favor of y0 = +1 nor in favor of y0 = −1, so the parameterized
function is as follows:

p = p(δ) = exp
(
yi.

α

δ

)
(85)

Finally,

log
(

π0

1− π0

)
= w0 + α ∑

xi∈N(x0)

k(x0, xi).yi (86)

where k(x0, xi) is similarity measure.

Information 2019, 10, 150 25 of 68

4.3.3. Multinomial Logistic Regression

Multinomial (or multilabeled) logistic classification [123] uses the probability of x belonging to
class i (as defined in Equation (87))

p
(

y(i) = 1 | x, θ
)
=

exp
(

θ(i)
T

x
)

∑m
j=1 exp

(
θ(i)

Tx
) (87)

where θ(i) is the weight vector corresponding to class i.
For binary classification (m = 2) which is known as a basic LR, but for multinomial logistic

regression (m > 2) is usually uses the so f tmax function.
The normalization function is:

m

∑
i=1

p
(

y(i) = 1 | x, θ
)
= 1 (88)

In a classification task as supervised learning context, the component of θ is calculated from the
subset of the training data D which belongs to class i where i ∈ {1, . . . , n}. To perform maximum
likelihood (ML) estimation of θ, we need to maximize the log-likelihood function as follows:

`(θ) =
n

∑
j=1

log p
(
yj = 1 | xj, θ

)
=

n

∑
j=1

[
m

∑
i=1

y(i)j θ(i)
T

xj − log
m

∑
i=1

exp
(

θ(i)
T

xj

)] (89)

The adoption of a maximum a posteriori (MAP) estimates as follows:

θ̂MAP = arg max
θ

L(θ) = arg max
θ

[`(θ) + log p(θ)] (90)

4.3.4. Limitation of Logistic Regression

Logistic regression classifier works well for predicting categorical outcomes. However, this
prediction requires that each data point be independent [124] which is attempting to predict outcomes
based on a set of independent variables [125]

4.4. Naïve Bayes Classifier

Naïve Bayes text classification has been widely used for document categorization tasks since the
1950s [126,127]. The Naïve Bayes classifier method is theoretically based on Bayes theorem, which was
formulated by Thomas Bayes between 1701–1761 [128,129]). Recent studies have widely addressed
this technique in information retrieval [130]. This technique is a generative model, which is the most
traditional method of text categorization. We start with the most basic version of NBC which was
developed by using TF (bag-of-word), a feature extraction technique which counts the number of
words in documents.

4.4.1. High-Level Description of Naïve Bayes Classifier

If the number of documents (n) fit into k categories where k ∈ {c1, c2, ..., ck}, the predicted class as
output is c ∈ C. The Naïve Bayes algorithm can be described as follows:

P(c | d) = P(d | c)P(c)
P(d)

(91)

Information 2019, 10, 150 26 of 68

where d is document and c indicates classes.

CMAP = arg max
c∈C

P(d | c)P(c)

= arg max
c∈C

P(x1, x2, ..., xn | c)p(c)
(92)

This model is used as baseline of many papers which is word-level of Naïve Bayes classifier [3,131]
as follows:

P(cj | di; θ̂) =
P(cj | θ̂)P(di | cj; θ̂j)

P(di | θ̂)
(93)

4.4.2. Multinomial Naïve Bayes Classifier

If the number of documents (n) fit into k categories where k ∈ {c1, c2, ..., ck} the predicted class as
output is c ∈ C. The Naïve Bayes algorithm can be written as:

P(c | d) = P(c)∏w∈d P(d | c)nwd

P(d)
(94)

where nwd is denoted to the number of times word w occurs in document, and P(w|c) is the probability
of observing word w given class c [132].

P(w|c) is calculated as:

P(w | c) =
1 + ∑d∈Dc nwd

k + ∑w′ ∑d∈Dc nw′d
(95)

4.4.3. Naïve Bayes Classifier for Unbalanced Classes

One of the limitations of NBC is that the technique performs poorly on data sets with unbalanced
classes [133]. Eibe Frank and Remco R. Bouckaert [132] developed a method for introducing
normalization in each class by Equation (96) and then uses the centroid classifier [22] in NBC for
unbalanced classes. The centroid cc for class c is given in Equation (97).

α× nwd

∑w′ ∑d∈Dc nw′d
(96)

cc =

{
∑d∈Dc nw1d√

∑w
(

∑d∈Dc nwd
)2

, . . . ,

∑d∈Dc nwid√
∑w
(

∑d∈Dc nwd
)2

, . . . ,

∑d∈Dc nwkd√
∑w
(

∑d∈Dc nwd
)2

} (97)

The scoring function is defined as:
xd.c1 − xd.c2 (98)

So log of multinomial Naïve Bayes classifier can be calculated as:[
log P(c1) +

k

∑
i=1

nwid log(P(wi | c1))

]
−
[

log P(c2) +
k

∑
i=1

nwid log(P(wi | c2))

]
(99)

Using Equations (95) and (96), and if α = 1 we can rewrite:

P(w | c) =
1 + nwd

∑w′ ∑d∈Dc nw′d

K + 1
(100)

Information 2019, 10, 150 27 of 68

with respect to:
∑d∈Dc nwd

∑w′ ∑d∈Dc nw′d
<< 1 (101)

For text data sets and log(x + 1) ≈ x and x << 1 [132]. In this technique of NBC, the experimental
results is very similar to the centroid classifier [22].

4.4.4. Limitation of Naïve Bayes Algorithm

Naïve Bayes algorithm also has several limitations. NBC makes a strong assumption about the
shape of the data distribution [134,135]. NBC is also limited by data scarcity for which any possible
value in feature space, a likelihood value must be estimated by a frequentist [136].

4.5. K-Nearest Neighbor

The k-nearest Neighbors algorithm (KNN) is a non-parametric technique used for classification.
This method is used for text classification applications in many research domains [137] in past decades.

4.5.1. Basic Concept of KNN

Given a test document x, the KNN algorithm finds the k nearest neighbors of x among all the
documents in the training set, and scores the category candidates based the class of k neighbors.
The similarity of x and each neighbor’s document could be the score of the category of the neighbor
documents. Multiple KNN documents may belong to the same category; in this case, the summation of
these scores would be the similarity score of class k with respect to the test document x. After sorting
the score values, the algorithm assigns the candidate to the class with the highest score from the test
document x [137]. Figure 11 illustrates KNN architecture, but for simplicity, this figure is designed by
a 2D data set (similar and with higher dimensional space like the text data set). The decision rule of
KNN is:

f (x) =arg max
j

S(x, Cj)

= ∑
di∈KNN

sim(x, di)y(di, Cj)
(102)

where S refers to score value with respect to S(x, Cj), the score value of candidate i to class of j, and
output of f (x) is a label to the test set document.

Class 1 Class 2 Class 3

xi

Figure 11. A architecture of k-nearest Neighbor (KNN) model for the 2D data set and three classes.

Information 2019, 10, 150 28 of 68

4.5.2. Weight Adjusted K-Nearest Neighbor Classification

The weight adjusted k-nearest neighbor classification (WAKNN) is a version of KNN which tries
to learn the weight vectors for classification [138]. The weighted cosine measure [139] is calculated
as follows:

cos(x, y, w)

∑
t∈T

(xt × wt)× (yt × wt)√
∑

t∈T
(xt × wt)2 ×

√
∑

t∈T
(yt × wt)2 (103)

where T refers to the set of words, and xt and yt are TF, as discussed in Section 2. For the training
model (d ∈ D), let Nd = {n1, n2, . . . , nk} be the set of k-nearest Neighbors of d. Given Nd, the similarity
sum of d neighbors that belong to class c is defined as follows:

Sc = ∑
ni∈N;C(ni)=c

cos(d, ni, w) (104)

Total similarity is calculated as follows:

T = ∑
c∈C

Sc (105)

The contribution of d is defined in terms of Sc of classes c and T as follows:

cont(d) =

1 if ∀c ∈ C, c 6= class(d),

Sclass(d)>Ss and
Sclass(d)

T ≤ p

0 otherwise

(106)

where cont(d) stands for contribution(d)

4.5.3. Limitation of K-Nearest Neighbor

KNN is a classification method that is easy to implement and adapts to any kind of feature space.
This model also naturally handles multi-class cases [140,141]. However, KNN is limited by data storage
constraints for large search problems to find nearest neighbors. Additionally, the performance of
KNN is dependent on finding a meaningful distance function, thus making this technique a very data
dependent algorithm [142,143].

4.6. Support Vector Machine (SVM)

The original version of SVM was developed by Vapnik and Chervonenkis [144] in 1963.
B.E. Boser et al. [145] adapted this version into a nonlinear formulation in the early 1990s. SVM was
originally designed for binary classification tasks. However, many researchers work on multi-class
problems using this dominate technique [146]. The Figure 12 indicates the linear and non-linear
classifier which is used for 2− dimension datasets.

Information 2019, 10, 150 29 of 68

A) Linear Separation B) Non-linear Separation

Figure 12. This figure shows the linear and non-linear Support Vector Machine (SVM) for a 2D data
set (for text data we have thousands of dimensions). The red is class 1, the blue color is class 2 and
yellow color is miss-classified data points.

4.6.1. Binary-Class SVM

In the context of text classification, let x1, x2, ..., xl be training examples belonging to one class X,
where X is a compact subset of RN [21]. Then we can formulate a binary classifier as follows:

min
1
2
||w||2 + 1

vl

l

∑
i=1

ξi − p (107)

subject to:
(w.Φ(xi)) ≥ p− ξi i = 1, 2, . . . , l ξ ≥ 0 (108)

If w and p solve this problem, then the decision function is given by:

f (x) = sign((w.Φ(x))− p) (109)

4.6.2. Multi-Class SVM

Since SVMs are traditionally used for the binary classification, we need to generate a
Multiple-SVM (MSVM) [147] for multi-class problems. One-vs-One is a technique for multi-class
SVM that builds N(N − 1) classifiers as follows:

f (x) = arg max
i

(
∑

j
fij(x)

)
(110)

The natural way to solve the k-class problem is to construct a decision function of all k classes at
once [148,149]. In general, multi-class SVM is an optimization problem of the following form:

min
w1,w2,..,wk ,ζ

1
2 ∑

k
wT

k wk + C ∑
(xi ,yi)∈D

ζi (111)

st. wT
yi

x− wT
k x ≤ i− ζi,

∀(xi, yi) ∈ D, k ∈ {1, 2, ..., K}, k 6= yi
(112)

where (xi, yi) represent the training data points such that (xi, yi) ∈ D, C is the penalty parameter, ζ is
a slack parameter, and k stands for the class.

Another technique of multi-class classification using SVM is All-vs-One. Feature extraction via
SVM generally uses one of two methods: Word sequences feature extracting [150] and TF-IDF. But for

Information 2019, 10, 150 30 of 68

an unstructured sequence such as RNA and DNA sequences, string kernel is used. However, string
kernel can be used for a document categorization [151].

4.6.3. String Kernel

Text classification has also been studied using string kernel [151]. The basic idea of string
kernel (SK) is using Φ(.) to map the string in the feature space.

Spectrum kernel as part of SK has been applied to many different applications, including text,
DNA, and protein classification [152,153]. The basic idea of Spectrum kernel is counting the number of
times a word appears in string xi as a feature map where defining feature maps from x → Rlk

.

Φk(x) = Φj(x)j∈Σk (113)

where

Φj(x) = number o f j f eature appears in x (114)

The feature map Φi(x) is generated by the sequence xi and kernel defines as follows:

F =Σk (115)

Ki(x, x′) = < Φi(x), Φi(x′) > (116)

The main limitation of SVM when applied to string sequence classification is time complexity [154].
The features are generated using dictionary size Σ and F is the number of features and bounded by
Equation (115). The kernel calculation is similar with SP and uses Equation (116), and finally normalizes
the kernel using Equation (117).

KNorm(x, y)← K(x, y)√
K(x, x)

√
K(y, y)

(117)

< f x, f y > =
n1

∑
i=1

n2

∑
j=1

h(us1
i , us2

j) (118)

where two sequences, us1
i and us2

j , are lengths of s1 and s2 respectively.

4.6.4. Stacking Support Vector Machine (SVM)

Stacking SVM is a hierarchical classification method used for category tree structure based on
a top-down level-based approach [155]. This technique provides a hierarchical model of individual
SVM classifiers, and thus generally produces more accurate results than single-SVM models [156].
As shown in the Figure 13, the stacking model employs hierarchical classifier which contains several
layers (in this Figure we have two level like mane domain, and sub-domains).

Information 2019, 10, 150 31 of 68

C C1 k

C
1

...

...

C
1

C
k

C
k

 Computer Science Medical Science

 SVM
 Machine

Learning
 Cancer DNA

Ψ0 Ψ0 Ψ0 Ψ0

wout
wout wout wout

C

Figure 13. Hierarchical classification method.

4.6.5. Multiple Instance Learning (MIL)

Multiple instance learning (MIL) is a supervised learning method [157] and is typically formulated
as one of two SVM-based methods (mi-SVM and MI-SVM) [158]. MIL takes in a set of labeled bags as
input instead of instances. A bag is labeled positive if there is at least one instance in it with a positive
label, and labeled negative if all instances of it are negative. Then, the learner tries to infer a concept
that label individual instances correctly [157]. In statistical pattern recognition, it is assumed that a
training set of labeled patterns is available where each pair (xi, yi) ∈ Rd ×Y has been generated from
an unknown distribution independently. The goal is to find a classifier from patterns to labels i.e.,
f : Rd → Y. In MIL, the algorithm assumes the input is available as a set of input patterns x1, ..., xn

grouped into bags B1, ..., Bm where BI = {xi : i ∈ I} for the given index sets I ⊆ {1, ..., n}. Each bag
BI is associated with label YI where YI = −1 if yi = −1 for all i ∈ I and YI = 1 if there is at least one
instance xi ∈ BI with positive label [158]. The relationship between instance labels yi and bag labels YI
can be expressed as YI = maxi∈I yi or a set of linear constraints:

∑
i∈I

yi + 1
2
≥ 1,

∀I s.t. YI = 1,

yi = −1, ∀I s.t. YI = −1.

(119)

The discriminant function f : X → R is called MI-separating with respect to a multiple-instance
data set if sgn maxi∈I f (xi) = YI for all bags BI holds.

4.6.6. Limitation of Support Vector Machine (SVM)

SVM has been one of the most efficient machine learning algorithms since its introduction in the
1990s [159]. However, the SVM algorithms for text classification are limited by the lack of transparency
in results caused by a high number of dimensions. Due to this, it cannot show the company score as a
parametric function based on financial ratios nor any other functional form [159]. A further limitation
is a variable financial ratios rate [160].

Information 2019, 10, 150 32 of 68

4.7. Decision Tree

One earlier classification algorithm for text and data mining is decision tree [161]. Decision tree
classifiers (DTCs) are used successfully in many diverse areas for classification [162]. The structure of
this technique is a hierarchical decomposition of the data space [7,161]. Decision tree as classification
task was introduced by D. Morgan [163] and developed by J.R. Quinlan [164]. The main idea is creating
a tree based on the attribute for categorized data points, but the main challenge of a decision tree is
which attribute or feature could be in parents’ level and which one should be in child level. To solve
this problem, De Mántaras [165] introduced statistical modeling for feature selection in tree. For a
training set containing p positive and n negative:

H
(

p
n + p

,
n

n + p

)
=− p

n + p
log2

p
n + p

− n
n + p

log2
n

n + p

(120)

Choose attribute A with k distinct value, divides the training set E into subsets of {E1, E2, . . . , Ek}.
The expect entropy (EH) remain after trying attribute A (with branches i = 1, 2, . . . , k):

EH(A) =
K

∑
i=1

pi + ni
p + n

H
(

pi
ni + pi

,
ni

ni + pi

)
(121)

Information gain (I) or reduction in entropy for this attribute is :

A(I) = H
(

p
n + p

,
n

n + p

)
− EH(A) (122)

Choose the attribute with largest information gain as parent’s node.

Limitation of Decision Tree Algorithm

The decision tree is a very fast algorithm for both learning and prediction; but it is also extremely
sensitive to small perturbations in the data [166], and can be easily overfit [167]. These effects can be
negated by validation methods and pruning, but this is a grey area [166]. This model also has problems
with out-of-sample prediction [168].

