Social Networks Measures

- Single-node Measures: Based on some properties of specific nodes
- **Graph-based measures**: Based on the graphstructure of the network

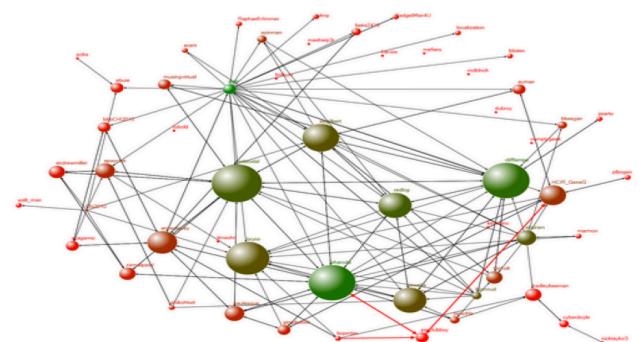
Graph-based measures of social influence

- Previously surveyed measures of influence, such as buzz, applause etc. are based on surface metrics (e.g. number of retweets, etc): graph-based measures go more in-depth.
- Objective here: model the social network as a graph
- Use graph-based methods/algorithms to identify "relevant players" in the network
 - Relevant players = more influential, according to some criterion
- Use graph-based methods to identify communities (community detection)
- Use graph-based methods to analyze the "spread" of information

Graph-based measures of social influence

- Use graph-based methods/algorithms to identify "relevant players" in the network
 - Relevant players = more influential, according to some criterion
- Use graph-based methods to identify global network properties and communities (community detection)
- Use graph-based methods to analyze the "spread" of information

Modeling a Social Network as a graph



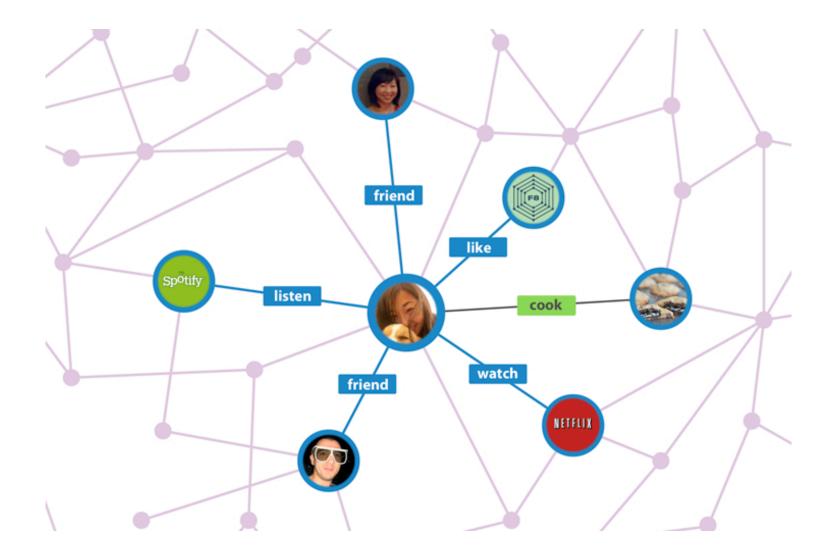
NODE= "actor, vertices, points" i.e. the social entity who participates in a certain network

EDGE= "connection, edges, arcs, lines, ties" is defined by some type of relationship between these actors (e.g. friendship, reply/re-tweet, partnership between connected companies..)

SN = graph

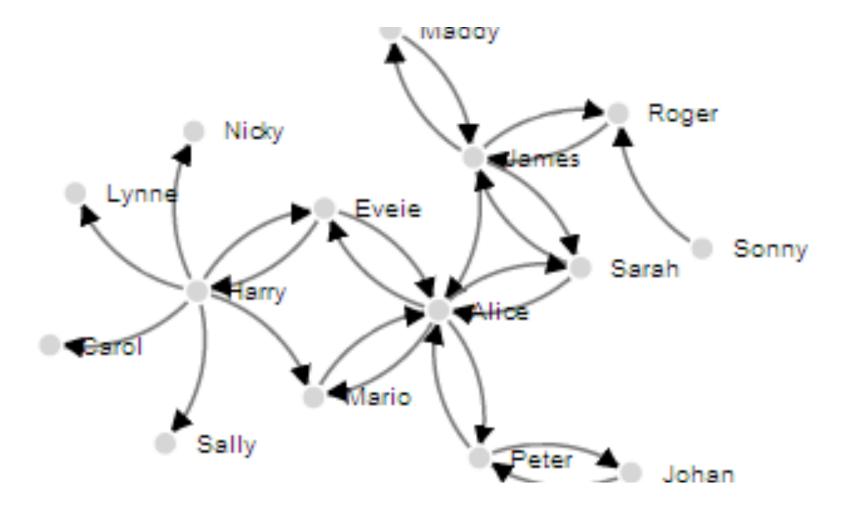
- A network can then be represented as a graph data structure
- We can apply a variety of measures and analysis to the graph representing a given SN
- Edges in a SN can be directed or undirected (e.g. friendship, co-authorship are usually undirected, emails are directed)

