Social Networks Measures

- Single-node Measures: Based on some properties of specific nodes
- Graph-based measures: Based on the graphstructure of the network

Graph-based measures of social influence

- Previously surveyed measures of influence, such as buzz, applause etc. are based on surface metrics (e.g. number of retweets, etc): graph-based measures go more in-depth.
- Objective here: model the social network as a graph
- Use graph-based methods/algorithms to identify "relevant players" in the network
- Relevant players = more influential, according to some criterion
- Use graph-based methods to identify communities (community detection)
- Use graph-based methods to analyze the "spread" of information

Graph-based measures of social

influence

- Use graph-based methods/algorithms to identify "relevant players" in the network
- Relevant players = more influential, according to some criterion
- Use graph-based methods to identify global network properties and communities (community detection)
- Use graph-based methods to analyze the "spread" of information

Modeling a Social Network as a graph

NODE= "actor, vertices, points" i.e. the social entity who participates in a certain network
EDGE= "connection, edges, arcs, lines, ties" is defined by some type of relationship between these actors (e.g. friendship, reply/re-tweet, partnership between connected companies..)

SN = graph

- A network can then be represented as a graph data structure
- We can apply a variety of measures and analysis to the graph representing a given SN
- Edges in a SN can be directed or undirected (e.g. friendship, co-authorship are usually undirected, emails are directed)

What is the meaning of edges?

Facebook in undirected (friendship is mutual)

Twitter is a directed graph (friendship is not necessarily bidirectional)

In general, a relation can be:
 Binary or Valued Directed or Undirected

Undirected, binary

Undirected, Valued

Directed, binary

Directed, Valued

Example of directed, valued: Sentiment relations among parties during a political campaign.
Color: positive (green) negative (red).
Intensity (thikness of edges): related to number of mutual references

Graph-based measures of social influence: key players

Key players

- Using graph theory, we can identify key players in a social network
- Key players are nodes (or actors, or vertexes) with some measurable connectivity property
- Two important concepts in a network are the ideas of centrality and prestige of an actor.
- Centrality more suited for
 undirected, prestige for directed

Measuring Networks: Centrality

Centrality refers to (one dimension of) location, identifying where an actor resides in a network. Mostly used for undirected networks.

- For example, we can compare actors at the edge of the network to actors at the center.
- In general, this is a way to formalize intuitive notions about the distinction between insiders and outsiders.

Measuring Networks: Centrality

Conceptually, centrality is fairly straight forward: we want to identify which nodes are in the 'center' of the network. Who is important based on network position.
Several types of centrality measures:

indegree

outdegree

betweenness

closeness

Measuring Networks: Centrality
 1.Centrality Degree

The most intuitive notion of centrality focuses on degree. Degree is the number of ties, and the actor with the most ties is the most important:

$$
C_{D}=d\left(n_{i}\right)=X_{i+}=\sum_{j} X_{i j}
$$

Measuring Networks: Centrality

2.Normalized Centrality Degree

Divide by the maximum, e.g. the number of nodes N : $C_{D}^{\prime}(n)=C_{D}(n) /(N-1)$

Measuring Networks: Closeness Centrality

A second measure of centrality is closeness centrality. An actor is considered important if he/she is relatively close to all other actors. Closeness is based on the inverse of the distance of each actor to every other actor in the network.

Closeness Centrality:

$$
C_{c}\left(n_{i}\right)=\left[\sum_{j=1}^{g} d\left(n_{i}, n_{j}\right)\right]^{-1}
$$

Normalized Closeness Centrality (g is is the maximum, e.g., the number of nodes in the network)

$$
C_{C}^{\prime}(n)=\frac{C_{C}(n)}{g-1}
$$

Closeness centrality simple example

$$
\begin{gathered}
\mathrm{A} \\
C_{c}^{\prime}(A)=\left[\frac{\sum_{j=1}^{N} d(A, j)}{N-1}\right]^{-1}=\left[\frac{1+2+3+4}{4}\right]^{-1}=\left[\frac{10}{4}\right]^{-1}=0.4
\end{gathered}
$$