4.8. Random Forest

Random forests or random decision forests technique is an ensemble learning method for text
classification. This method, which used t tree as parallel, was introduced by T. Kam Ho [169] in 1995.
As shown in Figure 14, the main idea of RF is generating random decision trees. This technique
was further developed in 1999 by L. Breiman [170], who found convergence for RF as margin
measures (mg(X, Y)) as follows:

mg(X, Y) =avk I(hk(X) = Y)−
max
j 6=Y

avk I(hk(X) = j) (123)

where I(.) refers to indicator function.

Information 2019, 10, 150 33 of 68

Voting for classification

X

Tree 1 Tree 2 Tree t

k

Figure 14. Random forest.

4.8.1. Voting

After training all trees as forest, predictions are assigned based on voting [171] as follows:

δV = arg max
i

∑
j:j 6=j

I{rij>rji} (124)

such that
rij + rji = 1 (125)

4.8.2. Limitation of Random Forests

Random forests (i.e., ensembles of decision trees) are very fast to train for text data sets in
comparison to other techniques such as deep learning, but quite slow to create predictions once
trained [172]. Thus, in order to achieve a faster structure, the number of trees in forest must be reduced,
as more trees in forest increases time complexity in the prediction step.

4.9. Conditional Random Field (CRF)

CRF is an undirected graphical model, as shown in Figure 15. CRFs are essentially a way
of combining the advantages of classification and graphical modeling that combine the ability to
compactly model multivariate data, and the ability to leverage a high dimensional features space for
prediction [173] (this model is very powerful for text data due to high feature space). CRFs state the
conditional probability of a label sequence Y given a sequence of observation X i.e., P(Y|X). CRFs
can incorporate complex features into an observation sequence without violating the independence
assumption by modeling the conditional probability of the label sequence rather than the joint
probability P(X, Y) [174,175]. Clique (i.e., fully connected subgraph) potential is used for computing
P(X|Y). With respect to the potential function for each clique in the graph, the probability of a
variable configuration corresponds to the product of a series of a non-negative potential functions.

Information 2019, 10, 150 34 of 68

The value computed by each potential function is equivalent to the probability of the variables in the
corresponding clique for a particular configuration [174]. That is:

P(V) =
1
Z ∏

c∈cliques(V)

ψ(c) (126)

where Z is the normalization term. The conditional probability P(X|Y) can be formulated as:

P(Y|X) =
1
Z

T

∏
t=1

ψ(t, yt−1, yt, X) (127)

Given the potential function (ψ(t, yt−1, yt, X) = exp(w. f (t, yt−1, yt, X))), the conditional
probability can be rewritten as:

P(Y|X) =
T

∏
t=1

exp(w. f (t, yt−1, yt, X)) (128)

where w is the weight vector associated with a feature vector computed by f .

Figure 15. Linear-chain conditional random field (CRF). The black boxes are transition clique

Limitation of Conditional Random Field (CRF)

With regards to CRF, the most evident disadvantage of CRF is the high computational complexity
of the training step [176], especially for text data sets due to high feature space. Furthermore, this
algorithm does not perform with unseen words (i.e., with words that were not present in the training
data sample) [177].

4.10. Deep Learning

Deep learning models have achieved state-of-the-art results across many domains, including a
wide variety of NLP applications. Deep learning for text and document classification includes three
basic architectures of deep learning in parallel. We describe each individual model in detail below.

4.10.1. Deep Neural Networks

Deep neural networks (DNN) are designed to learn by multi-connection of layers that every
single layer only receives the connection from previous and provides connections only to the next
layer in a hidden part [2]. Figure 16 depicts the structure of a standard DNN. The input consists of
the connection of the input feature space (as discussed in Section 2) with the first hidden layer of
the DNN. The input layer may be constructed via TF-IDF, word embedding, or some other feature
extraction method. The output layer is equal to the number of classes for multi-class classification or
only one for binary classification. In multi-class DNNs, each learning model is generated (number of
nodes in each layer and the number of layers are completely randomly assigned). The implementation

Information 2019, 10, 150 35 of 68

of DNN is a discriminative trained model that uses a standard back-propagation algorithm using
sigmoid (Equation (129)), ReLU [178] (Equation (130)) as an activation function. The output layer for
multi-class classification should be a So f tmax function (as shown in Equation (131)).

f (x) =
1

1 + e−x ∈ (0, 1) (129)

f (x) = max(0, x) (130)

σ(z)j =
ezj

∑K
k=1 ezk

(131)

∀ j ∈ {1, . . . , K}

Given a set of example pairs (x, y),x ∈ X, y ∈ Y, the goal is to learn the relationship between these
input and target spaces using hidden layers. In text classification applications, the input is a string
which is generated via vectorization of the raw text data.

...

...

...

...

...

...

...

...

...

Hidden Layer Output LayerInput Layer

Figure 16. Standard, fully connected deep neural network (DNN).

4.10.2. Recurrent Neural Network (RNN)

Another neural network architecture that researchers have used for text mining and classification
is recurrent neural network (RNN) [179,180]. RNN assigns more weights to the previous data points
of a sequence. Therefore, this technique is a powerful method for text, string, and sequential data
classification. A RNN considers the information of previous nodes in a very sophisticated method
which allows for better semantic analysis of a data set’s structure. RNN mostly works by using LSTM
or GRU for text classification, as shown in Figure 17 which contains input layer (word embedding),
hidden layers, and finally output layer. This method can be formulated as:

xt = F(xt−1, ut, θ) (132)

where xt is the state at time t and ut refers to the input at step t. More specifically, we can use weights
to formulate Equation (132), parameterized by:

Information 2019, 10, 150 36 of 68

xt = Wrecσ(xt−1) + Winut + b (133)

where Wrec refers to recurrent matrix weight, Win refers to input weights, b is the bias, and σ denotes
an element-wise function.

Figure 17 illustrates an extended RNN architecture. Despite the benefits described above, RNN
is vulnerable to the problems of vanishing gradient and exploding gradient when the error of the
gradient descent algorithm is back propagated through the network [181].

LSTM

GRU

LSTM

GRU

LSTM

GRU

LSTM

GRU

LSTM

GRU

LSTM

GRU

LSTM

GRU

LSTM

GRU

LSTM

GRU

...

...

...
In

p
u
t

 L
ay

er
H

id
d
en

 L
ay

er
O

u
tp

u
t

 L
ay

er

Figure 17. Standard long short-term memory (LSTM)/GRU recurrent neural networks.

Long Short-Term Memory (LSTM)

LSTM was introduced by S. Hochreiter and J. Schmidhuber [182], and has since been augmented
by many research scientists [183].

LSTM is a special type of RNN that addresses these problems by preserving long term dependency
in a more effective way in comparison to the basic RNN. LSTM is particularly useful with respect to
overcoming the vanishing gradient problem [184]. Although LSTM has a chain-like structure similar
to RNN, LSTM uses multiple gates to carefully regulate the amount of information that is allowed into
each node state. Figure 18 shows the basic cell of an LSTM model. A step-by-step explanation of a
LSTM cell is as follows:

it =σ(Wi[xt, ht−1] + bi), (134)

C̃t = tanh(Wc[xt, ht−1] + bc), (135)

ft =σ(W f [xt, ht−1] + b f), (136)

Ct =it ∗ C̃t + ftCt−1, (137)

ot =σ(Wo[xt, ht−1] + bo), (138)

ht =ot tanh(Ct), (139)

where Equation (134) represents the input gate, Equation (135) represents the candid memory cell
value, Equation (136) defines forget-gate activation, Equation (137) calculates the new memory cell
value, and Equations (138) and (139) define the final output gate value. In the above description, each b

Information 2019, 10, 150 37 of 68

represents a bias vector, each W represent a weight matrix, and xt represents input to the memory cell
at time t. Furthermore, i,c, f ,o indices refer to input, cell memory, forget and output gates respectively.
Figure 18 shows a graphical representation of the structure of these gates.
A RNN can be biased when later words are more influential than earlier ones. Convolutional neural
network (CNN) models (discussed in Section 4.10.3) were introduced to overcome this bias by
deploying a max-pooling layer to determine discriminative phrases in text data [6].

Gated Recurrent Unit (GRU)

GRUs are a gating mechanism for RNN formulated by J. Chung et al. [185] and K. Cho et al. [101].
GRUs are a simplified variant of the LSTM architecture. However, a GRU differs from LSTM because
it contains two gates and a GRU does not possess internal memory (i.e., the Ct−1 in Figure 18).
Furthermore, a second non-linearity is not applied (i.e., tanh in Figure 18). A step-by-step explanation
of a GRU cell is as follows:

zt = σg(Wzxt + Uzht−1 + bz), (140)

where zt refers to the update gate vector of t, xt stands for input vector, W, U, and b represent parameter
matrices/vectors. The activation function (σg) is either a sigmoid or ReLU and can be formulated
as follow:

r̃t = σg(Wrxt + Urht−1 + br), (141)

where rt stands for reset gate vector of t, zt is update gate vector of t.

ht =zt ◦ ht−1 + (1− zt)◦
σh(Whxt + Uh(rt ◦ ht−1) + bh)

(142)

where ht is output vector of t, and σh indicates the hyperbolic tangent function.

tanh𝜎 𝜎

𝑥𝑡

ℎ𝑡−1

ℎ𝑡

ℎ𝑡

tanh

tanh𝜎 𝜎 𝜎

𝑥𝑡

𝐶𝑡−1

ℎ𝑡−1

ℎ𝑡

𝐶𝑡

ℎ𝑡

1-

Figure 18. The left figure is a GRU cell while the right figure is a LSTM cell.

4.10.3. Convolutional Neural Networks (CNN)

A convolutional neural network (CNN) is a deep learning architecture that is commonly used for
hierarchical document classification [6,186]. Although originally built for image processing, CNNs
have also been effectively used for text classification [27,187]. In a basic CNN for image processing,
an image tensor is convolved with a set of kernels of size d× d. These convolution layers are called
feature maps and can be stacked to provide multiple filters on the input. To reduce the computational
complexity, CNNs use pooling to reduce the size of the output from one layer to the next in the network.
Different pooling techniques are used to reduce outputs while preserving important features [188].

The most common pooling method is max pooling where the maximum element in the pooling
window is selected. In order to feed the pooled output from stacked featured maps to the next layer,
the maps are flattened into one column. The final layers in a CNN are typically fully connected.

Information 2019, 10, 150 38 of 68

In general, during the back-propagation step of a convolutional neural network, both the weights
and the feature detector filters are adjusted. A potential problem that arises when using CNN for
text classification is the number of ’channels’, Σ (size of the feature space). While image classification
application generally have few channels (e.g., only 3 channels of RGB), Σ may be very large (e.g.,
50 K) for text classification applications [189], thus resulting in very high dimensionality. Figure 19
illustrate the CNN architecture for text classification which contains word embedding as input layer
1D convolutional layers, 1D pooling layer, fully connected layers, and finally output layer.

Pooling Layer

Fully Connected Layer

Convolutional Layer

Output Layer

Pooling

1D Pooling

1D

Pooling

1D

Word

Embedding
Conv

1D Conv
1D

Output
k nodes

. . .
.

. . .
. . .

Conv
1D

Flatten
Layer

Figure 19. Convolutional neural network (CNN) architecture for text classification.

4.10.4. Deep Belief Network (DBN)

A deep belief network (DBN) is a deep learning structure that is superposed by restricted
Boltzmann machines (RBMs) [1]. A RBM is a generative artificial neural network which could learn
probability distribution over samples. Contrastive divergence (CD) [190] is a training technique used
for RBMs [191,192].

The energy function is as follows:

E(v, h) = −∑
i

aivi −∑
j

bjhj −∑
i

∑
j

viwi,jhj (143)

where ai is visible units and bi refers to hidden units in matrix notation. This expression can be
simplified as:

E(v, h) = −aTv− bTh− vTWh (144)

Information 2019, 10, 150 39 of 68

Given a configuration of the hidden units h is defined as follows:

P(v|h) =
m

∏
i=1

P(vi|h) (145)

For Bernoulli, the logistic function for visible units is replaced as follows:

P(vk
i = 1|h) =

exp(ak
i + ΣjWk

ijhj)

ΣK
k′=1 exp(ak′

i + ΣjWk′
ij hj)

(146)

The update function with gradient descent is as follows:

wij(t + 1) = wij(t) + η
∂ log(p(v))

∂wij
(147)

4.10.5. Hierarchical Attention Networks (HAN)

One of the successful deep architecture for text and document classification is hierarchical attention
networks (HAN). This technique was introduced by Z. Yang et al. [193] and S.P. Hongsuck et al. [194].
The structure of a HAN focuses on the document-level classification which a document has L sentences
and each sentence contains Ti words, where wit with t

∫
[1, T] represents the words in the ith sentence.

HAN architecture is illustrated in Figure 20, where the lower level contains word encoding and word
attention and the upper level contains sentence encoding and sentence attention.

Softmax

S
e
n
ten

c
e

A
tten

tio
n

S
e
n
ten

c
e

E
n
co

d
e
r

W
o
rd

A
tten

tio
n

W
o
rd

E
n
co

d
e
r

Figure 20. Hierarchical attention networks for document classification.

Information 2019, 10, 150 40 of 68

4.10.6. Combination Techniques

Many researchers combine or concatenate standard deep learning architectures in order to develop
novel techniques with more robust and accurate architectures for classification tasks. In this sub-section,
we describe recent and popular deep learning architectures and structure.

Random Multimodel Deep Learning (RMDL)

Random multimodel deep learning (RMDL) was introduced by K. Kowsari et al. [4,5] as a novel
deep learning technique for classification. RMDL can be used in any kind of data set for classification.
An overview of this technique is shown in Figure 21 which illustrates the architecture using multi-DNN,
deep CNN, and deep RNN. The number of layers and nodes for all of these deep learning multi-models
are generated randomly (e.g., 9 random models in RMDL constructed from 3 CNNs, 3 RNNs, and
3 DNNs, all of which are unique due to random creation).

M(yi1, yi2, ..., yin) =

⌊
1
2
+

(∑n
j=1 yij)− 1

2

n

⌋
(148)

where n is the number of random models, and yij is the output prediction of model for data point i in
model j (Equation (148) is used for binary classification, k ∈ {0 or 1}). The output space uses majority
vote to calculate the final value of ŷi. Therefore, ŷi is given as follows:

ŷi =
[
ŷi1 . . . ŷij . . . ŷin

]T
(149)

where n is the number of the random model, and ŷij shows the prediction of the label of data point
(e.g., document) of Di ∈ {xi, yi} for model j and ŷi,j is defined as follows:

ŷi,j = arg max
k

[so f tmax(y∗i,j)] (150)

...........................

.

.

.

.

.
. . .

.

𝑥0 𝑥1 𝑥𝑖 𝑥𝑓−1 𝑥𝑓

𝑦0 𝑦1 𝑦𝑖 𝑦𝑚−1 𝑦𝑚

.

𝑦0 𝑦1 𝑦𝑚−1 𝑦𝑚

. . . 𝑥0 𝑥1 𝑥𝑓−1 𝑥𝑓

LSTM

GRU

LSTM

GRU

LSTM

GRU

LSTM

GRU

LSTM

GRU

LSTM

GRU

LSTM

GRU

LSTM

GRU

LSTM

GRU

LSTM

GRU

LSTM

GRU

LSTM

GRU

...

...
. . .

. . .

𝑦0 𝑦1 𝑦𝑚−1 𝑦𝑚

. . . 𝑥0 𝑥1 𝑥𝑓

. . . 𝑦0 𝑦1 𝑦𝑚−1 𝑦𝑚

. . . 𝑥0 𝑥1 𝑥𝑓−1 𝑥𝑓

. . .

In
p

u
t

L
ay

er
H

id
d

en
 L

ay
er

O
u

tp
u

t
L

ay
er

n
×

k
 r

ep
re

se
n

ta
ti

o
n

 o
f

se
n

te
n

c
e
 o

r
im

a
g

e

C
o

n
v

o
lu

ti
o

n
a
l

la
y

er

w
it

h
 m

u
lt

i
fi

lt
e
r

Max-over-time

pooling

H
id

d
e
n

 L
a
y

e
r

o
f

L
S

T
M

 o
r

G
R

U

Figure 21. Random multimodel eeep learning (RDML) architecture for classification. RMDL includes 3
random models: A deep neural network (DNN) classifier (left), a deep CNN classifier (middle), and a
deep recurrent neural network (RNN) classifier (right). Each unit could be a LSTM or GRU).