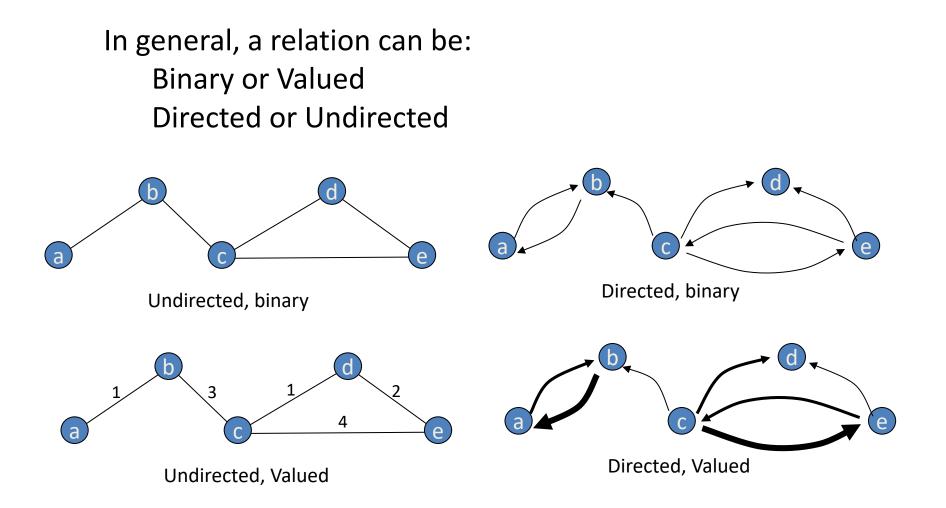
What is the meaning of edges?



Facebook in undirected (friendship is mutual)

Twitter is a directed graph (friendship is not necessarily bidirectional)



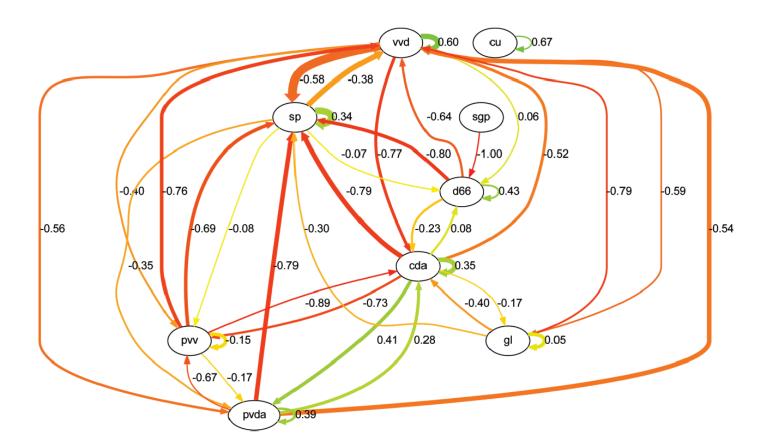


Example of directed, valued: Sentiment relations among

parties during a political campaign.

Color: positive (green) negative (red).

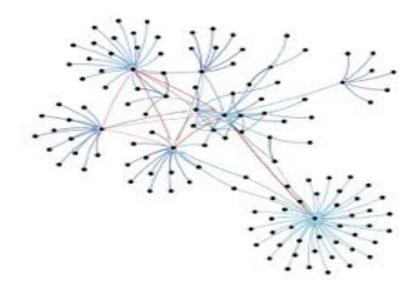
Intensity (thikness of edges): related to number of mutual references



Graph-based measures of social influence: key players

Key players

- Using graph theory, we can identify key players in a social network
- Key players are nodes (or actors, or vertexes) with some measurable connectivity property
- Two important concepts in a network are the ideas of centrality and prestige of an actor.
- Centrality more suited for undirected, prestige for directed



Measuring Networks: Centrality

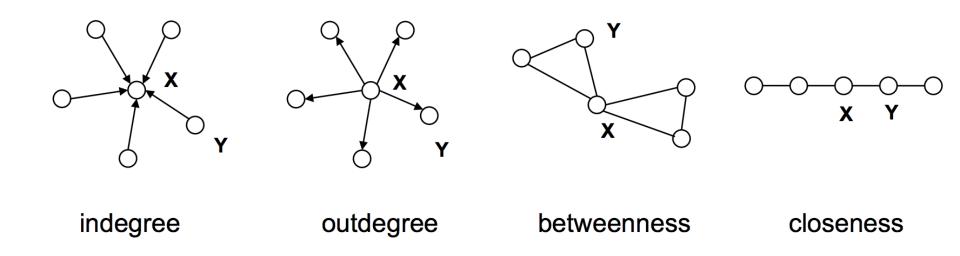
Centrality refers to (one dimension of) *location,* identifying *where* an actor resides in a network. Mostly used for **undirected** networks.

• For example, we can compare actors at the edge of the network to actors at the center.

• In general, this is a way to formalize intuitive notions about the distinction between *insiders and outsiders*.

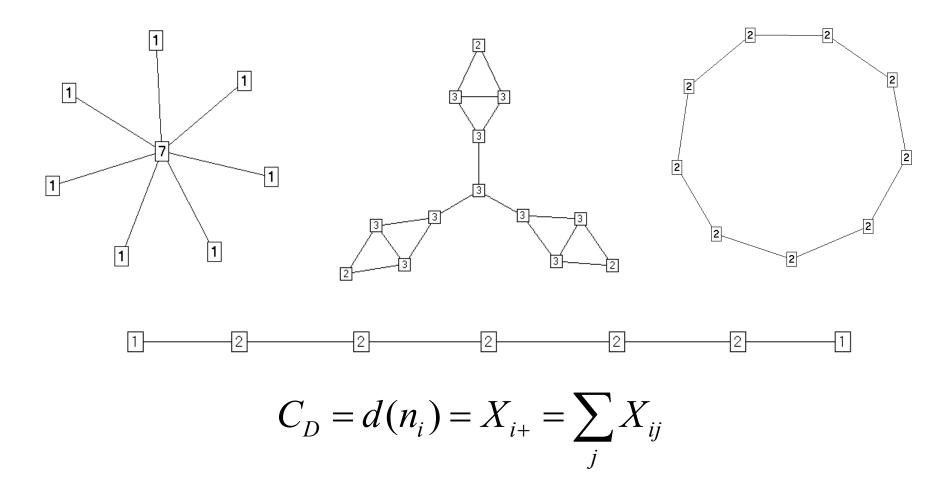
Measuring Networks: Centrality

Conceptually, centrality is fairly straight forward: we want to identify which nodes are in the **'center' of the network**. Who is important based on network position. Several types of centrality measures:



Measuring Networks: Centrality 1.Centrality Degree

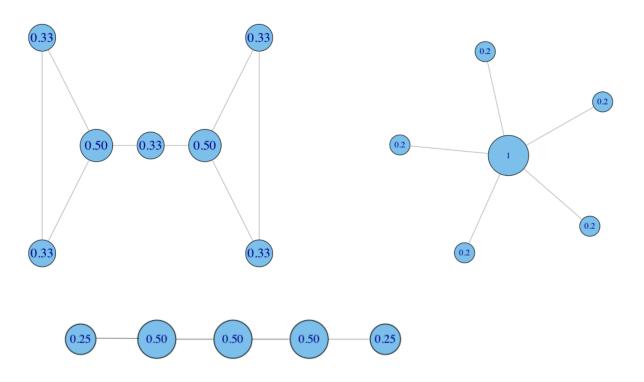
The most intuitive notion of centrality focuses on *degree*. Degree is the number of ties, and the actor with the most ties is the most important:



Measuring Networks: Centrality

2.Normalized Centrality Degree

Divide by the maximum, e.g. the number of nodes N: $C'_{D}(n)=C_{D}(n)/(N-1)$



Measuring Networks: Closeness Centrality

A second measure of centrality is **closeness centrality**. An actor is considered important if he/she is relatively close to all other actors.

Closeness is based on the inverse of the <u>distance</u> of each actor to every other actor in the network.

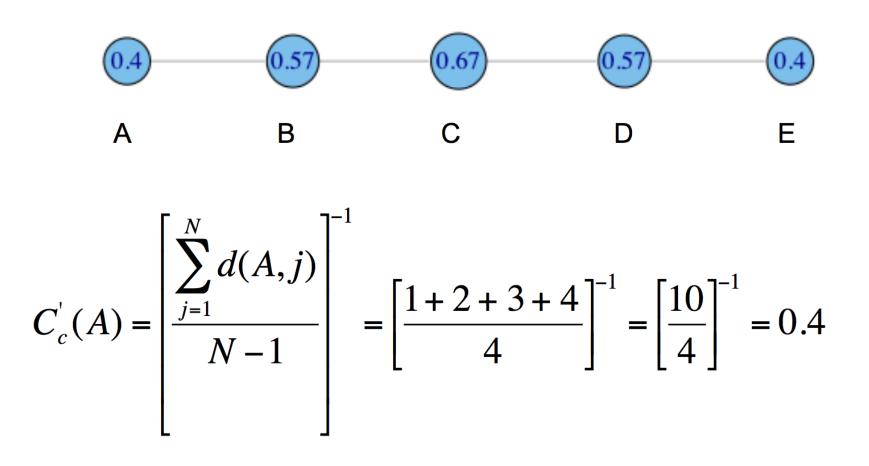
Closeness Centrality:

$$C_c(n_i) = \left[\sum_{j=1}^g d(n_i, n_j)\right]^{-1}$$

Normalized Closeness Centrality (*g* is is the maximum, e.g., the number of nodes in the network)

$$C'_C(n) = \frac{C_C(n)}{g-1}$$

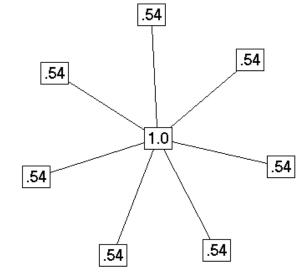
Closeness centrality simple example



Measuring Networks: examples of closeness Centrality

Distance

Closeness normalized



.40

.40

.40

.40

.40

40

01111111	.143	1.00
10222222	.077	.538
12022222	.077	.538
12202222	.077	.538
12220222	.077	.538
12222022	.077	.538
12222202	.077	.538
12222220	.077	.538

 $C_c(n_i) = \left[\sum_{j=1}^g d(n_i, n_j)\right]^{-1}$

	Distance	Closeness	normalized
.40	01234432	21.050	.400
	10123443	32.050	.400
	21012344	43.050	.400
	32101234	4 .050	.400
.40	43210123	34.050	.400
	44321012	2 3 .050	.400
	34432101	L2.050	.400
.40	23443210	01.050	.400
~	12344321	LO .050	.400

Measuring Networks: ex. Closeness Centrality

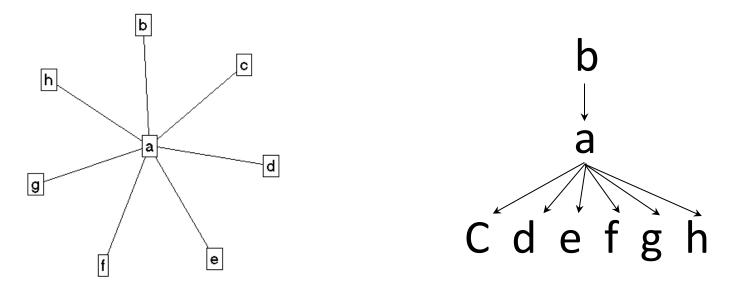
Distance	Closeness	normalized
0123456	.048 .	286
1012345	.063 .	375
2101234	.077 .	462
3210123	.083	500
4321012	077 .	462
5432101	063 .	375
6543210	.048	286

 $C_c(n_i) = \left[\sum_{j=1}^g d(n_i, n_j)\right]^{-1}$

Measuring Networks: Betweenness Centrality

Model based on communication flow: A person who lies on communication paths can control communication flow, and is thus important.