Measuring Networks: examples of closeness Centrality

Distance Closeness normalized

Distance Closeness normalized

012344321	. 050	. 400
101234432	. 050	. 400
210123443	. 050	. 400
321012344	. 050	. 400
432101234	. 050	. 400
443210123	. 050	. 400
344321012	. 050	. 400
234432101	. 050	. 400
123443210	. 050	. 400

Measuring Networks: ex. Closeness Centrality

> Distance Closeness normalized 0123456 . 048 . 286
> 1012345 . 063 . 375
> 2101234 . 077 . 462
> 4321012 . 077 . 462
> 5432101 . 063 . 375
> 6543210 . 048 . 286

$$
C_{c}\left(n_{i}\right)=\left[\sum_{j=1}^{g} d\left(n_{i}, n_{j}\right)\right]^{-1}
$$

Measuring Networks: Betweenness Centrality

Model based on communication flow: A person who lies on communication paths can control communication flow, and is thus important.
Betweenness centrality counts the number of geodesic paths between i and k that actor j resides on. Geodesics are defined as the shortest path between points

Measuring Networks: Betweenness Centrality

$$
C_{B}\left(n_{i}\right)=\sum_{j<k} g_{j k}\left(n_{i}\right) / g_{j k}
$$

Where $g_{j k}=$ the number of geodesics (shortest) connecting $j k$, and $g_{j k}(n i)=$ the number of such paths that node i is on (count also in the start-end nodes of the path).

Can also compute edge betweenness in the very same way

betweeness for node 0
Betweenness of $0=0.0$

Betweenness of 1 : 4.666666666666667
betweeness for node 2
Pair (3,0) $-->1 / 1$
Pair (4,0) $-->1 / 1$
Pair $(6,0)-->1<2$
Pair (7,0) $-->1 / 2$
Pair $\langle 3,1\rangle=->1 / 2$
Pair (0, 3) $--->1$
Pair (1.3) $-->1$, 2
Pair (0,4) $-->111$
Pair (1,4) $-->1 / 2$
$\operatorname{Pair}(0,6)-->1 / 2$
$\operatorname{Pair}(0,7)=->1$
Betweenness of 2 : 8.0

betweeness for node 3
Pair $\langle 5,2$) $-->1 / 3$
Pair (2,5) --->1 / 3
Betweenness of $3: 0.666666666666666$

Pair (6,0)	--->1 / 2
Pair (7,0)	1
Pair (5,2)	1
Pair (6,2)	1
Pair ${ }^{\text {c }}$	1
Pair (6,3)	1
Pair (7,3)	
Pair (2,5)	1
Pair (0,6)	
Pair (2,6)	
Pair (3,6)	
Pair (0,7)	1
Pair (2,7)	1

Betweenness of $4: 8.666666666666666$ **************************************
betweeness for node 5
Pair (6,0) --->1 / 2
Pair $(7,0)=->1,2$
Pair $(3,1)=->1,2$
Pair (4.1) $-->1 / 2$
Pair (6.1) $-->1 / 1$
Pair $(7,1)=->1 / 1$
Pair $\langle 1,3\rangle-->1 / 2$
Pair $(6.3)-->11 / 2$
Pair $(7.3)=->1 / 2$
Pair (1,4) $-->1 / 2$
Pair (0,6) $-->1,2$
Pair $(1,6)=->1$
Pair $(1,1$
Pair
Pair (0.7) $=->112$
Pair $(1,7)=-->1,1$
Pair $(3,7)=->1$
Betweenness of 5 : 10.0

betweeness for node 6
Betweenness of 6 : 0.0

betweeness for node?
Betweenness of 7 : 0.0

ID	Betweenness	ID	Betweenness
0	0.0	4	8.67
1	4.67	5	10.0
2	8.0	6	0.0
3	0.67	7	0.0

Method (to avoid computing shortest paths for all nodes /edges)

BFS breadth first search

- For each node A:

1. BFS starting at A
2. Count the number of shortest paths from A to each other node
3. Based on this number, determine the amount of flow from A to all other nodes

Formal definition of betweenness

■ Directed graph $G=<V, E>$

- $\sigma(s, t)$: number of shortest paths between nodes s and t

■ $\sigma(s, t \mid v)$: number of shortest paths between nodes s and t that pass through v.