Information 2019, 10, 150 41 of 68

After all the RDL models (RMDL) are trained, the final prediction is calculated using majority
vote on the output of these models. The main idea of using multi-model with different optimizers
is that if one optimizer does not provide a good fit for a specific data set, the RMDL model with n
random models (where some of them might use different optimizers) could ignore k models which are
not efficient if and only if n > k. Using multi-techniques of optimizers (e.g., SGD, Adam, RMSProp,
Adagrad, Adamax) helps the RMDL model be more suitable for any type of data sets. While we only
used 2 optimizers (Adam and RMSProp) for evaluating the model in this research, the RMDL model
can use any kind of optimizer. In this part, we describe common optimization techniques used in deep
learning architectures.

Stochastic Gradient Descent (SGD) Optimizer:

The basic equation for stochastic gradient descent (SGD) [195] is shown in Equation (151).
SGD uses a momentum on re-scaled gradient which is shown in Equation (152) for updating
parameters.

θ ← θ − α∇θ J(θ, xi, yi) (151)

θ ← θ −
(
γθ + α∇θ J(θ, xi, yi)

)
(152)

RMSprop:

T. Tieleman and G. Hinton [196] introduced RMSprop as a novel optimizer which divides the
learning rate for a weight by a running average of the magnitudes of recent gradients for that weight.
The equation of the momentum method for RMSprop is as follows:

v(t) = α v(t− 1)− ε
∂E
∂w

(t) (153)

∆w(t) = v(t)

= α v(t− 1)− ε
∂E
∂w

(t) (154)

= α ∆v(t− 1)− ε
∂E
∂w

(t)

RMSProp does not do bias correction, which causes significant problems when dealing with a
sparse gradient.

Adam Optimizer

Adam is another stochastic gradient optimizer which uses only the first two moments of
gradient (v and m, shown in Equations (155)–(158)) and calculate the average over them. It can
handle non-stationary of the objective function as in RMSProp while overcoming the sparse gradient
issue limitation of RMSProp [197].

θ ← θ − α√
v̂ + ε

m̂ (155)

gi,t = ∇θ J(θi, xi, yi) (156)

mt = β1mt−1 + (1− β1)gi,t (157)

mt = β2vt−1 + (1− β2)g2
i,t (158)

where mt is the first moment and vt indicates second moment that both are estimated. m̂t =
mt

1−βt
1

and

v̂t =
vt

1−βt
2
.

Information 2019, 10, 150 42 of 68

Adagrad:

Adagrad is addressed in [198] as a novel family of sub-gradient methods which dynamically
absorb knowledge of the geometry of the data to perform more informative gradient-based learning.

AdaGrad is an extension of SGD. In iteration k, the gradient is defined as:

G(k) = diag
[k

∑
i=1

g(i)(g(i))T
]1/2

(159)

diagonal matrix:

G(k)
jj =

√√√√ k

∑
i=1

(g(i)i)2 (160)

update rule:
x(k+1) = arg min

x∈X
{〈∇ f (x(k)), x〉+

1
2αk
||x− x(k)||2G(k)}

= x(k) − αB−1∇ f (x(k)) (if X =Rn)

(161)

Adadelta:

AdaDelta, introduced by M.D. Zeiler [199], uses the exponentially decaying average of gt as 2nd
moment of gradient. This method is an updated version of Adagrad which relies on only first order
information. The update rule for Adadelta is:

gt+1 = γgt + (1− γ)∇L(θ)2 (162)

xt+1 = γxt + (1− γ)v2
t+1 (163)

vt+1 = −
√

xt + εδL(θt)√
gt+1 + ε

(164)

Hierarchical Deep Learning for Text (HDLTex)

The primary contribution of the hierarchical deep learning for text (HDLTex) architecture is
hierarchical classification of documents [2]. A traditional multi-class classification technique can work
well for a limited number of classes, but performance drops with an increasing number of classes,
as is present in hierarchically organized documents. In this hierarchical deep learning model, this
problem was solved by creating architectures that specialize deep learning approaches for their level
of the document hierarchy (e.g., see Figure 22). The structure of the HDLTex architecture for each deep
learning model is as follows:

DNN: 8 hidden layers with 1024 cells in each hidden layer.
RNN: GRU and LSTM are used in this implementation, 100 cells with GRU with two hidden layers.
CNN: Filter sizes of {3, 4, 5, 6, 7} and max-pool of 5, layer sizes of {128, 128, 128} with max pooling of

{5, 5, 35}, the CNN contains 8 hidden layers.

All models were constructed using the following parameters: Batch Size = 128, learning parameters
= 0.001, β1 = 0.9, β2 = 0.999, ε = 1e08, decay = 0.0, Dropout = 0.5 (DNN), and Dropout = 0.25 (CNN
and RNN).

Information 2019, 10, 150 43 of 68

HDLTex uses the following cost function for the deep learning models evaluation:

Acc(X) =∑
$

[Acc(XΨ$)

k$ − 1

∑
Ψ∈{Ψ1,..Ψk}

Acc(XΨi).nΨk

] (165)

where $ is the number of levels, k indicates number of classes for each level, and Ψ refers to the number
of classes in the child’s level of the hierarchical model.

...

...

...

...

...

...

...

...

...

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
. . .

. . .

. . .

Computer

Science

. . .

Medical

Science

𝑥0

𝑥1

𝑥𝑖

𝑥𝑓−1

𝑥𝑓

𝑦0

𝑦1

𝑦𝑖

𝑦𝑚−1

𝑦𝑚

...

...

...

...

...

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Computer

Graphics

. . .

Machine

Learning

𝑥Ψ0 ,0

...

...

...

...

...

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Concer

Research

. . .
HIV/AIDS

Research

.
. . .

List of area

Ψ1

Ψ𝑘

. . .

𝑥Ψ0 ,𝑖

𝑥Ψ0 ,𝑓

𝑦Ψ0 ,0

𝑦Ψ0 ,𝑖

𝑦Ψ0 ,𝑚

𝑦Ψ𝑘 ,0

𝑦Ψ𝑘 ,𝑖

𝑦Ψ𝑘 ,𝑚

𝑥Ψ𝑘 ,0

𝑥Ψ𝑘 ,𝑖

𝑥Ψ𝑘 ,𝑓

Output Hidden LayerInput Layer Ψ

Input Layer Hidden Layer
Output High

Level

Train Ψ

. . .

Figure 22. HDLTex: Hierarchical deep learning for text classification. DNN approach for the text
classification. The top figure depicts the parent-level of our model, and the bottom figure depicts
child-level models (Ψi) as input documents in the parent level.

Other Techniques

In this section, we discuss other techniques of text classification that come from combining
deep learning architectures. Recurrent convolutional neural networks (RCNN) is used for text
classification [6,200]. RCNNs can capture contextual information with the recurrent structure and
construct the representation of text using a CNN [6]. This architecture is a combination of RNN and
CNN that leverages the advantages of both techniques in a model.

C-LSTM is another technique of text and document classification that was introduced by
C. Zhou et al. [201]. C-LSTM combines CNN with LSTM in order to learn phrase-level features
using convolutional layers. This architecture feeds sequences of higher level representations into the
LSTM to learn long-term dependent.

4.10.7. Limitation of Deep Learning

Model interpretability of deep learning (DL), especially DNN, has always been a limiting factor
for use cases requiring explanations of the features involved in modelling and such is the case for
many healthcare problems. This problem is due to scientists preferring to use traditional techniques
such as linear models, Bayesian Models, SVM, decision trees, etc. for their works. The weights in
a neural network are a measure of how strong each connection is between each neuron to find the
important feature space. As shown in Figure 23, the more accurate model, the interpretability is lower
which means the complex algorithms such as deep learning is hard to understand.

Deep learning (DL) is one of the most powerful techniques in artificial intelligence (AI), and
many researchers and scientists focus on deep learning architectures to improve the robustness and
computational power of this tool. However, deep learning architectures also have some disadvantages
and limitations when applied to classification tasks. One of the main problems of this model is that
DL does not facilitate a comprehensive theoretical understanding of learning [202]. A well-known

Information 2019, 10, 150 44 of 68

disadvantage of DL methods is their “black box” nature [203,204]. That is, the method by which DL
methods come up with the convolved output is not readily understandable. Another limitation of
DL is that it usually requires much more data than traditional machine learning algorithms, which
means that this technique cannot be applied to classification tasks over small data sets [205,206].
Additionally, the massive amount of data needed for DL classification algorithms further exacerbates
the computational complexity during the training step [207].

Figure 23. The model interpretability comparison between traditional and deep learning techniques.

4.11. Semi-Supervised Learning for Text Classification

Many researchers have developed many efficient classifiers for both labeled and unlabeled
documents. Semi-supervised learning is a type of supervised learning problem that uses unlabeled
data to train a model. Usually, researchers and scientists prefer to use semi-supervised techniques
when a small part of the data set contains labeled data points and a large amount of data set does not
include labels [208]. Most of the semi-supervised learning algorithms for classification tasks use a
clustering technique (generally used for unsupervised learning [209]) as follows: Initially a clustering
technique is applied on DT with K = K (the number of classes), since DT has labeled samples of all K
classes [208]. If a partition Pi has labeled samples, then, all data points on that cluster belongs to
that label.

The research goal for clustering techniques is to determine if we have more than one class
labeled on one cluster, and what happens if we have no labeled data point in one cluster [210].
In this part, we briefly describe the most popular technique of semi-supervised text and document
classification. O. Chapelle and A. Zien [211] worked on semi-supervised classification via low
density separation, which combines graph distance computation with transductive support vector
machine (TSVM) training. K. Nigam et al. [212] developed a technique for text classification using
expectation maximization (EM) and generative models for semi-supervised learning with labeled
and unlabeled data in the field of text classifications. L. Shi et al. [213] introduced a method for
transferring classification knowledge across languages via translated features. This technique uses
an EM algorithm that naturally takes into account the ambiguity associated with the translation of
a word. J. Su et al. [213] introduced “Semi-supervised Frequency Estimate (SFE)”, a MNBC method
for large scale text classification. S. Zhou et al. [214] invented a novel deep learning method that uses
fuzzy DBN for semi-supervised sentiment classification. This method employs a fuzzy membership
function for each category of reviews based on the learned architecture.

Information 2019, 10, 150 45 of 68

5. Evaluation

In the research community, having shared and comparable performance measures to evaluate
algorithms is preferable. However, in reality such measures may only exist for a handful of methods.
The major problem when evaluating text classification methods is the absence of standard data
collection protocols. Even if a common collection method existed (e.g., Reuters news corpus), simply
choosing different training and test sets can introduce inconsistencies in model performance [215].
Another challenge with respect to method evaluation is being able to compare different performance
measures used in separate experiments. Performance measures generally evaluate specific aspects
of classification task performance, and thus do not always present identical information. In this
section, we discuss evaluation metrics and performance measures and highlight ways in which the
performance of classifiers can be compared. Since the underlying mechanics of different evaluation
metrics may vary, understanding what exactly each of these metrics represents and what kind of
information they are trying to convey is crucial for comparability. Some examples of these metrics
include recall, precision, accuracy, F-measure, micro-average, and macro average. These metrics
are based on a “confusion matrix” (shown in Figure 24) that comprises true positives (TP), false
positives (FP), false negatives (FN), and true negatives (TN) [216]. The significance of these four
elements may vary based on the classification application. The fraction of correct predictions over
all predictions is called accuracy (Equation (166)). The fraction of known positives that are correctly
predicted is called sensitivity i.e., true positive rate or recall (Equation (167)). The ratio of correctly
predicted negatives is called specificity (Equation (168)). The proportion of correctly predicted positives
to all positives is called precision, i.e., positive predictive value (Equation (169)).

accuracy =
(TP + TN)

(TP + FP + FN + TN)
(166)

sensitivity =
TP

(TP + FN)
(167)

speci f icity =
TN

(TN + FP)
(168)

precision =
∑L

l=1 TPl

∑L
l=1 TPl + FPl

(169)

recall =
∑L

l=1 TPl

∑L
l=1 TPl + FNl

(170)

F1− Score =
∑L

l=1 2TPl

∑L
l=1 2TPl + FPl + FNl

(171)

TP

FP

Type II | Error

FN

Type I | Error

TN

+

-

+ -

Precision False omission rate

TP

FDR

FP

FN

Negative predictive value

TN

Sensitivity (recall) False negative rate

TP FN

False positive rate Specificity

FP TN

Figure 24. Confusion matrix.

Information 2019, 10, 150 46 of 68

5.1. Macro-Averaging and Micro-Averaging

A single aggregate measure is required when several two-class classifiers are being used to
process a collection. Macro-averaging gives a simple average over classes while micro-averaging
combines per-document decisions across classes and then outputs an effective measure on the pooled
contingency table [217]. Macro-averaged results can be computed as follows:

Bmacro =
1
q

q

∑
λ=1

B(TPλ + FPλ + TNλ + FNλ) (172)

where B is a binary evaluation measure calculated based on true positives (TP), false positives (FP),
false negatives (FN), and true negatives (TN), and L = {λj : j = 1...q} is the set of all labels.

Micro-averaged results [156,218] can be computed as follows:

Bmacro = B
(q

∑
λ=1

TPλ,
q

∑
λ=1

FPλ,
q

∑
λ=1

TNλ,
q

∑
λ=1

FNλ

)
(173)

Micro-average score assigns equal weights to every document as a consequence, and it is
considered to be a per-document average. On the other hand, macro-average score assigns equal
weights to each category without accounting for frequency and therefore, it is a per-category average.

5.2. Fβ Score

Fβ is one of the most popular aggregated evaluation metrics for classifier evaluation [216].
The parameter β is used to balance recall and precision and is defined as follows:

Fβ =
(1 + β2)(precision× recall)

β2 × precision + recall
(174)

For commonly used β = 1 i.e., F1, recall and precision are given equal weights and Equation (174)
can be simplified to:

F1 =
2TP

2TP + FP + FN
(175)

Since Fβ is based on recall and precision, it does not represent the confusion matrix fully.

5.3. Matthews Correlation Coefficient (MCC)

The Matthews correlation coefficient (MCC) [30] captures all the data in a confusion matrix and
measures the quality of binary classification methods. MCC can be used for problems with uneven
class sizes and is still considered a balanced measure. MCC ranges from −1 to 0 (i.e., the classification
is always wrong and always true, respectively). MCC can be calculated as follows:

MCC =
TP× TN − FP× FN√

(TP + FP)× (TP + FN)×
(TN + FP)× (TN + FN)

(176)

While comparing two classifiers, one may have a higher score using MCC and the other one
has a higher score using F1 and as a result one specific metric cannot captures all the strengths and
weaknesses of a classifier [216].

5.4. Receiver Operating Characteristics (ROC)

Receiver operating characteristics (ROC) [219] curves are valuable graphical tools for evaluating
classifiers. However, class imbalances (i.e., differences in prior class probabilities [220]) can cause ROC

Information 2019, 10, 150 47 of 68

curves to poorly represent the classifier performance. ROC curve plots true positive rate (TPR) and
false positive rate (FPR):

TPR =
TP

TP + FN
(177)

FPR =
FP

FP + TN
(178)

5.5. Area Under ROC Curve (AUC)

The area under ROC curve (AUC) [31,32] measures the entire area underneath the ROC curve.
AUC leverages helpful properties such as increased sensitivity in the analysis of variance (ANOVA)
tests, independence from decision threshold, invariance to a priori class probabilities, and indication
of how well negative and positive classes are in regarding the decision index [221].

For binary classification tasks, AUC can be formulated as:

AUC =
∫ ∞

−∞
TPR(T)FPR′(T)dT

=
∫ ∞

−∞

∫ ∞

−∞
I(T′ > T) f1(T′) f0(T)dTdT′

= P(X1 > X0)

(179)

For multi-class AUC, an average AUC can be defined [222] as follows:

AUC =
2

|C|(|C| − 1)

|C|

∑
i=1

AUCi (180)

where C is the number of the classes.
Yang [215] evaluated statistical approaches for text categorization and reported the following

important factors that should be considered when comparing classifier algorithms:

• Comparative evaluation across methods and experiments which gives insight about factors
underlying performance variations and will lead to better evaluation methodology in the future;

• Impact of collection variability such as including unlabeled documents in training or test set and
treat them as negative instances can be a serious problem;

• Category ranking evaluation and binary classification evaluation show the usefulness of classifier
in interactive applications and emphasize their use in a batch mode respectively. Having both
types of performance measurements to rank classifiers is helpful in detecting the effects of
thresholding strategies;

• Evaluation of the scalability of classifiers in large category spaces is a rarely investigated area.