Betweenness centrality counts the number of <u>geodesic</u> paths between *i* and *k* **that actor** *j* **resides on**. Geodesics are defined as the shortest path between points



Measuring Networks: **Betweenness Centrality**

$$C_B(n_i) = \sum_{j < k} g_{jk}(n_i) / g_{jk}$$

Where g_{jk} = the number of geodesics (shortest) connecting *jk*, and g_{jk} (ni)= the number of such paths that node *i* is on (**count also in the start-end nodes of the path**).

Can also compute **edge betweenness** in the very same way

->

Method (to avoid computing shortest paths for all nodes /edges)

BFS breadth first search

- For each node A:
 - 1. BFS starting at A
 - 2. Count the number of shortest paths from A to each other node
 - 3. Based on this number, determine the amount of flow from A to all other nodes

Formal definition of betweenness

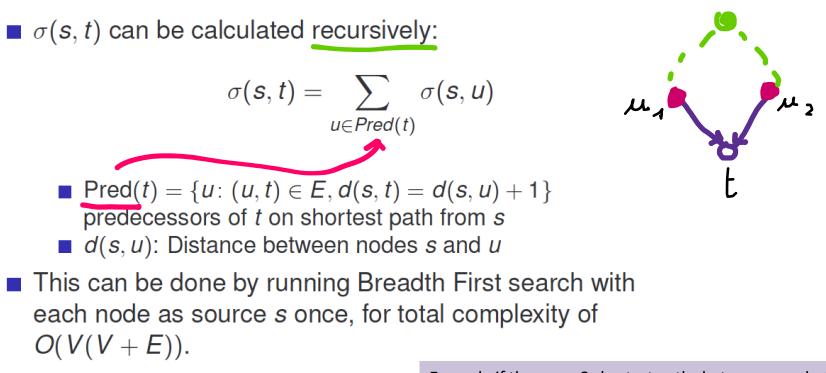
- Directed graph $G = \langle V, E \rangle$
- $\sigma(s, t)$: number of shortest paths between nodes s and t
- \[
 \sigma(s, t|v): number of shortest paths between nodes s and t
 that pass through v.
 \]
- $C_B(v)$, the betweenness centrality of v:

$$C_B(\mathbf{v}) = \sum_{\mathbf{s}, t \in \mathbf{V}} \frac{\sigma(\mathbf{s}, t | \mathbf{v})}{\sigma(\mathbf{s}, t)}$$

If
$$s = t$$
, then $\sigma(s, t) = 1$
If $v \in (s, t)$ then $\sigma(s, t|v) = 0$

https://www.cl.cam.ac.uk/teaching/1617/MLRD/slides/slides13.pdf

1) Recursive calculation of shortest paths



Example if there are 3 shortest paths between s and u1 and 2 between s and u2, then, there will be 5 shortest paths between s and t

S

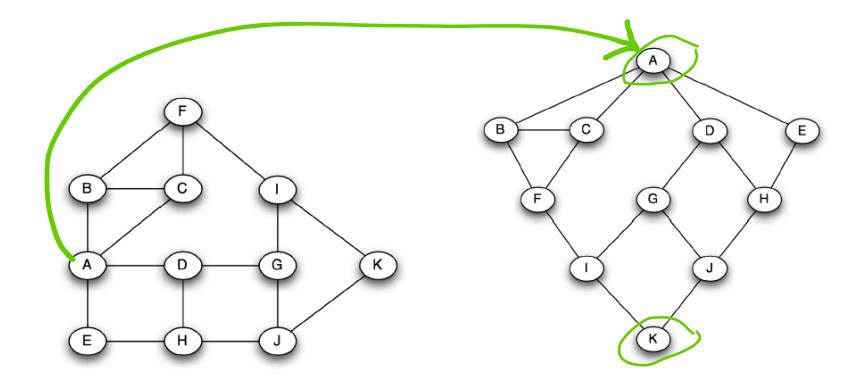
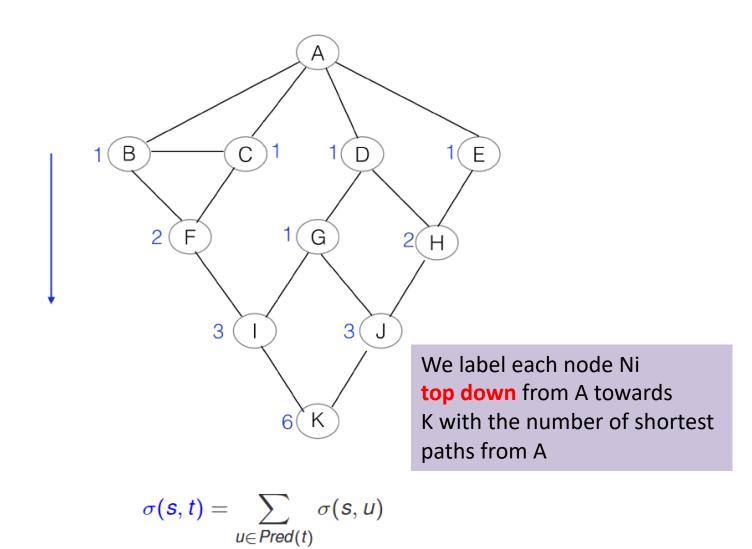
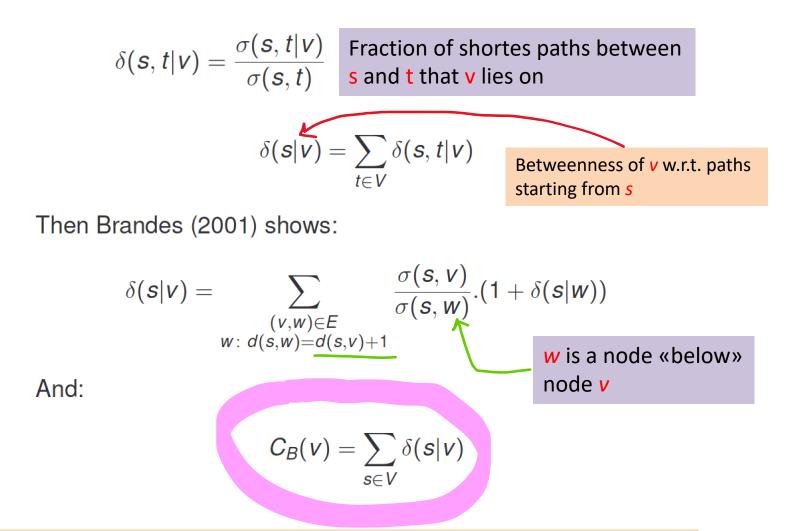