- $C_{B}(v)$, the betweenness centrality of v :

$$
C_{B}(v)=\sum_{s, t \in V} \frac{\sigma(s, t \mid v)}{\sigma(s, t)}
$$

- If $s=t$, then $\sigma(s, t)=1$

If $v \in(s, t)$ then $\sigma(s, t \mid v)=0$
https://www.cl.cam.ac.uk/teaching/1617/MLRD/slides/slides13.pdf

1) Recursive calculation of shortest paths

- $\sigma(s, t)$ can be calculated recursively:

$$
\sigma(s, t)=\sum_{u \in \operatorname{Pred}(t)} \sigma(s, u)
$$

- $\operatorname{Pred}(t)=\{u:(u, t) \in E, d(s, t)=d(s, u)+1\}$
 predecessors of t on shortest path from s
- $d(s, u)$: Distance between nodes s and u

■ This can be done by running Breadth First search with each node as source s once, for total complexity of $O(V(V+E))$.

Figure 3-18 from Easley and Kleinberg (2010)

How many shortest paths between A and K??

$$
\sigma(s, t)=\sum_{u \in \operatorname{Pred}(t)} \sigma(s, u)
$$

2) Recursive calculation of flow

$$
\begin{gathered}
\delta(s, t \mid v)=\frac{\sigma(s, t \mid v)}{\sigma(s, t)} \quad \begin{array}{l}
\text { Fraction of shortes paths between } \\
s \text { and } t \text { that } v \text { lies on }
\end{array} \\
\delta(s \mid v)=\sum_{t \in V} \delta(s, t \mid v) \quad \begin{array}{l}
\text { Betweenness of } v \text { w.r.t. paths } \\
\text { starting from } s
\end{array}
\end{gathered}
$$

Then Brandes (2001) shows:

$$
\delta(s \mid v)=\sum_{\substack{(v, w) \in E \\ w: d(s, w)=\underline{d(s, v)+1}}} \frac{\sigma(s, v)}{\sigma(s, w)} \cdot(1+\delta(s \mid w))
$$

$$
C_{B}(v)=\sum_{s \in V} \delta(s \mid v)
$$

Other examples (node betweenness)

$$
C_{B}\left(n_{i}\right)=\sum_{j<k} g_{j k}\left(n_{i}\right) / g_{j k}
$$

Measuring Networks: Information Centrality

It is quite likely that information can flow through paths other than the geodesic. The Information Centrality score uses all paths in the network, and weights them based on their length.

Measuring Networks: Prestige

- The term prestige is used for directed networks since for this measure the direction is an important property of the relation.
- In this case we can define two different types of prestige:
- one for outgoing arcs (measures of influence),
- one for incoming arcs (measures of support).
- Examples:
- An actor has high influence, if he/she gives hints to several other actors (e.g. in Yahoo! Answers, or if he/she has many followers).
- An actor has high support, if a lot of people vote for him/her (many "likes", many friends)
- Very similar to the concept of hubs and authorities in HITS algorithm

Measures of prestige in directed networks

- Influence and support
- Influence domain
- Hubs and authorities
- Brockers

Measuring prestige: influence and support

- Influence and support: According to the direction/meaning of a relation, in and outdegree represent support or influence. (e.g., likes, votes for,. . .).

$$
\begin{aligned}
& \operatorname{InDegree}(x)=\# \text { inco } \min g \operatorname{edges}(x) \\
& \operatorname{InDegree}^{N}(x)=\frac{\# \text { inco } \min g \operatorname{edges}(x)}{\max _{y \in \text { network }}\left(\operatorname{InDegree}{ }^{N}(y)\right)}
\end{aligned}
$$

Measuring prestige: influence domain

- Influence domain: The influence domain of an actor (node) in a directed network is the number (or proportion) of all other nodes which are connected by a path to this node.