6. Discussion

In this article, we aimed to present a brief overview of text classification techniques, alongside a
discussion of corresponding pre-processing steps and evaluation methods. In this section, we compare
and contrast each of these techniques and algorithms. Moreover, we discuss the limitations of
existing classification techniques and evaluation methods. The main challenge to choosing an efficient
classification system is understanding similarity and differences of available techniques in different
pipeline steps.

6.1. Text and Document Feature Extraction

We outlined the following two main feature extraction approaches: Weighted words
(bag-of-words) and word embedding. Word embedding techniques learn from sequences of words by

Information 2019, 10, 150 48 of 68

taking into consideration their occurrence and co-occurrence information. Also, these methods are
unsupervised models for generating word vectors. In contrast, weighted words features are based on
counting words in documents and can be used as a simple scoring scheme of word representation.
Each technique presents unique limitations.

Weighted words computes document similarity directly from the word-count space which
increases the computational time for large vocabularies [223]. While counts of unique words
provide independent evidence of similarity, they do not account for semantic similarities between
words (e.g., “Hello” and “Hi”). Word embedding methods address this issue but are limited by the
necessitation of a huge corpus of text data sets for training [224]. As a result, scientists prefer to use
pre-trained word embedding vectors [224]. However, this approach cannot work for words missing
from these text data corpora.

For example, in some short message service (SMS) data sets, people use words with multiple
meaning such as slang or abbreviation which do not have semantic similarities. Furthermore,
abbreviations are not included in the pre-trained word embedding vectors. To solve these problems,
many researchers work on text cleaning as we discussed in Section 2. The word embedding techniques
such as GloVe, FastText, and Word2Vec were trained based on the word and nearest neighbor of that
word, and this contains a very critical limitation (the meaning of a word could be different in two
different sentences). To solve this problem, scientist have come up with the novel methods called
contextualized word representations, which train based on the context of the word in a document.

As shown in Table 1, we compare and evaluate each technique including weighted words, TF-IDF,
Word2Vec, Glove, FastText, and contextualized word representations.

Table 1. Feature extraction comparison.

Model Advantages Limitation

Weighted
Words

• Easy to compute
• Easy to compute the similarity

between 2 documents using it
• Basic metric to extract the most

descriptive terms in a document
• Works with unknown word

(e.g., New words in languages)

• It does not capture position in text
(syntactic)

• It does not capture meaning in text
(semantics)

• Common words effect on the results
(e.g., “am”, “is”, etc.)

TF-IDF

• Easy to compute
• Easy to compute the similarity

between 2 documents using it
• Basic metric to extract the most

descriptive terms in a document
• Common words do not effect the

results due to IDF (e.g., “am”, “is”,
etc.)

• It does not capture position in text
(syntactic)

• It does not capture meaning in text
(semantics)

Word2Vec

• It captures position of the words
in the text (syntactic)

• It captures meaning in the words
(semantics)

• It cannot capture the meaning of the
word from the text (fails to capture
polysemy)

• It cannot capture out-of-vocabulary
words from corpus

GloVe
(Pre-Trained)

• It captures position of the words
in the text (syntactic)

• It captures meaning in the words
(semantics)

• Trained on huge corpus

• It cannot capture the meaning of the
word from the text (fails to capture
polysemy)

• Memory consumption for storage
• It cannot capture out-of-vocabulary

words from corpus

Information 2019, 10, 150 49 of 68

Table 1. Cont.

Model Advantages Limitation

GloVe
(Trained)

• It is very straightforward, e.g.,
to enforce the word vectors to
capture sub-linear relationships in
the vector space (performs better
than Word2vec)

• Lower weight for highly frequent
word pairs such as stop words
like “am”, “is”, etc. Will not
dominate training progress

• Memory consumption for storage
• Needs huge corpus to learn
• It cannot capture out-of-vocabulary

words from corpus
• It cannot capture the meaning of the

word from the text (fails to capture
polysemy)

FastText

• Works for rare words (rare in their
character n-grams which are still
shared with other words

• Solves out of vocabulary words
with n-gram in character level

• It cannot capture the meaning of the
word from the text (fails to capture
polysemy)

• Memory consumption for storage
• Computationally is more expensive in

comparing with GloVe and Word2Vec

Contextualized
Word

Representations

• It captures the meaning of the
word from the text (incorporates
context, handling polysemy)

• Memory consumption for storage
• Improves performance notably on

downstream tasks. Computationally is
more expensive in comparison to others

• Needs another word embedding for all
LSTM and feed forward layers

• It cannot capture out-of-vocabulary
words from corpus

• Works only sentence and document level
(it cannot work for individual word level)

6.2. Dimensionality Reduction

In Section 3, we outlined many dimensionality reduction techniques. In this section, we discuss
how the efficacy of this step with respect to a text classification system’s computational time and
robustness. Dimensionality reduction is mostly used for improving computational time and reducing
memory complexity.

PCA attempts to find orthogonal projections of the data set which contains the highest variance
possible in order to extract linear correlations between variables of the data set. The main limitation of
PCA is the computational complexity of this technique for dimensionality reduction [225]. To solve
this problem, scientists introduced the random projection technique (Section 3).

LDA is a supervised technique for dimension reduction that can improve the predictive
performance of the extracted features. However, LDA requires researchers to manually input
the number of components, requires labeled data, and produces features that are not easily
interpretable [226].

Random projection is much faster computationally than PCA. However, this method does not
perform well for small data sets [227].

Autoencoders requires more data to train than other DR methods, and thus cannot be used as a
general-purpose dimensionality reduction algorithm without sufficient data.

T-SNE is mostly used for data visualization in text and document data sets.

6.3. Existing Classification Techniques

In this section, we discuss the limitations and advantages of existing text and document
classification algorithms. Then we compare state-of-the-art techniques in two tables.

Information 2019, 10, 150 50 of 68

6.3.1. Limitations and Advantages

As shown in Tables 2 and 3, the Rocchio algorithm is limited by the fact that the user can
only retrieve a few relevant documents using this model [108]. Furthermore, the algorithms’ results
illustrate several limitations in text classification, which could be addressed by taking semantics into
consideration [109]. Boosting and bagging methods also have many limitations and disadvantages,
such as the computational complexity and loss of interpretability [117]. LR works well for predicting
categorical outcomes. However, this prediction requires that each data point be independent [124]
which is attempting to predict outcomes based on a set of independent variables [125]. Naïve Bayes
algorithm also has several limitations. NBC makes a strong assumption about the shape of the data
distribution [134,135]. NBC is also limited by data scarcity for which any possible value in feature space,
a likelihood value must be estimated by a frequentist [136]. KNN is a classification method that is easy
to implement and adapts to any kind of feature space. This model also naturally handles multi-class
cases [140,141]. However, KNN is limited by data storage constraint for large search problems to find
the nearest neighbors. Additionally, the performance of KNN is dependent on finding a meaningful
distance function, thus making this technique a very data-dependent algorithm [142,143]. SVM has
been one of the most efficient machine learning algorithms since its introduction in the 1990s [159].
However, they are limited by the lack of transparency in results caused by a high number of dimensions.
Due to this, it cannot show the company score as a parametric function based on financial ratios
nor any other functional form [159]. A further limitation is a variable financial ratios rate [160].
The decision tree is a very fast algorithm for both learning and prediction, but it is also extremely
sensitive to small perturbations in the data [166], and can be easily overfit [167]. These effects can
be negated by validation methods and pruning, but this is a grey area [166]. This model also has
problems with out-of-sample prediction [168]. Random forests (i.e., ensembles of decision trees)
are very fast to train in comparison to other techniques, but quite slow to create predictions once
trained [172]. Thus, in order to achieve a faster structure, the number of trees in forest must be
reduced, as more trees in forest increases time complexity in the prediction step. With regards to
CRF, the most evident disadvantage of CRF is the high computational complexity of the training
step [176], and this algorithm does not perform with unknown words (i.e., with words that were not
present in training data sample) [177]. Deep learning (DL) is one of the most powerful techniques in
artificial intelligence (AI), and many researchers and scientists focus on deep learning architectures to
improve the robustness and computational power of this tool. However, deep learning architectures
also have some disadvantages and limitations when applied to classification tasks. One of the main
problems of this model is that DL does not facilitate comprehensive theoretical understanding of
learning [202]. A well-known disadvantage of DL methods is their “black box” nature [203,204]. That
is, the method by which DL methods come up with the convolved output is not readily understandable.
Another limitation of DL is that it usually requires much more data than traditional machine learning
algorithms, which means that this technique cannot be applied to classification tasks over small data
sets [205,206]. Additionally, the massive amount of data needed for DL classification algorithms further
exacerbates the computational complexity during the training step [207].

Information 2019, 10, 150 51 of 68

Table 2. Text classification comparison (Rocchio algorithm, boosting, bagging, logistic regressio, Naïve
Bayes classifier, k-nearest Neighbor, and Support Vector Machine).

Model Advantages Pitfall

Rocchio
Algorithm

• Easy to implement
• Computationally is very cheap
• Relevance feedback mechanism

(benefits to ranking documents as
not relevant)

• The user can only retrieve a few
relevant documents

• Rocchio often misclassifies the
type for multimodal class

• This techniques is not very robust
• Linear combination in this

algorithm is not good for
multi-class data sets

Boosting and
Bagging

• Improves the stability and
accuracy (takes advantage of
ensemble learning where in
multiple weak learner outperform
a single strong learner)

• Reducing variance which helps to
avoid overfitting problems

• Computational complexity
• Loss of interpretability (if number

of model is high, understanding
the model is very difficult)

• Requires careful tuning of
different hyper-parameters

Logistic Regressio

• Easy to implement
• Does not require too many

computational resources
• It does not require input features

to be scaled (pre-processing)
• It does not require any tuning

• It cannot solve non-linear
problems

• Prediction requires that each data
point be independent

• Attempting to predict outcomes
based on a set of independent
variables

Naïve Bayes
Classifier

• It works very well with text data
• Easy to implement
• Fast in comparison to other

algorithms

• A strong assumption about the
shape of the data distribution

• Limited by data scarcity for which
any possible value in feature
space, a likelihood value must be
estimated by a frequentist

K-Nearest
Neighbor

• Effective for text data sets
• Non-parametric
• More local characteristics of text

or document are considered
• Naturally handles multi-class

data sets

• Computational of this model is
very expensive

• Difficult to find optimal value of k
• Constraint for large search

problems to find nearest
neighbors

• Finding a meaningful distance
function is difficult for text data
sets

Support Vector
Machine (SVM)

• SVM can model non-linear
decision boundaries

• Performs similarly to logistic
regression when linear separation

• Robust against overfitting
problems (especially for text data
set due to high-dimensional
space)

• Lack of transparency in results
caused by a high number of
dimensions (especially for text
data).

• Choosing an efficient kernel
function is difficult (susceptible to
overfitting/training issues
depending on kernel)

• Memory complexity

Information 2019, 10, 150 52 of 68

Table 3. Text classification comparison (decision tree, conditional random field(CRF), random forest,
and deep learning).

Model Advantages Pitfall

Decision Tree

• Can easily handle qualitative
(categorical) features

• Works well with decision boundaries
parellel to the feature axis

• Decision tree is a very fast algorithm
for both learning and prediction

• Issues with diagonal decision
boundaries

• Can be easily overfit
• Extremely sensitive to small

perturbations in the data
• Problems with out-of-sample

prediction

Conditional
Random Field

(CRF)

• Its feature design is flexible
• Since CRF computes the conditional

probability of global optimal output
nodes, it overcomes the drawbacks of
label bias

• Combining the advantages of
classification and graphical modeling
which combine the ability to
compactly model multivariate data

• High computational complexity
of the training step

• Rhis algorithm does not perform
with unknown words

• Problem about online learning
(It makes it very difficult to
re-train the model when newer
data becomes available)

Random Forest

• Ensembles of decision trees are very
fast to train in comparison to other
techniques

• Reduced variance (relative to regular
trees)

• Does not require preparation and
pre-processing of the input data

• Quite slow to create predictions
once trained

• More trees in forest increases time
complexity in the prediction step

• Not as easy to visually interpret
• Overfitting can easily occur
• Need to choose the number of

trees at forest

Deep Learning

• Flexible with features design (reduces
the need for feature engineering, one
of the most time-consuming parts of
the machine learning practice)

• Architecture that can be adapted to
new problems

• Can deal with complex input-output
mappings

• Can easily handle online learning
(It makes it very easy to re-train the
model when newer data becomes
available)

• Parallel processing capability (It can
perform more than one job at the
same time)

• Requires a large amount of data
(if you only have small sample
text data, deep learning is unlikely
to outperform other approaches.

• Is extremely computationally
expensive to train.

• Model interpretability is the most
important problem of deep
learning (deep learning most of
the time is a black-box)

• Finding an efficient architecture
and structure is still the main
challenge of this technique

6.3.2. State-of-the-Art Techniques’ Comparison

Regarding Tables 4 and 5, text classification techniques are compared with the criteria:
Architecture, author(s), model, novelty, feature extraction, details, corpus, validation measure, and
limitation of each technique. Each text classification technique (system) contains a model which is the
classifier algorithm, and also needs a feature extraction technique which means converting texts or
documents data set into numerical data (as discussed in Section 2). Another important part in our
comparison is the validation measure which is used to evaluate the system.

Information 2019, 10, 150 53 of 68

Table 4. Comparison of text classification techniques.

Model Author(s) Architecture Novelty Feature
Extraction Details Corpus Validation

Measure Limitation

Rocchio
Algorithm B.J. Sowmya et al. [106] Hierarchical

Rocchio
Classificationon
hierarchical data TF-IDF

Use CUDA on GPU to
compute and compare
the distances.

Wikipedia F1-Macro

Works only on
hierarchical data sets
and retrieves a few
relevant documents

Boosting S. Bloehdorn et al. [114] AdaBoost for with
semantic features BOW Ensemble learning

algorithm Reuters-21578
F1-Macro

and
F1-Micro

Computational
complexity and loss
of interpretability

Logistic
Regression A. Genkin et al. [120]

Bayesian
Logistic

Regression

Logistic regression
analysis of
high-dimensional data

TF-IDF
It is based on Gaussian
Priors and Ridge Logistic
Regression

RCV1-v2 F1-Macro

Prediction outcomes
is based on a set of
independent
variables

Naïve
Bayes Kim, S.B et al. [131]

Weight
Enhancing

Method

Multivariate poisson
model for text
Classification

Weights
words

Per-document term
frequency normalization
to estimate the Poisson
parameter

Reuters-21578 F1-Macro

This method makes a
strong assumption
about the shape of
the data distribution

SVM and
KNN K. Chen et al. [148]

Inverse
Gravity
Moment

Introduced TFIGM (term
frequency & inverse
gravity moment)

TF-IDF
and

TFIGM

Incorporates a statistical
model to precisely
measure the class
distinguishing power of
a term

20
Newsgroups

and
Reuters-21578

F1-Macro

Fails to capture
polysemy and also
still semantic and
sentatics is not solved

Support
Vector

Machines
H. Lodhi et al. [151]

String
Subsequence

Kernel
Use of a special kernel

Similarity
using

TF-IDF

The kernel is an inner
product in the feature
space generated by all
subsequences of length k

Reuters-21578 F1-Macro
The lack of
transparency in the
results

Conditional
Random

Field
(CRF)

T. Chen et al. [175] BiLSTM-CRF

Apply a neural network
based sequence model to
classify opinionated
sentences into three
types according to the
number of targets
appearing in a sentence

Word
embedding

Improve sentence-level
sentiment analysis via
sentence type
classification

Customer
reviews Accuracy

High computational
complexity and this
algorithm does not
perform with unseen
words

Information 2019, 10, 150 54 of 68

Table 5. Comparison of the text classification techniques (continue).

Model Author(s) Architecture Novelty Feature
Extraction Details Corpus Validation

Measure Limitation

Deep
Learning Z. Yang et al. [193]

Hierarchical
Attention
Networks

It has a hierarchical
structure

Word
embedding

Two levels of attention
mechanisms applied at
the word and
sentence-level

Yelp, IMDB
review, and

Amazon
review

Accuracy Works only for
document-level

Deep
Learning J. Chen et al. [228] Deep Neural

Networks

Convolutional neural
networks (CNN)
using 2-dimensional
TF-IDF features

2D TF-IDF
A new solution to the
verbal aggression
detection task

Twitter
comments

F1-Macro
and

F1-Micro

Data dependent for
designed a model
architecture

Deep
Learning M. Jiang et al. [1] Deep Belief

Network

Hybrid text
classification model
based on deep belief
network and softmax
regression.