Figure 3-18 from Easley and Kleinberg (2010)

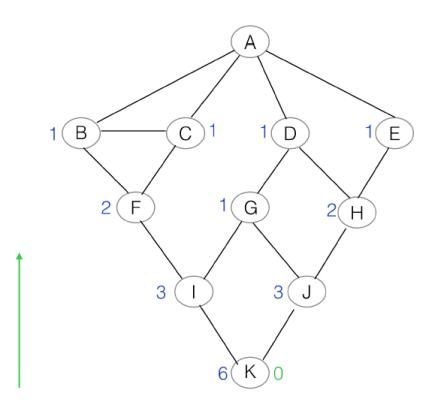
How many shortest paths between A and K??



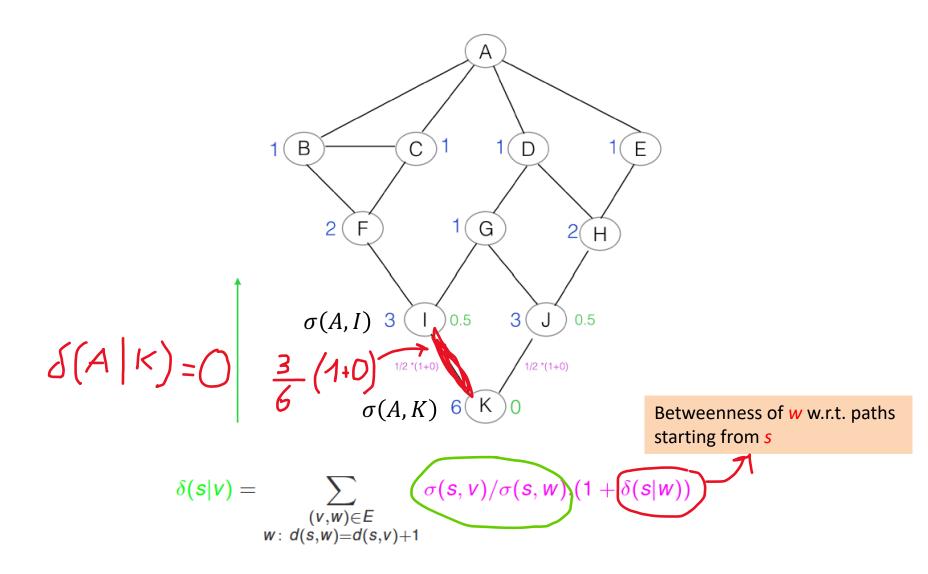
2) Recursive calculation of flow

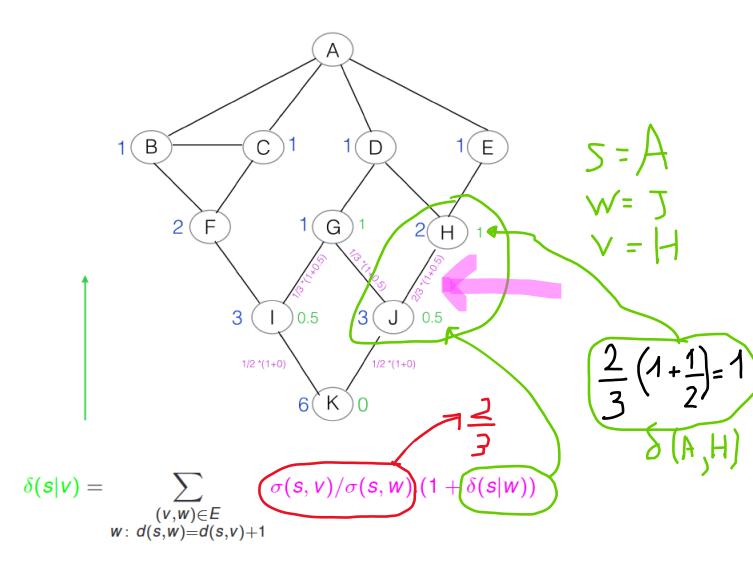


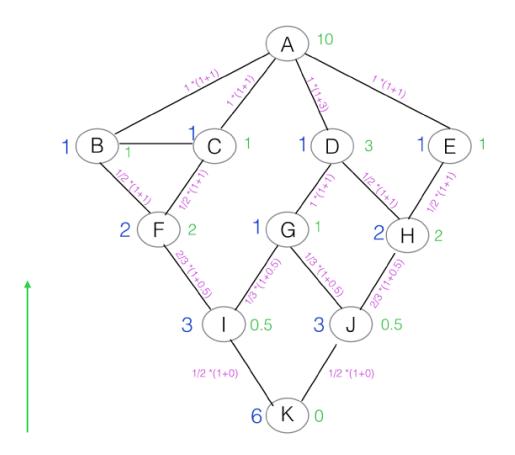
$\delta(s|v)$ can also be iteratively calculated bottom up!