DBN

DBN completes the
feature learning to solve
the high dimension and
sparse matrix problem
and softmax regression is
employed to classify the
texts

Reuters-21578
and

20-Newsgroup
Error-rate

Computationally is
expensive and model
interpretability is still
a problem of this
model

Deep
Learning X. Zhang et al. [229] CNN

Character-level
convolutional
networks (ConvNets)
for text classification

Encoded
Characters

Character-level ConvNet
contains 6 convolutional
layers and 3
fully-connected layers

Yelp, Amazon
review and

Yahoo!
Answers data

set

Relative
errors

This model is only
designed to discover
position-invariant
features of their
inputs

Deep
Learning K. Kowsari [4]

Ensemble
deep learning

algorithm
(CNN, DNN

and RNN)

Solves the problem of
finding the best deep
learning structure
and architecture

TF-IDF
and GloVe

Random Multimodel
Deep Learning (RDML)

IMDB review,
Reuters-21578,
20NewsGroup,

and WOS

Accuracy Computationally is
expensive

Deep
Learning K. Kowsari [2] Hierarchical

structure

Employs stacks of
deep learning
architectures to
provide specialized
understanding at
each level of the
document hierarchy

TF-IDF
and GloVe

Hierarchical Deep
Learning for Text
Classification (HDLTex)

Web of science
data set Accuracy Works only for

hierarchical data sets

Information 2019, 10, 150 55 of 68

6.4. Evaluation

The experimental evaluation of text classifiers measures effectiveness (i.e., capacity to make the
right classification or categorization decision). Precision and recall are widely used to measure the
effectiveness of text classifiers. Accuracy and error (FP+FN

TP+TN+FP+FN = 1− accuracy), on the other hand,
are not widely used for text classification applications because they are insensitive to variations in the
number of correct decisions due to the large value of the denominator (TP + TN) [215]. The pitfalls of
each of the above-mentioned metrics are listed in Table 6.

Table 6. Metrics pitfalls.

Limitation

Accuracy Gives us no information on False Negative (FN) and False Positive (FP)

Sensitivity Does not evaluate True Negative (TN) and FP and any classifier that
predicts data points as positives considered to have high sensitivity

Specificity Similar to sensitivity and does not account for FN and TP

Precision Does not evaluate TN and FN and considered to be very conservative
and goes for a case which is most certain to be positive

7. Text Classification Usage

In the earliest history of ML and AI, text classification techniques have mostly been used for
information retrieval systems. However, as technological advances have emerged over time, text
classification and document categorization have been globally used in many domains such as medicine,
social sciences, healthcare, psychology, law, engineering, etc. In this section, we highlight several
domains which make use of text classification techniques.

7.1. Text Classification Applications

7.1.1. Information Retrieval

Information retrieval is finding documents of an unstructured data that meet an information
need from within large collections of documents [230]. With the rapid growth of online information,
particularly in text format, text classification has become a significant technique for managing this
type of data [231]. Some of the important methods used in this area are Naïve Bayes, SVM, decision
tree, J48, KNN, and IBK [232]. One of the most challenging applications for document and text data set
processing is applying document categorization methods for information retrieval [34,233].

7.1.2. Information Filtering

Information filtering refers to the selection of relevant information or rejection of irrelevant
information from a stream of incoming data. Information filtering systems are typically used to
measure and forecast users’ long-term interests [234]. Probabilistic models, such as the Bayesian
inference network, are commonly used in information filtering systems. Bayesian inference networks
employ recursive inference to propagate values through the inference network and return documents
with the highest ranking [34]. Buckley, C. [235] used vector space model with iterative refinement for
filtering task.

7.1.3. Sentiment Analysis

Sentiment analysis is a computational approach toward identifying opinion, sentiment, and
subjectivity in text [236]. Sentiment classification methods classify a document associated with an
opinion to be positive or negative. The assumption is that document d is expressing an opinion
on a single entity e and opinions are formed via a single opinion holder h [237]. Naive Bayesian

Information 2019, 10, 150 56 of 68

classification and SVM are some of the most popular supervised learning methods that have been
used for sentiment classification [238]. Features such as terms and their respective frequency, part of
speech, opinion words and phrases, negations, and syntactic dependency have been used in sentiment
classification techniques.

7.1.4. Recommender Systems

Content-based recommender systems suggest items to users based on the description of an item
and a profile of the user’s interests [239].

A user’s profile can be learned from user feedback (history of the search queries or self reports) on
items as well as self-explained features (filter or conditions on the queries) in one’s profile. In this way,
input to such recommender systems can be semi-structured such that some attributes are extracted
from free-text field while others are directly specified [240]. Many different types of text classification
methods, such as decision trees, nearest neighbor methods, Rocchio’s algorithm, linear classifiers,
probabilistic methods, and Naive Bayes, have been used to model user’s preference.

7.1.5. Knowledge Management

Textual databases are significant sources of information and knowledge. A large percentage
of corporate information (nearly 80%) exists in textual data formats (unstructured). In knowledge
distillation, patterns, or knowledge are inferred from immediate forms that can be semi-structured
(e.g., conceptual graph representation) or structured/relational (e.g., data representation). A given
intermediate form can be document-based such that each entity represents an object or concept of
interest in a particular domain. Document categorization is one of the most common methods for
mining document-based intermediate forms [241]. In other work, text classification has been used
to find the relationship between railroad accidents’ causes and their correspondent descriptions in
reports [242].

7.1.6. Document Summarization

Text classification used for document summarizing in which the summary of a document may
employ words or phrases which do not appear in the original document [243]. Multi-document
summarization also is necessitated due to the rapid increase in online information [244]. Thus, many
researchers focus on this task using text classification to extract important features out of a document.

7.2. Text Classification Support

7.2.1. Health

Most textual information in the medical domain is presented in an unstructured or narrative form
with ambiguous terms and typographical errors. Such information needs to be available instantly
throughout the patient-physicians encounters in different stages of diagnosis and treatment [245].
Medical coding, which consists of assigning medical diagnoses to specific class values obtained from a
large set of categories, is an area of healthcare applications where text classification techniques can
be highly valuable. In other research, J. Zhang et al. introduced Patient2Vec to learn an interpretable
deep representation of longitudinal electronic health record (EHR) data which is personalized for
each patient [246]. Patient2Vec is a novel technique of text data set feature embedding that can learn
a personalized interpretable deep representation of EHR data based on recurrent neural networks
and the attention mechanism. Text classification has also been applied in the development of Medical
Subject Headings (MeSH) and Gene Ontology (GO) [247].

Information 2019, 10, 150 57 of 68

7.2.2. Social Sciences

Text classification and document categorization has increasingly been applied to understanding
human behavior in past decades [38,248]. Recent data-driven efforts in human behavior research have
focused on mining language contained in informal notes and text data sets, including short message
service (SMS), clinical notes, social media, etc. [38]. These studies have mostly focused on using
approaches based on frequencies of word occurrence (i.e., how often a word appears in a document)
or features based on linguistic inquiry word count (LIWC) [249], a well-validated lexicon of categories
of words with psychological relevance [250].

7.2.3. Business and Marketing

Profitable companies and organizations are progressively using social media for marketing
purposes [251]. Opening mining from social media such as Facebook, Twitter, and so on is main target
of companies to rapidly increase their profits [252]. Text and documents classification is a powerful
tool for companies to find their customers more easily.

7.2.4. Law

Huge volumes of legal text information and documents have been generated by government
institutions. Retrieving this information and automatically classifying it can not only help lawyers
but also their clients [253]. In the United States, the law is derived from five sources: Constitutional
law, statutory law, treaties, administrative regulations, and the common law [254]. Many new legal
documents are created each year. Categorization of these documents is the main challenge for the
lawyer community.

8. Conclusions

The classification task is one of the most indispensable problems in machine learning. As text
and document data sets proliferate, the development and documentation of supervised machine
learning algorithms becomes an imperative issue, especially for text classification. Having a better
document categorization system for this information requires discerning these algorithms. However,
the existing text classification algorithms work more efficiently if we have a better understanding
of feature extraction methods and how to evaluate them correctly. Currently, text classification
algorithms can be chiefly classified in the following manner: (I) Feature extraction methods, such
as Term Frequency-Inverse document frequency (TF-IDF), term frequency (TF), word-embedding
(e.g., Word2Vec, contextualized word representations, Global Vectors for Word Representation (GloVe),
and FastText), are widely used in both academic and commercial applications. In this paper, we
had addressed these techniques. However, text and document cleaning could help the accuracy
and robustness of an application. We described the basic methods of text pre-processing step. (II)
Dimensionality reduction methods, such as principal component analysis (PCA), linear discriminant
analysis (LDA), non-negative matrix factorization (NMF), random projection, Autoencoder, and
t-distributed Stochastic Neighbor Embedding (t-SNE), can be useful in reducing the time complexity
and memory complexity of existing text classification algorithms. In a separate section, the
most common methods of dimensionality reduction were presented. (III) Existing classification
algorithms, such as the Rocchio algorithm, bagging and boosting, logistic regression (LR), Naïve
Bayes Classifier (NBC), k-nearest Neighbor (KNN), Support Vector Machine (SVM), decision
tree classifier (DTC), random forest, conditional random field (CRF), and deep learning, are the
primary focus of this paper. (IV) Evaluation methods, such as accuracy, Fβ, Matthew correlation
coefficient (MCC), receiver operating characteristics (ROC), and area under curve (AUC), are explained.
With these metrics, the text classifcation algorithm can be evaluated. (V) Critical limitations of each
component of the text classification pipeline (i.e., feature extraction, dimensionality reduction, existing
classification algorithms, and evaluation) were addressed in order to each technique. And finally we

Information 2019, 10, 150 58 of 68

compare the most common text classification algorithm in this section. (V) Finally, the usage of text
classification as an application and/or support other majors such as lay, medicine, etc. are covered in a
separate section.

In this survey, Recent techniques and trending of text classification algorithm have discussed.

Author Contributions: K.K. and K.J.M. worked on the idea and designed the platform, and also they worked
on GitHub sample code for all of these models. M.H. and S.M. organized and proofread the paper. This work is
under the supervision of L.B. and D.B.

Funding: This work was supported by The United States Army Research Laboratory under Grant
W911NF-17-2-0110.

Acknowledgments: The authors would like to thank professor Matthew S. Gerber for his feedback and comments.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript; nor in the
decision to publish the results.

References

1. Jiang, M.; Liang, Y.; Feng, X.; Fan, X.; Pei, Z.; Xue, Y.; Guan, R. Text classification based on deep belief
network and softmax regression. Neural Comput. Appl. 2018, 29, 61–70.

2. Kowsari, K.; Brown, D.E.; Heidarysafa, M.; Jafari Meimandi, K.; Gerber, M.S.; Barnes, L.E. HDLTex:
Hierarchical Deep Learning for Text Classification. Machine Learning and Applications (ICMLA).
In Proceedings of the 2017 16th IEEE International Conference on Machine Learning and Applications
(ICMLA), Cancun, Mexico, 18–21 December 2017.

3. McCallum, A.; Nigam, K. A comparison of event models for naive bayes text classification. In Proceedings of
the AAAI-98 Workshop on Learning for Text Categorization, Madison, WI, USA, 26–27 July 1998; Volume 752,
pp. 41–48.

4. Kowsari, K.; Heidarysafa, M.; Brown, D.E.; Jafari Meimandi, K.; Barnes, L.E. RMDL: Random Multimodel
Deep Learning for Classification. In Proceedings of the 2018 International Conference on Information System
and Data Mining, Lakeland, FL, USA, 9–11 April 2018; doi:10.1145/3206098.3206111.

5. Heidarysafa, M.; Kowsari, K.; Brown, D.E.; Jafari Meimandi, K.; Barnes, L.E. An Improvement
of Data Classification Using Random Multimodel Deep Learning (RMDL). IJMLC 2018, 8, 298–310,
doi:10.18178/ijmlc.2018.8.4.703.

6. Lai, S.; Xu, L.; Liu, K.; Zhao, J. Recurrent Convolutional Neural Networks for Text Classification.
In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX, USA,
25–30 January 2015; Volume 333, pp. 2267–2273.

7. Aggarwal, C.C.; Zhai, C. A survey of text classification algorithms. In Mining Text Data; Springer:
Berlin/Heidelberg, Germany, 2012; pp. 163–222.

8. Aggarwal, C.C.; Zhai, C.X. Mining Text Data; Springer: Berlin/Heidelberg, Germany, 2012.
9. Salton, G.; Buckley, C. Term-weighting approaches in automatic text retrieval. Inf. Process. Manag. 1988,

24, 513–523.
10. Goldberg, Y.; Levy, O. Word2vec explained: Deriving mikolov et al.’s negative-sampling word-embedding

method. arXiv 2014, arXiv:1402.3722.
11. Pennington, J.; Socher, R.; Manning, C.D. Glove: Global Vectors for Word Representation. In Proceedings

of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar,
25–29 October 2014; Volume 14, pp. 1532–1543.

12. Mamitsuka, N.A.H. Query learning strategies using boosting and bagging. In Machine Learning: Proceedings
of the Fifteenth International Conference (ICML’98); Morgan Kaufmann Pub.: Burlington, MA, USA, 1998;
Volume 1.

13. Kim, Y.H.; Hahn, S.Y.; Zhang, B.T. Text filtering by boosting naive Bayes classifiers. In Proceedings of the
23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval,
Athens, Greece, 24–28 July 2000; pp. 168–175.

14. Schapire, R.E.; Singer, Y. BoosTexter: A boosting-based system for text categorization. Mach. Learn. 2000,
39, 135–168.

Information 2019, 10, 150 59 of 68

15. Harrell, F.E. Ordinal logistic regression. In Regression Modeling Strategies; Springer: Berlin/Heidelberg,
Germany, 2001; pp. 331–343.

16. Hosmer, D.W., Jr.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression; John Wiley & Sons: Hoboken,
NJ, USA, 2013; Volume 398.

17. Dou, J.; Yamagishi, H.; Zhu, Z.; Yunus, A.P.; Chen, C.W. TXT-tool 1.081-6.1 A Comparative Study of the
Binary Logistic Regression (BLR) and Artificial Neural Network (ANN) Models for GIS-Based Spatial
Predicting Landslides at a Regional Scale. In Landslide Dynamics: ISDR-ICL Landslide Interactive Teaching Tools;
Springer: Berlin/Heidelberg, Germany, 2018; pp. 139–151.

18. Chen, W.; Xie, X.; Wang, J.; Pradhan, B.; Hong, H.; Bui, D.T.; Duan, Z.; Ma, J. A comparative study of logistic
model tree, random forest, and classification and regression tree models for spatial prediction of landslide
susceptibility. Catena 2017, 151, 147–160.

19. Larson, R.R. Introduction to information retrieval. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 852–853.
20. Li, L.; Weinberg, C.R.; Darden, T.A.; Pedersen, L.G. Gene selection for sample classification based on gene

expression data: Study of sensitivity to choice of parameters of the GA/KNN method. Bioinformatics 2001,
17, 1131–1142.

21. Manevitz, L.M.; Yousef, M. One-class SVMs for document classification. J. Mach. Learn. Res. 2001, 2, 139–154.
22. Han, E.H.S.; Karypis, G. Centroid-based document classification: Analysis and experimental results.

In European Conference on Principles of Data Mining and Knowledge Discovery; Springer: Berlin/Heidelberg,
Germany, 2000; pp. 424–431.

23. Xu, B.; Guo, X.; Ye, Y.; Cheng, J. An Improved Random Forest Classifier for Text Categorization. JCP 2012,
7, 2913–2920.

24. Lafferty, J.; McCallum, A.; Pereira, F.C. Conditional random fields: Probabilistic models for segmenting
and labeling sequence data. In Proceedings of the 18th International Conference on Machine Learning 2001
(ICML 2001), Williamstown, MA, USA, 28 June–1 July 2001.

25. Shen, D.; Sun, J.T.; Li, H.; Yang, Q.; Chen, Z. Document Summarization Using Conditional Random Fields.
IJCAI 2007, 7, 2862–2867.

26. Zhang, C. Automatic keyword extraction from documents using conditional random fields. J. Comput.
Inf. Syst. 2008, 4, 1169–1180.

27. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444.
28. Huang, J.; Ling, C.X. Using AUC and accuracy in evaluating learning algorithms. IEEE Trans. Knowl.

Data Eng. 2005, 17, 299–310.
29. Lock, G. Acute mesenteric ischemia: Classification, evaluation and therapy. Acta Gastro-Enterol. Belg. 2002,

65, 220–225.
30. Matthews, B.W. Comparison of the predicted and observed secondary structure of T4 phage lysozyme.

Biochim. Biophys. Acta (BBA)-Protein Struct. 1975, 405, 442–451.
31. Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC)

curve. Radiology 1982, 143, 29–36.
32. Pencina, M.J.; D’Agostino, R.B.; Vasan, R.S. Evaluating the added predictive ability of a new marker:

From area under the ROC curve to reclassification and beyond. Stat. Med. 2008, 27, 157–172.
33. Jacobs, P.S. Text-Based Intelligent Systems: Current Research and Practice in Information Extraction and Retrieval;

Psychology Press: Hove, UK, 2014.
34. Croft, W.B.; Metzler, D.; Strohman, T. Search Engines: Information Retrieval in Practice; Addison-Wesley

Reading: Boston, MA, USA, 2010; Volume 283.
35. Yammahi, M.; Kowsari, K.; Shen, C.; Berkovich, S. An efficient technique for searching very large files with

fuzzy criteria using the pigeonhole principle. In Proceedings of the 2014 Fifth International Conference on
Computing for Geospatial Research and Application, Washington, DC, USA, 4–6 August 2014; pp. 82–86.

36. Chu, Z.; Gianvecchio, S.; Wang, H.; Jajodia, S. Who is tweeting on Twitter: Human, bot, or cyborg?
In Proceedings of the 26th Annual Computer Security Applications Conference, Austin, TX, USA,
6–10 December 2010; pp. 21–30.

37. Gordon, R.S., Jr. An operational classification of disease prevention. Public Health Rep. 1983, 98, 107.
38. Nobles, A.L.; Glenn, J.J.; Kowsari, K.; Teachman, B.A.; Barnes, L.E. Identification of Imminent Suicide Risk

Among Young Adults using Text Messages. In Proceedings of the 2018 CHI Conference on Human Factors
in Computing Systems, Montreal, QC, Canada, 21–26 April 2018; p. 413.

Information 2019, 10, 150 60 of 68

39. Gupta, G.; Malhotra, S. Text Document Tokenization for Word Frequency Count using Rapid Miner (Taking
Resume as an Example). Int. J. Comput. Appl. 2015, 975, 8887.

40. Verma, T.; Renu, R.; Gaur, D. Tokenization and filtering process in RapidMiner. Int. J. Appl. Inf. Syst. 2014,
7, 16–18.

41. Aggarwal, C.C. Machine Learning for Text; Springer: Berlin/Heidelberg, Germany, 2018.
42. Saif, H.; Fernández, M.; He, Y.; Alani, H. On stopwords, filtering and data sparsity for sentiment analysis

of twitter. In Proceedings of the Ninth International Conference on Language Resources and Evaluation
(LREC 2014), Reykjavik, Iceland, 26–31 May 2014.

43. Gupta, V.; Lehal, G.S. A survey of text mining techniques and applications. J. Emerg. Technol. Web Intell. 2009,
1, 60–76.

44. Dalal, M.K.; Zaveri, M.A. Automatic text classification: A technical review. Int. J. Comput. Appl. 2011,
28, 37–40.

45. Whitney, D.L.; Evans, B.W. Abbreviations for names of rock-forming minerals. Am. Mineral. 2010,
95, 185–187.

46. Helm, A. Recovery and reclamation: A pilgrimage in understanding who and what we are. In Psychiatric
and Mental Health Nursing: The Craft of Caring; Routledge: London, UK, 2003; pp. 50–55.

47. Dhuliawala, S.; Kanojia, D.; Bhattacharyya, P. SlangNet: A WordNet like resource for English Slang.
In Proceedings of the LREC, Portorož, Slovenia, 23–28 May 2016.

48. Pahwa, B.; Taruna, S.; Kasliwal, N. Sentiment Analysis-Strategy for Text Pre-Processing. Int. J. Comput. Appl.
2018, 180, 15–18.

49. Mawardi, V.C.; Susanto, N.; Naga, D.S. Spelling Correction for Text Documents in Bahasa
Indonesia Using Finite State Automata and Levinshtein Distance Method. EDP Sci. 2018, 164,
doi:10.1051/matecconf/201816401047.

50. Dziadek, J.; Henriksson, A.; Duneld, M. Improving Terminology Mapping in Clinical Text with
Context-Sensitive Spelling Correction. In Informatics for Health: Connected Citizen-Led Wellness and Population
Health; IOS Press: Amsterdam, The Netherlands, 2017; Volume 235, pp. 241–245.

51. Mawardi, V.C.; Rudy, R.; Naga, D.S. Fast and Accurate Spelling Correction Using Trie and Bigram.
TELKOMNIKA (Telecommun. Comput. Electron. Control) 2018, 16, 827–833.

52. Spirovski, K.; Stevanoska, E.; Kulakov, A.; Popeska, Z.; Velinov, G. Comparison of different model’s
performances in task of document classification. In Proceedings of the 8th International Conference on Web
Intelligence, Mining and Semantics, Novi Sad, Serbia, 25–27 June 2018; p. 10.

53. Singh, J.; Gupta, V. Text stemming: Approaches, applications, and challenges. ACM Compu. Surv. (CSUR)
2016, 49, 45.

54. Sampson, G. The’Language Instinct’Debate: Revised Edition; A&C Black: London, UK, 2005.
55. Plisson, J.; Lavrac, N.; Mladenić, D. A rule based approach to word lemmatization. In Proceedings of the 7th

International MultiConference Information Society IS 2004, Ljubljana, Slovenia, 13–14 October 2004.
56. Korenius, T.; Laurikkala, J.; Järvelin, K.; Juhola, M. Stemming and lemmatization in the clustering of finnish

text documents. In Proceedings of the Thirteenth ACM International Conference on Information and
Knowledge Management, Washington, DC, USA, 8–13 November 2004; pp. 625–633.

57. Caropreso, M.F.; Matwin, S. Beyond the bag of words: A text representation for sentence selection.
In Conference of the Canadian Society for Computational Studies of Intelligence; Springer: Berlin/Heidelberg,
Germany, 2006; pp. 324–335.

58. Sidorov, G.; Velasquez, F.; Stamatatos, E.; Gelbukh, A.; Chanona-Hernández, L. Syntactic dependency-based
n-grams as classification features. In Mexican International Conference on Artificial Intelligence; Springer:
Berlin/Heidelberg, Germany, 2012; pp. 1–11.

59. Sparck Jones, K. A statistical interpretation of term specificity and its application in retrieval. J. Doc. 1972,
28, 11–21.

60. Tokunaga, T.; Makoto, I. Text categorization based on weighted inverse document frequency. Inf. Process.
Soc. Jpn. SIGNL 1994, 94, 33–40.

61. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space.
arXiv 2013, arXiv:1301.3781.

62. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and phrases
and their compositionality. Adv. Neural Inf. Process. Syst. 2013, 26, 3111–3119.

Information 2019, 10, 150 61 of 68

63. Rong, X. word2vec parameter learning explained. arXiv 2014, arXiv:1411.2738.
64. Maaten, L.V.D.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
65. Bojanowski, P.; Grave, E.; Joulin, A.; Mikolov, T. Enriching word vectors with subword information. arXiv

2016, arXiv:1607.04606.
66. Melamud, O.; Goldberger, J.; Dagan, I. context2vec: Learning generic context embedding with bidirectional

lstm. In Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning, Berlin,
Germany, 11–12 August 2016; pp. 51–61.

67. Peters, M.E.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark, C.; Lee, K.; Zettlemoyer, L. Deep contextualized
word representations. arXiv 2018, arXiv:1802.05365.

68. Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459.
69. Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R.

Soc. A 2016, 374, 20150202.
70. Ng, A. Principal components analysis. Generative Algorithms, Regularization and Model Selection. CS 2015,

229, 71.
71. Cao, L.; Chua, K.S.; Chong, W.; Lee, H.; Gu, Q. A comparison of PCA, KPCA and ICA for dimensionality

reduction in support vector machine. Neurocomputing 2003, 55, 321–336.
72. Hérault, J. Réseaux de neurones à synapses modifiables: Décodage de messages sensoriels composites par

une apprentissage non supervisé et permanent. CR Acad. Sci. Paris 1984, 299 525–528.
73. Jutten, C.; Herault, J. Blind separation of sources, part I: An adaptive algorithm based on neuromimetic

architecture. Signal Process. 1991, 24, 1–10.
74. Hyvärinen, A.; Hoyer, P.O.; Inki, M. Topographic independent component analysis. Neural Comput. 2001,

13, 1527–1558.
75. Hyvärinen, A.; Oja, E. Independent component analysis: algorithms and applications. Neural Netw. 2000,

13, 411–430.
76. Sugiyama, M. Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis.

J. Mach. Learn. Res. 2007, 8, 1027–1061.
77. Balakrishnama, S.; Ganapathiraju, A. Linear discriminant analysis-a brief tutorial. Inst. Signal Inf. Process.

1998, 18, 1–8.
78. Sugiyama, M. Local fisher discriminant analysis for supervised dimensionality reduction. In Proceedings of

the 23rd International Conference on Machine Learning, Pittsburgh, PA, USA, 25–29 June 2006, pp. 905–912.
79. Pauca, V.P.; Shahnaz, F.; Berry, M.W.; Plemmons, R.J. Text mining using non-negative matrix factorizations.

In Proceedings of the 2004 SIAM International Conference on Data Mining, Lake Buena Vista, FL, USA,
22–24 April 2004; pp. 452–456.

80. Tsuge, S.; Shishibori, M.; Kuroiwa, S.; Kita, K. Dimensionality reduction using non-negative matrix
factorization for information retrieval. In Proceedings of the 2001 IEEE International Conference on Systems,
Man, and Cybernetics, Tucson, AZ, USA, 7–10 October 2001; Volume 2, pp. 960–965.

81. Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Stat. 1951, 22, 79–86.
82. Johnson, D.; Sinanovic, S. Symmetrizing the Kullback-Leibler Distance. IEEE Trans. Inf. Theory 2001.

Available online: https://scholarship.rice.edu/bitstream/handle/1911/19969/Joh2001Mar1Symmetrizi.
PDF?sequence=1 (accessed on 23 April 2019).

83. Bingham, E.; Mannila, H. Random projection in dimensionality reduction: Applications to image and text
data. In Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, San Francisco, CA, USA, 26–29 August 2001; pp. 245–250.

84. Chakrabarti, S.; Roy, S.; Soundalgekar, M.V. Fast and accurate text classification via multiple linear
discriminant projections. VLDB J. 2003, 12, 170–185.

85. Rahimi, A.; Recht, B. Weighted sums of random kitchen sinks: Replacing minimization with randomization
in learning. Adv. Neural Inf. Process. Syst. 2009, 21, 1313–1320.

86. Morokoff, W.J.; Caflisch, R.E. Quasi-monte carlo integration. J. Comput. Phys. 1995, 122, 218–230.
87. Johnson, W.B.; Lindenstrauss, J.; Schechtman, G. Extensions of lipschitz maps into Banach spaces. Isr. J.

Math. 1986, 54, 129–138, doi:10.1007/BF02764938.
88. Dasgupta, S.; Gupta, A. An elementary proof of a theorem of Johnson and Lindenstrauss. Random Struct.

Algorithms 2003, 22, 60–65.
89. Vempala, S.S. The Random Projection Method; American Mathematical Society: Providence, RI, USA, 2005.

https://scholarship.rice.edu/bitstream/handle/1911/19969/Joh2001Mar1Symmetrizi.PDF?sequence=1
https://scholarship.rice.edu/bitstream/handle/1911/19969/Joh2001Mar1Symmetrizi.PDF?sequence=1

Information 2019, 10, 150 62 of 68

90. Mao, X.; Yuan, C. Stochastic Differential Equations with Markovian Switching; World Scientific: Singapore, 2016.
91. Goodfellow, I.; Bengio, Y.; Courville, A.; Bengio, Y. Deep Learning; MIT Press: Cambridge, MA, USA, 2016;

Volume 1.
92. Wang, W.; Huang, Y.; Wang, Y.; Wang, L. Generalized autoencoder: A neural network framework

for dimensionality reduction. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, Columbus, OH, USA, 23–28 June 2014; pp. 490–497.

93. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Internal Representations by Error Propagation; Technical
Report; California University San Diego, Institute for Cognitive Science: La Jolla, CA, USA, 1985.

94. Liang, H.; Sun, X.; Sun, Y.; Gao, Y. Text feature extraction based on deep learning: A review. EURASIP J.
Wirel. Commun. Netw. 2017, 2017, 211.

95. Baldi, P. Autoencoders, unsupervised learning, and deep architectures. In Proceedings of the ICML Workshop
on Unsupervised and Transfer Learning, Bellevue, WA, USA, 2 July 2011; pp. 37–49.

96. AP, S.C.; Lauly, S.; Larochelle, H.; Khapra, M.; Ravindran, B.; Raykar, V.C.; Saha, A. An autoencoder approach
to learning bilingual word representations. Adv. Neural Inf. Process. Syst. 2014, 27, 1853–1861.

97. Masci, J.; Meier, U.; Cireşan, D.; Schmidhuber, J. Stacked convolutional auto-encoders for hierarchical feature
extraction. In International Conference on Artificial Neural Networks; Springer: Berlin/Heidelberg, Germany,
2011; pp. 52–59.

98. Chen, K.; Seuret, M.; Liwicki, M.; Hennebert, J.; Ingold, R. Page segmentation of historical document images
with convolutional autoencoders. In Proceedings of the 2015 13th International Conference on Document
Analysis and Recognition (ICDAR), Tunis, Tunisia, 23–26 August 2015; pp. 1011–1015.

99. Geng, J.; Fan, J.; Wang, H.; Ma, X.; Li, B.; Chen, F. High-resolution SAR image classification via deep
convolutional autoencoders. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2351–2355.

100. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. Adv. Neural Inf.
Process. Syst. 2014, 27, 3104–3112.

101. Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y.
Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv
2014, arXiv:1406.1078.

102. Hinton, G.E.; Roweis, S.T. Stochastic neighbor embedding. Adv. Neural Inf. Process. Syst. 2002, 15, 857–864.
103. Joyce, J.M. Kullback-leibler divergence. In International Encyclopedia of Statistical Science; Springer:

Berlin/Heidelberg, Germany, 2011; pp. 720–722.
104. Rocchio, J.J. Relevance feedback in information retrieval. In The SMART Retrieval System: Experiments in

Automatic Document Processing; Englewood Cliffs: Prentice-Hall, NJ, USA, 1971; pp. 313–323.
105. Partalas, I.; Kosmopoulos, A.; Baskiotis, N.; Artieres, T.; Paliouras, G.; Gaussier, E.; Androutsopoulos, I.;

Amini, M.R.; Galinari, P. LSHTC: A benchmark for large-scale text classification. arXiv 2015, arXiv:1503.08581.
106. Sowmya, B.; Srinivasa, K. Large scale multi-label text classification of a hierarchical data set using Rocchio

algorithm. In Proceedings of the 2016 International Conference on Computation System and Information
Technology for Sustainable Solutions (CSITSS), Bangalore, India, 6–8 October 2016; pp. 291–296.

107. Korde, V.; Mahender, C.N. Text classification and classifiers: A survey. Int. J. Artif. Intell. Appl. 2012, 3, 85.
108. Selvi, S.T.; Karthikeyan, P.; Vincent, A.; Abinaya, V.; Neeraja, G.; Deepika, R. Text categorization using

Rocchio algorithm and random forest algorithm. In Proceedings of the 2016 Eighth International Conference
on Advanced Computing (ICoAC), Chennai, India, 19–21 January 2017; pp. 7–12.

109. Albitar, S.; Espinasse, B.; Fournier, S. Towards a Supervised Rocchio-based Semantic Classification of Web
Pages. In Proceedings of the KES, San Sebastian, Spain , 10–12 September 2012; pp. 460–469.

110. Farzi, R.; Bolandi, V. Estimation of organic facies using ensemble methods in comparison with conventional
intelligent approaches: A case study of the South Pars Gas Field, Persian Gulf, Iran. Model. Earth Syst.
Environ. 2016, 2, 105.