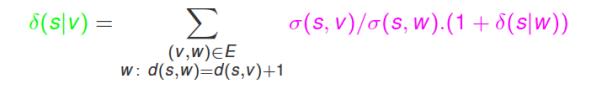


$$\delta(s|v) = \sum_{\substack{(v,w) \in E \\ w: \ d(s,w) = d(s,v)+1}} \frac{\sigma(s,v)}{\sigma(s,w)} \frac{(1 + \delta(s|w))}{\sigma(s,w)}$$

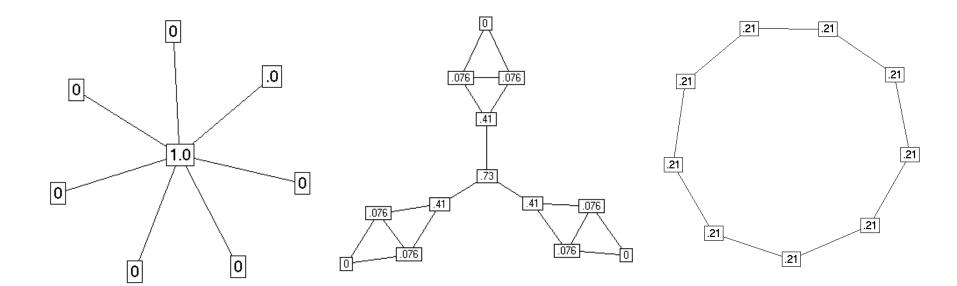








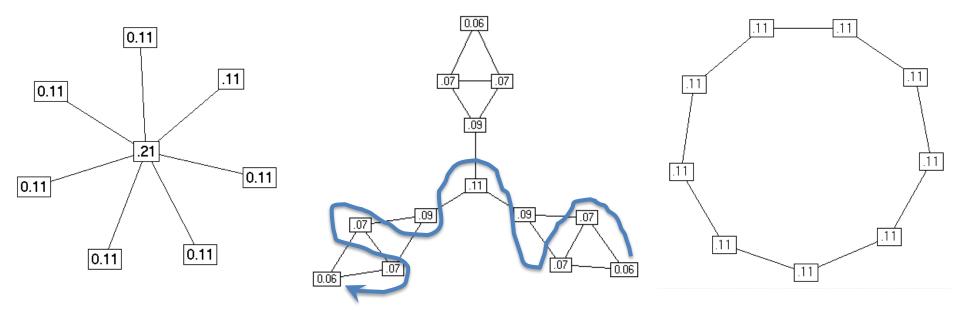
Other examples (node betweenness)



 $C_B(n_i) = \sum g_{jk}(n_i) / g_{jk}$ j<k

Measuring Networks: Information Centrality

It is quite likely that information can flow through paths *other* than the geodesic. The <u>Information Centrality</u> score uses **all paths** in the network, and weights them based on their length.



Measuring Networks: Prestige

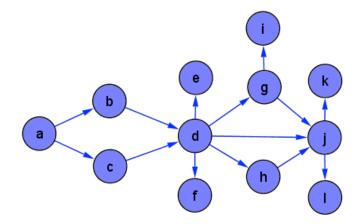
- The term prestige is used for **directed networks** since for this measure the direction is an important property of the relation.
- In this case we can define two different types of prestige:
 - one for outgoing arcs (measures of influence),
 - one for incoming arcs (measures of support).
- Examples:
 - An actor has high influence, if he/she gives hints to several other actors (e.g. in Yahoo! Answers, or if he/she has many followers).
 - An actor has high support, if a lot of people vote for him/her (many "likes", many friends)
 - Very similar to the concept of hubs and authorities in HITS algorithm

Measures of prestige in directed networks

- Influence and support
- Influence domain
- Hubs and authorities
- Brockers

Measuring prestige: influence and support

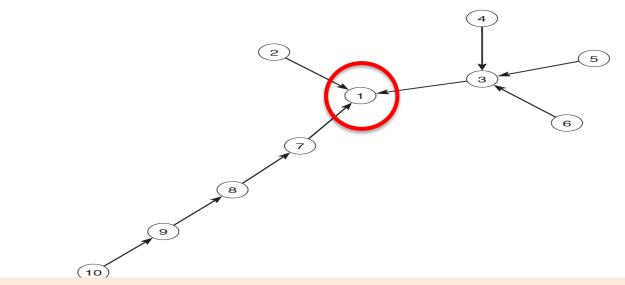
Influence and support: According to the direction/meaning of a relation, in and outdegree represent support or influence. (e.g., likes, votes for, . . .).



 $InDegree(x) = \# \ incomin g \ edges(x)$ $InDegree^{N}(x) = \frac{\# \ incomin g \ edges(x)}{\max_{y \in network} (InDegree^{N}(y))}$

Measuring prestige: influence domain

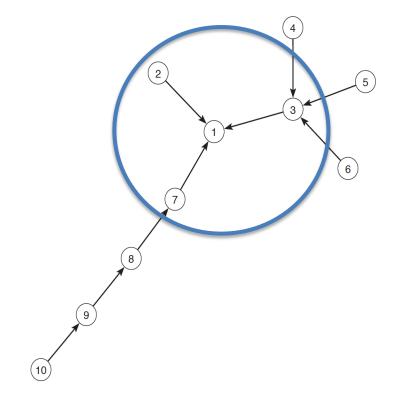
Influence domain: The influence domain of an actor (node) in a directed network is the number (or proportion) of all other nodes which are connected by a path to this node.



All other actors are in influence domain of actor 1: Prest(1)=10/10=1.

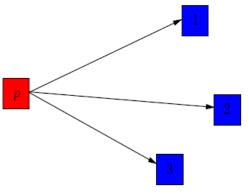
Limits of Influence domain

- Influence domain has an important limitation: all the nodes contribute equally to influence.
- Choices by actors 2, 3, and 7 are more important to person 1 than indirect choices by 4, 5, 6, and 8. Individuals 9 and 10 contribute even less to the prestige of 1.

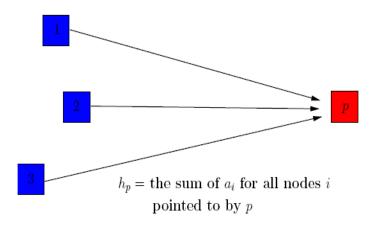


Measuring prestige: Hubs and Authorities, Page Rank

- Hubness is a good measure of influence
- Authority is a good measure of support
- Kleinberg's algorithm (HITS) to compute authority and hubness degree of nodes, same as for link analysis
- Page Rank is a good measure of support
- HITS, Page Rank: see previous lessons



 $a_p =$ the sum of h_i for all nodes i pointing to p



Example Associate Associate Associate Associate SERRANO, Arturo lssociate GONZALEZ, Maria Associate Associate MACIAS, Jorge Associate Related MACTIER, Rose Related VAZQUEZ-MACIAS, Gloria Related MACTIER, Clarence Associate Associate Associate A GONZALEZ, David Associate Associate GREEN, Valerie Associate SALINAS, Juan GULIZIA, Cecília Related Associate, Associate HERNANDEZ, Jamie Associate PEREA, Maria CHICA, Rafael **Accordate**

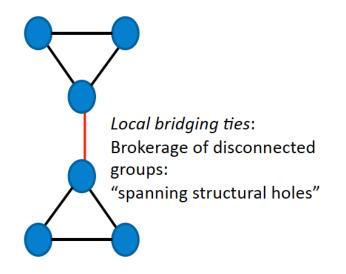
If Mrs. Green is the boss, employees referring directly to her are more important

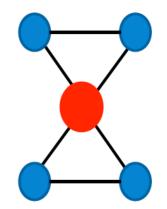
High-level scheme

- Hubs and authorities can be computed in sub-communities, i.e. on parts of a large social network graph, or on the entire graph
- Initial step (create a sub-graph):
 - 1. Extract from the graph a <u>base set</u> of users that *could* be good hubs or authorities (e.g. with many incoming or outgoing links).
 - 2. From these, identify a small set of top hub and authority users;
 - \rightarrow using the iterative HITS algorithm.

Measuring prestige: Brockers (bridges)

 Network brokerage: Links between different groups/communites (very similar to betweenness)



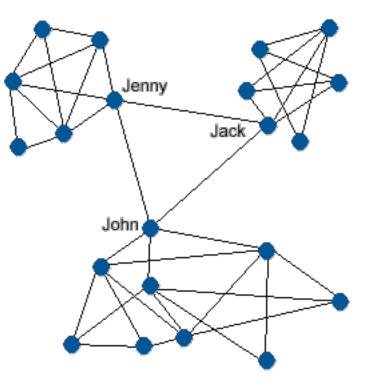


Local cut points: Brokerage through overlapping group membership

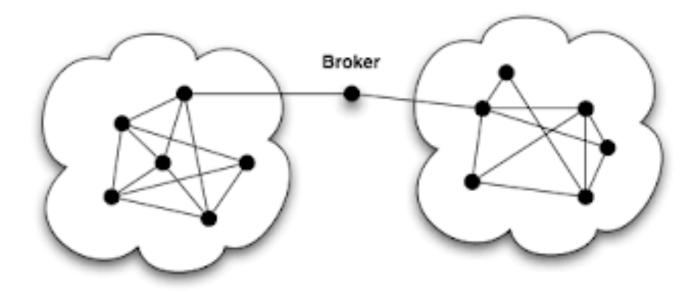
Measuring prestige: Brockers

Finding Brockers

- Brockers are "intermediaries", people that create relationships between communities
- As for graph representation, a brocker is a node that, if removed from the graph, reduces graph connectivity. For example, it causes the creation of disconnected components (Jenny, Jack and John in the graph)
- Brockers are also called key separators



Example of key separator



Algorithms to identify brockers are all based on some measure of the **graph connectivity**.

Algorithm for KPP_NEG (Keblady 2010)

- Let C_G be a measure of graph connectivity (e.g reachability, see later) for a graph G; V is the set of actors in G(nodes, vertexes)
- Algorithm KPP-neg (greedy algorithm)

Compute proposed measure of entire graph, C_G

 $\forall v_i \in V$, remove v_i from the graph

Compute $C_{G-\{v_i\}}$ for the graph $G - \{v_i\}$.

Rank the nodes based on $|C_G - C_{G-\{v_i\}}|$ difference. Larger difference ranks higher.

Top ranked nodes are considered as key separators.