111. Bauer, E.; Kohavi, R. An empirical comparison of voting classification algorithms: Bagging, boosting, and
variants. Mach. Learn. 1999, 36, 105–139.

112. Schapire, R.E. The strength of weak learnability. Mach. Learn. 1990, 5, 197–227.
113. Freund, Y. An improved boosting algorithm and its implications on learning complexity. In Proceedings

of the Fifth Annual Workshop on Computational Learning Theory, Pittsburgh, PA, USA, 27–29 July 1992;
pp. 391–398.

Information 2019, 10, 150 63 of 68

114. Bloehdorn, S.; Hotho, A. Boosting for text classification with semantic features. In International Workshop on
Knowledge Discovery on the Web; Springer: Berlin/Heidelberg, Germany, 2004; pp. 149–166.

115. Freund, Y.; Kearns, M.; Mansour, Y.; Ron, D.; Rubinfeld, R.; Schapire, R.E. Efficient algorithms for learning
to play repeated games against computationally bounded adversaries. In Proceedings of the 36th Annual
Symposium on Foundations of Computer Science, Milwaukee, WI, USA, 23–25 October 1995; pp. 332–341.

116. Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140.
117. Geurts, P. Some enhancements of decision tree bagging. In European Conference on Principles of Data Mining

and Knowledge Discovery; Springer: Berlin/Heidelberg, Germany, 2000; pp. 136–147.
118. Cox, D.R. Analysis of Binary Data; Routledge: London, UK, 2018.
119. Fan, R.E.; Chang, K.W.; Hsieh, C.J.; Wang, X.R.; Lin, C.J. LIBLINEAR: A library for large linear classification.

J. Mach. Learn. Res. 2008, 9, 1871–1874.
120. Genkin, A.; Lewis, D.D.; Madigan, D. Large-scale Bayesian logistic regression for text categorization.

Technometrics 2007, 49, 291–304.
121. Juan, A.; Vidal, E. On the use of Bernoulli mixture models for text classification. Pattern Recogn. 2002,

35, 2705–2710.
122. Cheng, W.; Hüllermeier, E. Combining instance-based learning and logistic regression for multilabel

classification. Mach. Learn. 2009, 76, 211–225.
123. Krishnapuram, B.; Carin, L.; Figueiredo, M.A.; Hartemink, A.J. Sparse multinomial logistic regression: Fast

algorithms and generalization bounds. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 957–968.
124. Huang, K. Unconstrained Smartphone Sensing and Empirical Study for Sleep Monitoring and

Self-Management. Ph.D. Thesis, University of Massachusetts Lowell, Lowell, MA, USA, 2015.
125. Guerin, A. Using Demographic Variables and In-College Attributes to Predict Course-Level Retention for Community

College Spanish Students; Northcentral University: Scottsdale, AZ, USA, 2016.
126. Kaufmann, S. CUBA: Artificial Conviviality and User-Behaviour Analysis in Web-Feeds. PhD Thesis,

Universität Hamburg, Hamburg, Germany 1969.
127. Porter, M.F. An algorithm for suffix stripping. Program 1980, 14, 130–137.
128. Pearson, E.S. Bayes’ theorem, examined in the light of experimental sampling. Biometrika 1925, 17, 388–442.
129. Hill, B.M. Posterior distribution of percentiles: Bayes’ theorem for sampling from a population. J. Am.

Stat. Assoc. 1968, 63, 677–691.
130. Qu, Z.; Song, X.; Zheng, S.; Wang, X.; Song, X.; Li, Z. Improved Bayes Method Based on TF-IDF Feature and

Grade Factor Feature for Chinese Information Classification. In Proceedings of the 2018 IEEE International
Conference on Big Data and Smart Computing (BigComp), Shanghai, China, 15–17 January 2018; pp. 677–680.

131. Kim, S.B.; Han, K.S.; Rim, H.C.; Myaeng, S.H. Some effective techniques for naive bayes text classification.
IEEE Trans. Knowl. Data Eng. 2006, 18, 1457–1466.

132. Frank, E.; Bouckaert, R.R. Naive bayes for text classification with unbalanced classes. In European Conference on
Principles of Data Mining and Knowledge Discovery; Springer: Berlin/Heidelberg, Germany, 2006, pp. 503–510.

133. Liu, Y.; Loh, H.T.; Sun, A. Imbalanced text classification: A term weighting approach. Expert Syst. Appl. 2009,
36, 690–701.

134. Soheily-Khah, S.; Marteau, P.F.; Béchet, N. Intrusion detection in network systems through hybrid supervised
and unsupervised mining process-a detailed case study on the ISCX benchmark data set. HAL 2017,
doi:10.1016/j.jisa.nnnn.nn.nnn.

135. Wang, Y.; Khardon, R.; Protopapas, P. Nonparametric bayesian estimation of periodic light curves.
Astrophys. J. 2012, 756, 67.

136. Ranjan, M.N.M.; Ghorpade, Y.R.; Kanthale, G.R.; Ghorpade, A.R.; Dubey, A.S. Document Classification
Using LSTM Neural Network. J. Data Min. Manag. 2017, 2. Available online: http://matjournals.in/index.
php/JoDMM/article/view/1534 (accessed on 20 April 2019).

137. Jiang, S.; Pang, G.; Wu, M.; Kuang, L. An improved K-nearest-neighbor algorithm for text categorization.
Expert Syst. Appl. 2012, 39, 1503–1509.

138. Han, E.H.S.; Karypis, G.; Kumar, V. Text categorization using weight adjusted k-nearest neighbor
classification. In Pacific-Asia Conference on Knowledge Discovery and Data Mining; Springer: Berlin/Heidelberg,
Germany, 2001; pp. 53–65.

139. Salton, G. Automatic Text Processing: The Transformation, Analysis, and Retrieval of ; Addison-Wesley: Reading,
UK, 1989.

http://matjournals.in/index.php/JoDMM/article/view/1534
http://matjournals.in/index.php/JoDMM/article/view/1534

Information 2019, 10, 150 64 of 68

140. Sahgal, D.; Ramesh, A. On Road Vehicle Detection Using Gabor Wavelet Features with Various Classification
Techniques. In Proceedings of the 14th International Conference on Digital Signal Processing Proceedings.
DSP 2002 (Cat. No.02TH8628), Santorini, Greece, 1–3 July 2002, doi:10.1109/ICDSP.2002.1028263.

141. Patel, D.; Srivastava, T. Ant Colony Optimization Model for Discrete Tomography Problems. In Proceedings of
the Third International Conference on Soft Computing for Problem Solving; Springer: Berlin/Heidelberg, Germany,
2014; pp. 785–792.

142. Sahgal, D.; Parida, M. Object Recognition Using Gabor Wavelet Features with Various Classification
Techniques. In Proceedings of the Third International Conference on Soft Computing for Problem Solving; Springer:
Berlin/Heidelberg, Germany, 2014; pp. 793–804.

143. Sanjay, G.P.; Nagori, V.; Sanjay, G.P.; Nagori, V. Comparing Existing Methods for Predicting the Detection of
Possibilities of Blood Cancer by Analyzing Health Data. Int. J. Innov. Res. Sci. Technol. 2018, 4, 10–14.

144. Vapnik, V.; Chervonenkis, A.Y. A class of algorithms for pattern recognition learning. Avtomat. Telemekh 1964,
25, 937–945.

145. Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A training algorithm for optimal margin classifiers. In Proceedings
of the Fifth Annual Workshop on Computational Learning Theory, Pittsburgh, PA, USA, 27–29 July 1992;
pp. 144–152.

146. Bo, G.; Xianwu, H. SVM Multi-Class Classification. J. Data Acquis. Process. 2006, 3, 017.
147. Mohri, M.; Rostamizadeh, A.; Talwalkar, A. Foundations of Machine Learning; MIT Press: Cambridge, MA,

USA, 2012.
148. Chen, K.; Zhang, Z.; Long, J.; Zhang, H. Turning from TF-IDF to TF-IGM for term weighting in text

classification. Expert Syst. Appl. 2016, 66, 245–260.
149. Weston, J.; Watkins, C. Multi-Class Support Vector Machines; Technical Report CSD-TR-98-04; Department of

Computer Science, Royal Holloway, University of London: Egham, UK, 1998.
150. Zhang, W.; Yoshida, T.; Tang, X. Text classification based on multi-word with support vector machine.

Knowl.-Based Syst. 2008, 21, 879–886.
151. Lodhi, H.; Saunders, C.; Shawe-Taylor, J.; Cristianini, N.; Watkins, C. Text classification using string kernels.

J. Mach. Learn. Res. 2002, 2, 419–444.
152. Leslie, C.S.; Eskin, E.; Noble, W.S. The spectrum kernel: A string kernel for SVM protein classification.

Biocomputing 2002, 7, 566–575.
153. Eskin, E.; Weston, J.; Noble, W.S.; Leslie, C.S. Mismatch string kernels for SVM protein classification.

Adv. Neural Inf. Process. Syst. 2002, 15, 1417–1424.
154. Singh, R.; Kowsari, K.; Lanchantin, J.; Wang, B.; Qi, Y. GaKCo: A Fast and Scalable Algorithm for Calculating

Gapped k-mer string Kernel using Counting. bioRxiv 2017, doi:10.1101/329425.
155. Sun, A.; Lim, E.P. Hierarchical text classification and evaluation. In Proceedings of the IEEE International

Conference on Data Mining (ICDM 2001), San Jose, CA, USA, 29 November–2 December 2001; pp. 521–528.
156. Sebastiani, F. Machine learning in automated text categorization. ACM Comput. Surv. (CSUR) 2002, 34, 1–47.
157. Maron, O.; Lozano-Pérez, T. A framework for multiple-instance learning. Adv. Neural Inf. Process. Syst. 1998,

10, 570–576.
158. Andrews, S.; Tsochantaridis, I.; Hofmann, T. Support vector machines for multiple-instance learning.

Adv. Neural Inf. Process. Syst. 2002, 15, 577–584.
159. Karamizadeh, S.; Abdullah, S.M.; Halimi, M.; Shayan, J.; Javad Rajabi, M. Advantage and drawback of

support vector machine functionality. In Proceedings of the 2014 International Conference on Computer,
Communications, and Control Technology (I4CT), Langkawi, Malaysia, 2–4 September 2014; pp. 63–65.

160. Guo, G. Soft biometrics from face images using support vector machines. In Support Vector Machines
Applications; Springer: Berlin/Heidelberg, Germany, 2014; pp. 269–302.

161. Morgan, J.N.; Sonquist, J.A. Problems in the analysis of survey data, and a proposal. J. Am. Stat. Assoc. 1963,
58, 415–434.

162. Safavian, S.R.; Landgrebe, D. A survey of decision tree classifier methodology. IEEE Trans. Syst. Man Cybern.
1991, 21, 660–674.

163. Magerman, D.M. Statistical decision-tree models for parsing. In Proceedings of the 33rd Annual Meeting
on Association for Computational Linguistics, Cambridge, MA, USA, 26–30 June 1995; Association for
Computational Linguistics: Stroudsburg, PA, USA, 1995; pp. 276–283.

164. Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106.

Information 2019, 10, 150 65 of 68

165. De Mántaras, R.L. A distance-based attribute selection measure for decision tree induction. Mach. Learn.
1991, 6, 81–92.

166. Giovanelli, C.; Liu, X.; Sierla, S.; Vyatkin, V.; Ichise, R. Towards an aggregator that exploits big data to bid on
frequency containment reserve market. In Proceedings of the 43rd Annual Conference of the IEEE Industrial
Electronics Society (IECON 2017), Beijing, China, 29 October–1 November 2017; pp. 7514–7519.

167. Quinlan, J.R. Simplifying decision trees. Int. J. Man-Mach. Stud. 1987, 27, 221–234.
168. Jasim, D.S. Data Mining Approach and Its Application to Dresses Sales Recommendation. Available

online: https://www.researchgate.net/profile/Dalia_Jasim/publication/293464737_main_steps_for_
doing_data_mining_project_using_weka/links/56b8782008ae44bb330d2583/main-steps-for-doing-data-
mining-project-using-weka.pdf (accessed on 23 April 2019).

169. Ho, T.K. Random decision forests. In Proceedings of the 3rd International Conference on Document
Analysis and Recognition, Montreal, QC, Canada 14–16 August 1995; Volume 1, pp. 278–282,
doi:10.1109/ICDAR.1995.598994.

170. Breiman, L. Random Forests; UC Berkeley TR567; University of California: Berkeley, CA, USA, 1999.
171. Wu, T.F.; Lin, C.J.; Weng, R.C. Probability estimates for multi-class classification by pairwise coupling.

J. Mach. Learn. Res. 2004, 5, 975–1005.
172. Bansal, H.; Shrivastava, G.; Nhu, N.; Stanciu, L. Social Network Analytics for Contemporary Business

Organizations; IGI Global: Hershey, PA, USA, 2018.
173. Sutton, C.; McCallum, A. An introduction to conditional random fields. Found. Trends® Mach. Learn. 2012,

4, 267–373.
174. Vail, D.L.; Veloso, M.M.; Lafferty, J.D. Conditional random fields for activity recognition. In Proceedings of

the 6th International Joint Conference on Autonomous Agents and Multiagent Systems, Honolulu, HI, USA,
14–18 May 2007; p. 235.

175. Chen, T.; Xu, R.; He, Y.; Wang, X. Improving sentiment analysis via sentence type classification using
BiLSTM-CRF and CNN. Expert Syst. Appl. 2017, 72, 221–230.

176. Sutton, C.; McCallum, A. An introduction to conditional random fields for relational learning. In Introduction
to Statistical Relational Learning; MIT Press: Cambridge, MA, USA, 2006; Volume 2.

177. Tseng, H.; Chang, P.; Andrew, G.; Jurafsky, D.; Manning, C. A conditional random field word segmenter for
sighan bakeoff 2005. In Proceedings of the Fourth SIGHAN Workshop on Chinese Language Processing,
Jeju Island, Korea, 14–15 October 2005.

178. Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the
27th International Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 June 2010; pp. 807–814.

179. Sutskever, I.; Martens, J.; Hinton, G.E. Generating text with recurrent neural networks. In Proceedings of the
28th International Conference on Machine Learning (ICML-11), Bellevue, WA, USA, 28 June–2 July 2011;
pp. 1017–1024.

180. Mandic, D.P.; Chambers, J.A. Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures and
Stability; Wiley Online Library: Hoboken, NJ, USA, 2001.

181. Bengio, Y.; Simard, P.; Frasconi, P. Learning long-term dependencies with gradient descent is difficult.
IEEE Trans. Neural Netw. 1994, 5, 157–166.

182. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780.
183. Graves, A.; Schmidhuber, J. Framewise phoneme classification with bidirectional LSTM and other neural

network architectures. Neural Netw. 2005, 18, 602–610.
184. Pascanu, R.; Mikolov, T.; Bengio, Y. On the difficulty of training recurrent neural networks. ICML 2013,

28, 1310–1318.
185. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on

sequence modeling. arXiv 2014, arXiv:1412.3555.
186. Jaderberg, M.; Simonyan, K.; Vedaldi, A.; Zisserman, A. Reading text in the wild with convolutional neural

networks. Int. J. Comput. Vis. 2016, 116, 1–20.
187. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition.

Proc. IEEE 1998, 86, 2278–2324.
188. Scherer, D.; Müller, A.; Behnke, S. Evaluation of pooling operations in convolutional architectures for

object recognition. In Proceedings of the Artificial Neural Networks–ICANN 2010, Thessaloniki, Greece,
15–18 September 2010; pp. 92–101.

https://www.researchgate.net/profile/Dalia_Jasim/publication/293464737_main_steps_for_doing_data_mining_project_using_weka/links/56b8782008ae44bb330d2583/main-steps-for-doing-data-mining-project-using-weka.pdf
https://www.researchgate.net/profile/Dalia_Jasim/publication/293464737_main_steps_for_doing_data_mining_project_using_weka/links/56b8782008ae44bb330d2583/main-steps-for-doing-data-mining-project-using-weka.pdf
https://www.researchgate.net/profile/Dalia_Jasim/publication/293464737_main_steps_for_doing_data_mining_project_using_weka/links/56b8782008ae44bb330d2583/main-steps-for-doing-data-mining-project-using-weka.pdf

Information 2019, 10, 150 66 of 68

189. Johnson, R.; Zhang, T. Effective use of word order for text categorization with convolutional neural networks.
arXiv 2014, arXiv:1412.1058.