KPP-neg (2)

Every node reach itself

• A measure of connectivity: *reachability*

Pseudocode 1: $Reach(v_i)$ – number of nodes reachable from v_i

Go to Source vertex v_i and mark it as *visited* and add to the set $Reach(v_i)$

For each adjacent vertex, A, of v_i ,

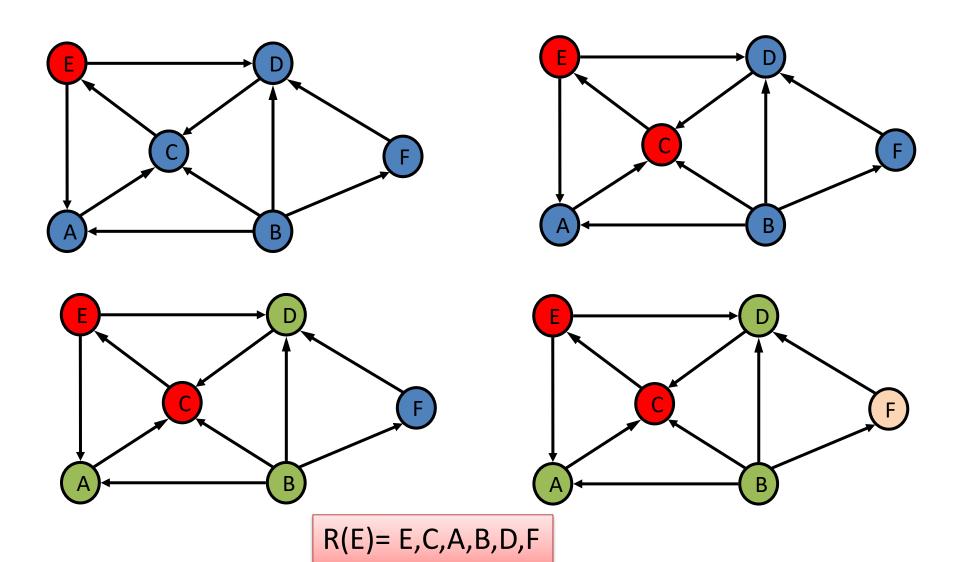
If A is not already visited,

Add adjacent vertex A to the set $Reach(v_i)$ and mark A as visited

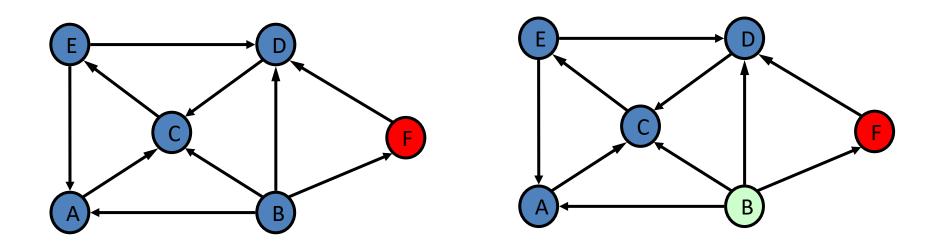
Call Reach(A)

$$C_G = \sum_{i=1}^{n} Reach(v_i)$$

Example



Example (2)



R(F)=F,B

NOTE: node reachability is a more accurate measure than previously seen "REACH"

Graph-based measures of social influence

- Use graph-based methods/algorithms to identify "relevant players" in the network Relevant players = more influential, according to some criterion
- 2. Use graph-based methods to identify global network properties and communities (community detection)
- 3. Use graph-based methods to analyze the "spread" of information

Global Network Analysis

- Global properties of the network
- Community detection
- Spread of influence

Network Centrality

If we want to measure the degree to which the graph **as a whole** is centralized, we look at the **dispersion of centrality**:

Simple!: variance of the individual centrality scores.

$$S_D^2 = \left[\sum_{i=1}^g (C_D(n_i) - \overline{C}_d)^2\right] / g$$

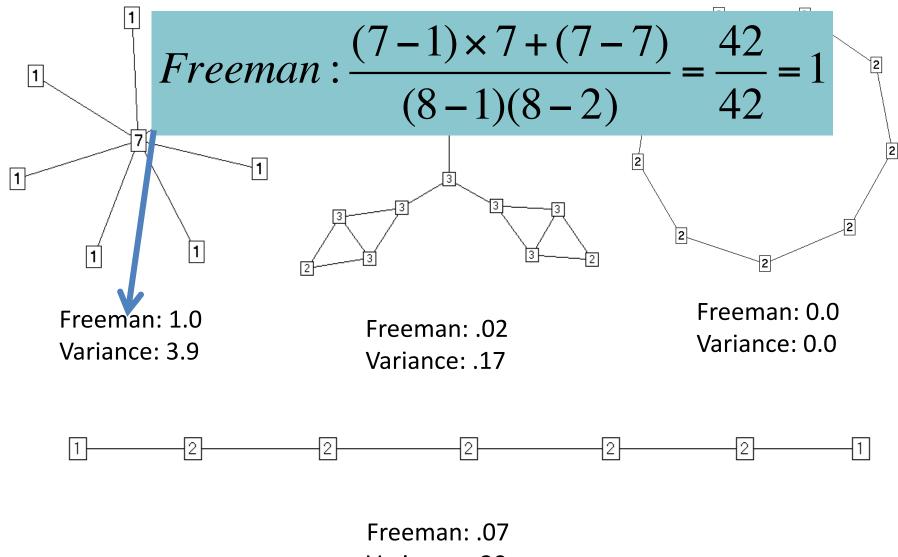
Or, using Freeman's general formula for centralization:

$$C_{D} = \frac{\sum_{i=1}^{g} \left[C_{D}(n^{*}) - C_{D}(n_{i}) \right]}{\left[(g-1)(g-2) \right]}$$

 $C_{\rm D}(n^{\ast})$ is the maximum obtained value , therefore we are measuring the dispersion around that value

Network Centrality

Degree Centralization Scores



Variance: .20

Global Network Analysis

- Global properties of the network
- Community detection
- Spread of influence

Community detection

- Community: It is formed by individuals such that those within a group <u>interact</u> with each other more frequently than with those outside the group
 - a.k.a. group, cluster, cohesive subgroup, module in different contexts
- Community detection: discovering groups in a network where individuals' <u>group</u> <u>memberships</u> are not explicitly given
- (next lesson)