190. Hinton, G.E. Training products of experts by minimizing contrastive divergence. Neural Comput. 2002,
14, 1771–1800.

191. Hinton, G.E.; Osindero, S.; Teh, Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 2006,
18, 1527–1554.

192. Mohamed, A.R.; Dahl, G.E.; Hinton, G. Acoustic modeling using deep belief networks. IEEE Trans. Audio
Speech Lang. Process. 2012, 20, 14–22.

193. Yang, Z.; Yang, D.; Dyer, C.; He, X.; Smola, A.J.; Hovy, E.H. Hierarchical Attention Networks for Document
Classification. In Proceedings of the HLT-NAACL, San Diego, CA, USA, 12–17 June 2016; pp. 1480–1489.

194. Seo, P.H.; Lin, Z.; Cohen, S.; Shen, X.; Han, B. Hierarchical attention networks. arXiv 2016, arXiv:1606.02393.
195. Bottou, L. Large-scale machine learning with stochastic gradient descent. In Proceedings of COMPSTAT’2010;

Springer: Berlin/Heidelberg, Germany, 2010; pp. 177–186.
196. Tieleman, T.; Hinton, G. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent

magnitude. COURSERA Neural Netw. Mach. Learn. 2012, 4, 26–31.
197. Kingma, D.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
198. Duchi, J.; Hazan, E.; Singer, Y. Adaptive subgradient methods for online learning and stochastic optimization.

J. Mach. Learn. Res. 2011, 12, 2121–2159.
199. Zeiler, M.D. ADADELTA: An adaptive learning rate method. arXiv 2012, arXiv:1212.5701.
200. Wang, B.; Xu, J.; Li, J.; Hu, C.; Pan, J.S. Scene text recognition algorithm based on faster RCNN. In Proceedings

of the 2017 First International Conference on Electronics Instrumentation & Information Systems (EIIS),
Harbin, China, 3–5 June 2017; pp. 1–4.

201. Zhou, C.; Sun, C.; Liu, Z.; Lau, F. A C-LSTM neural network for text classification. arXiv 2015,
arXiv:1511.08630.

202. Shwartz-Ziv, R.; Tishby, N. Opening the black box of deep neural networks via information. arXiv 2017,
arXiv:1703.00810.

203. Gray, A.; MacDonell, S. Alternatives to Regression Models for Estimating Software Projects. Available
online: https://www.researchgate.net/publication/2747623_Alternatives_to_Regression_Models_for_
Estimating_Software_Projects (accessed on 23 April 2019).

204. Shrikumar, A.; Greenside, P.; Kundaje, A. Learning important features through propagating activation
differences. arXiv 2017, arXiv:1704.02685.

205. Anthes, G. Deep learning comes of age. Commun. ACM 2013, 56, 13–15.
206. Lampinen, A.K.; McClelland, J.L. One-shot and few-shot learning of word embeddings. arXiv 2017,

arXiv:1710.10280.
207. Severyn, A.; Moschitti, A. Learning to rank short text pairs with convolutional deep neural networks.

In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in
Information Retrieval, Santiago, Chile, 9–13 August 2015; pp. 373–382.

208. Gowda, H.S.; Suhil, M.; Guru, D.; Raju, L.N. Semi-supervised text categorization using recursive K-means
clustering. In International Conference on Recent Trends in Image Processing and Pattern Recognition; Springer:
Berlin/Heidelberg, Germany, 2016; pp. 217–227.

209. Kowsari, K. Investigation of Fuzzyfind Searching with Golay Code Transformations. Ph.D. Thesis, The
George Washington University, Department of Computer Science, Washington, DC, USA, 2014.

210. Kowsari, K.; Yammahi, M.; Bari, N.; Vichr, R.; Alsaby, F.; Berkovich, S.Y. Construction of fuzzyfind dictionary
using golay coding transformation for searching applications. arXiv 2015, arXiv:1503.06483.

211. Chapelle, O.; Zien, A. Semi-Supervised Classification by Low Density Separation. In Proceedings of the
AISTATS, The Savannah Hotel, Barbados, 6–8 January 2005; pp. 57–64.

212. Nigam, K.; McCallum, A.; Mitchell, T. Semi-supervised text classification using EM. In Semi-Supervised
Learning; MIT Press: Cambridge, MA, USA, 2006; pp. 33–56.

213. Shi, L.; Mihalcea, R.; Tian, M. Cross language text classification by model translation and semi-supervised
learning. In Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing,
Cambridge, MA, USA, 9–11 October 2010; Association for Computational Linguistics: Stroudsburg, PA,
USA, 2010; pp. 1057–1067.

https://www.researchgate.net/publication/2747623_Alternatives_to_Regression_Models_for_Estimating_Software_Projects
https://www.researchgate.net/publication/2747623_Alternatives_to_Regression_Models_for_Estimating_Software_Projects

Information 2019, 10, 150 67 of 68

214. Zhou, S.; Chen, Q.; Wang, X. Fuzzy deep belief networks for semi-supervised sentiment classification.
Neurocomputing 2014, 131, 312–322.

215. Yang, Y. An evaluation of statistical approaches to text categorization. Inf. Retr. 1999, 1, 69–90.
216. Lever, J.; Krzywinski, M.; Altman, N. Points of significance: Classification evaluation. Nat. Methods 2016, 13,

603–604 .
217. Manning, C.D.; Raghavan, P.; Schütze, H. Matrix decompositions and latent semantic indexing.

In Introduction to Information Retrieval; Cambridge University Press: Cambridge, UK, 2008; pp. 403–417.
218. Tsoumakas, G.; Katakis, I.; Vlahavas, I. Mining multi-label data. In Data Mining and Knowledge Discovery

Handbook; Springer: Berlin/Heidelberg, Germany, 2009; pp. 667–685.
219. Yonelinas, A.P.; Parks, C.M. Receiver operating characteristics (ROCs) in recognition memory: A review.

Psychol. Bull. 2007, 133, 800.
220. Japkowicz, N.; Stephen, S. The class imbalance problem: A systematic study. Intell. Data Anal. 2002,

6, 429–449.
221. Bradley, A.P. The use of the area under the ROC curve in the evaluation of machine learning algorithms.

Pattern Recogn. 1997, 30, 1145–1159.
222. Hand, D.J.; Till, R.J. A simple generalisation of the area under the ROC curve for multiple class classification

problems. Mach. Learn. 2001, 45, 171–186.
223. Wu, H.C.; Luk, R.W.P.; Wong, K.F.; Kwok, K.L. Interpreting tf-idf term weights as making relevance decisions.

ACM Trans. Inf. Syst. (TOIS) 2008, 26, 13.
224. Rezaeinia, S.M.; Ghodsi, A.; Rahmani, R. Improving the Accuracy of Pre-trained Word Embeddings for

Sentiment Analysis. arXiv 2017, arXiv:1711.08609.
225. Sharma, A.; Paliwal, K.K. Fast principal component analysis using fixed-point algorithm. Pattern Recogn.

Lett. 2007, 28, 1151–1155.
226. Putthividhya, D.P.; Hu, J. Bootstrapped named entity recognition for product attribute extraction.

In Proceedings of the Conference on Empirical Methods in Natural Language Processing, Edinburgh,
UK, 27–31 July 2011; Association for Computational Linguistics: Stroudsburg, PA, USA, 2011; pp. 1557–1567.

227. Banerjee, M. A Utility-Aware Privacy Preserving Framework for Distributed Data Mining with Worst Case Privacy
Guarantee; University of Maryland: Baltimore County, MD, USA, 2011.

228. Chen, J.; Yan, S.; Wong, K.C. Verbal aggression detection on Twitter comments: Convolutional neural
network for short-text sentiment analysis. Neural Comput. Appl. 2018, 1–10, doi:10.1007/s00521-018-3442-0.

229. Zhang, X.; Zhao, J.; LeCun, Y. Character-level convolutional networks for text classification. Adv. Neural Inf.
Process. Syst. 2015, 28, 649–657.

230. Schütze, H.; Manning, C.D.; Raghavan, P. Introduction to Information Retrieval; Cambridge University Press:
Cambridge, UK, 2008; Volume 39.

231. Hoogeveen, D.; Wang, L.; Baldwin, T.; Verspoor, K.M. Web forum retrieval and text analytics: A survey.
Found. Trends® Inf. Retr. 2018, 12, 1–163.

232. Dwivedi, S.K.; Arya, C. Automatic Text Classification in Information retrieval: A Survey. In Proceedings
of the Second International Conference on Information and Communication Technology for Competitive
Strategies, Udaipur, India, 4–5 March 2016; p. 131.

233. Jones, K.S. Automatic keyword classification for information retrieval. Libr. Q. 1971, 41, 338–340,
doi:10.1086/619985.

234. O’Riordan, C.; Sorensen, H. Information filtering and retrieval: An overview. In Proceedings of the 16th
Annual International Conference of the IEEE, Atlanta, GA, USA, 28–31 October 1997; pp. A42–A49.

235. Buckley, C. Implementation of the SMART Information Retrieval System; Technical Report; Cornell University:
Ithaca, NY, USA, 1985.

236. Pang, B.; Lee, L. Opinion mining and sentiment analysis. Found. Trends® Inf. Retr. 2008, 2, 1–135.
237. Liu, B.; Zhang, L. A survey of opinion mining and sentiment analysis. In Mining Text Data; Springer:

Berlin/Heidelberg, Germany, 2012; pp. 415–463.
238. Pang, B.; Lee, L.; Vaithyanathan, S. Thumbs up?: Sentiment classification using machine learning techniques.

In ACL-02 Conference on Empirical Methods in Natural Language Processing; Association for Computational
Linguistics: Stroudsburg, PA, USA, 2002; Volume 10, pp. 79–86.

239. Aggarwal, C.C. Content-based recommender systems. In Recommender Systems; Springer: Berlin/Heidelberg,
Germany, 2016; pp. 139–166.

Information 2019, 10, 150 68 of 68

240. Pazzani, M.J.; Billsus, D. Content-based recommendation systems. In The Adaptive Web; Springer:
Berlin/Heidelberg, Germany, 2007; pp. 325–341.

241. Sumathy, K.; Chidambaram, M. Text mining: Concepts, applications, tools and issues—An overview. Int. J.
Comput. Appl. 2013, 80, 29–32.

242. Heidarysafa, M.; Kowsari, K.; Barnes, L.E.; Brown, D.E. Analysis of Railway Accidents’ Narratives Using
Deep Learning. In Proceedings of the 2018 17th IEEE International Conference on Machine Learning and
Applications (ICMLA), Orlando, FL, USA, 17–20 December 2018.

243. Mani, I. Advances in Automatic Text Summarization; MIT Press: Cambridge, MA, USA, 1999.
244. Cao, Z.; Li, W.; Li, S.; Wei, F. Improving Multi-Document Summarization via Text Classification.

In Proceedings of the AAAI, San Francisco, CA, USA, 4–9 February 2017; pp. 3053–3059.
245. Lauría, E.J.; March, A.D. Combining Bayesian text classification and shrinkage to automate healthcare

coding: A data quality analysis. J. Data Inf. Qual. (JDIQ) 2011, 2, 13.
246. Zhang, J.; Kowsari, K.; Harrison, J.H.; Lobo, J.M.; Barnes, L.E. Patient2Vec: A Personalized Interpretable

Deep Representation of the Longitudinal Electronic Health Record. IEEE Access 2018, 6, 65333–65346,
doi:10.1109/ACCESS.2018.2875677.

247. Trieschnigg, D.; Pezik, P.; Lee, V.; De Jong, F.; Kraaij, W.; Rebholz-Schuhmann, D. MeSH Up: Effective MeSH
text classification for improved document retrieval. Bioinformatics 2009, 25, 1412–1418.

248. Ofoghi, B.; Verspoor, K. Textual Emotion Classification: An Interoperability Study on Cross-Genre data
sets. In Australasian Joint Conference on Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2017;
pp. 262–273.

249. Pennebaker, J.; Booth, R.; Boyd, R.; Francis, M. Linguistic Inquiry and Word Count: LIWC2015; Pennebaker
Conglomerates: Austin, TX, USA, 2015. Available online: www.LIWC.net (accessed on 10 January 2019).

250. Paul, M.J.; Dredze, M. Social Monitoring for Public Health. Synth. Lect. Inf. Concepts Retr. Serv. 2017, 9, 1–183,
doi:10.2200/ S00791ED1V01Y201707ICR060.

251. Yu, B.; Kwok, L. Classifying business marketing messages on Facebook. In Proceedings of the Association
for Computing Machinery Special Interest Group on Information Retrieval, Bejing, China, 24–28 July 2011.

252. Kang, M.; Ahn, J.; Lee, K. Opinion mining using ensemble text hidden Markov models for text classification.
Expert Syst. Appl. 2018, 94, 218–227.

253. Turtle, H. Text retrieval in the legal world. Artif. Intell. Law 1995, 3, 5–54.
254. Bergman, P.; Berman, S.J. Represent Yourself in Court: How to Prepare & Try a Winning Case; Nolo: Berkeley, CA,

USA, 2016.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

View publication statsView publication stats

www.LIWC.net
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.
https://www.researchgate.net/publication/332463886

	Introduction
	Text Preprocessing
	Text Cleaning and Pre-processing
	Tokenization
	Stop Words
	Capitalization
	Slang and Abbreviation
	Noise Removal
	Spelling Correction
	Stemming
	Lemmatization

	Syntactic Word Representation
	N-Gram
	Syntactic N-Gram

	Weighted Words
	Bag of Words (BoW)
	Limitation of Bag-of-Words
	Term Frequency-Inverse Document Frequency

	Word Embedding
	Word2Vec
	Global Vectors for Word Representation (GloVe)
	FastText
	Contextualized Word Representations

	Limitations

	Dimensionality Reduction
	Component Analysis
	Principal Component Analysis (PCA)
	Independent Component Analysis (ICA)

	Linear Discriminant Analysis (LDA)
	Non-Negative Matrix Factorization (NMF)
	Random Projection
	Random Kitchen Sinks
	Johnson Lindenstrauss Lemma

	Autoencoder
	General Framework
	Conventional Autoencoder Architecture
	Recurrent Autoencoder Architecture

	T-distributed Stochastic Neighbor Embedding (t-SNE)

	Existing Classification Techniques
	Rocchio Classification
	Boosting and Bagging
	Boosting
	Bagging
	Limitation of Boosting and Bagging

	Logistic Regression
	Basic Framework
	Combining Instance-Based Learning and LR
	Multinomial Logistic Regression
	Limitation of Logistic Regression

	Naïve Bayes Classifier
	High-Level Description of Naïve Bayes Classifier
	Multinomial Naïve Bayes Classifier
	Naïve Bayes Classifier for Unbalanced Classes
	Limitation of Naïve Bayes Algorithm

	K-Nearest Neighbor
	Basic Concept of KNN
	Weight Adjusted K-Nearest Neighbor Classification
	Limitation of K-Nearest Neighbor

	Support Vector Machine (SVM)
	Binary-Class SVM
	Multi-Class SVM
	String Kernel
	Stacking Support Vector Machine (SVM)
	Multiple Instance Learning (MIL)
	Limitation of Support Vector Machine (SVM)

	Decision Tree
	Random Forest
	Voting
	Limitation of Random Forests

	Conditional Random Field (CRF)
	Deep Learning
	Deep Neural Networks
	Recurrent Neural Network (RNN)
	Convolutional Neural Networks (CNN)
	Deep Belief Network (DBN)
	Hierarchical Attention Networks (HAN)
	Combination Techniques
	Limitation of Deep Learning

	Semi-Supervised Learning for Text Classification

	Evaluation
	Macro-Averaging and Micro-Averaging
	F Score
	Matthews Correlation Coefficient (MCC)
	Receiver Operating Characteristics (ROC)
	Area Under ROC Curve (AUC)

	Discussion
	Text and Document Feature Extraction
	Dimensionality Reduction
	Existing Classification Techniques
	Limitations and Advantages
	State-of-the-Art Techniques' Comparison

	Evaluation

	Text Classification Usage
	Text Classification Applications
	Information Retrieval
	Information Filtering
	Sentiment Analysis
	Recommender Systems
	Knowledge Management
	Document Summarization

	Text Classification Support
	Health
	Social Sciences
	Business and Marketing
	Law

	Conclusions
	References