All other actors are in influence domain of actor 1: $\operatorname{Prest}(1)=10 / 10=1$.

Limits of Influence domain

- Influence domain has an important limitation: all the nodes contribute equally to influence.
- Choices by actors 2, 3, and 7 are more important to person 1 than indirect choices by $4,5,6$, and 8 . Individuals 9 and 10 contribute even less to the prestige of 1.

Measuring prestige: Hubs and Authorities, Page Rank

- Hubness is a good measure of influence
- Authority is a good measure of support
- Kleinberg's algorithm (HITS) to compute authority and hubness degree of nodes, same as for link analysis
- Page Rank is a good measure of support
- HITS, Page Rank: see previous lessons

$$
a_{p}=\text { the sum of } h_{i} \text { for all nodes } i \text { pointing to } p
$$

Example

If Mrs. Green is the boss, employees referring directly to her are more important

High-level scheme

- Hubs and authorities can be computed in sub-communities, i.e. on parts of a large social network graph, or on the entire graph
- Initial step (create a sub-graph):

1. Extract from the graph a base set of users that could be good hubs or authorities (e.g. with many incoming or outgoing links).
2. From these, identify a small set of top hub and authority users;
\rightarrow using the iterative HITS algorithm.

Measuring prestige: Brockers (bridges)

- Network brokerage: Links between different groups/communites (very similar to betweenness)

Local cut points:
Brokerage through overlapping group membership

Measuring prestige: Brockers

Finding Brockers

- Brockers are "intermediaries", people that create relationships between communities
- As for graph representation, a brocker is a node that, if removed from the graph, reduces graph connectivity. For example, it causes the creation of disconnected components (Jenny, Jack and John in the graph)

- Brockers are also called key separators

Example of key separator

Algorithms to identify brockers are all based on some measure of the graph connectivity.

Algorithm for KPP_NEG (Keblady 2010)

- Let C_{G} be a measure of graph connectivity (e.g reachability, see later) for a graph G ; V is the set of actors in G (nodes, vertexes)
- Algorithm KPP-neg (greedy algorithm)

Compute proposed measure of entire graph, C_{G}
$\forall v_{i} \in V$, remove v_{i} from the graph
Compute $C_{G-\left\{v_{i}\right\}}$ for the graph $G-\left\{v_{i}\right\}$.
Rank the nodes based on $\left|C_{G}-C_{G-\left\{v_{i}\right\}}\right|$ difference. Larger difference ranks higher.
Top ranked nodes are considered asey separators.

KPP-neg (2)

- A measure of connectivity: reachability

Pseudocode 1: Reach $\left(v_{\mathrm{i}}\right)$ - number of nodes reachable from v_{i}
Go to Source vertex v_{i} and mark it as visited and add to the set Reach $\left(v_{i}\right)$
For each adjacent vertex, A, of v_{i},
If A is not already visited,
Add adjacent vertex A to the set $\operatorname{Reach}\left(v_{i}\right)$ and mark A as visited Call Reach(A)

$$
C_{G}=\sum_{i=1}^{n} \operatorname{Reach}\left(v_{\mathrm{i}}\right)
$$

Example

$R(E)=E, C, A, B, D, F$

Example (2)

NOTE: node reachability is a more accurate measure than previously seen "REACH"

Graph-based measures of social influence

1. Use graph-based methods/algorithms to identify "relevant players" in the network Relevant players = more influential, according to some criterion
2. Use graph-based methods to identify global network properties and communities (community detection)
3. Use graph-based methods to analyze the "spread" of information

Global Network Analysis

- Global properties of the network
- Community detection
- Spread of influence

Network Centrality

If we want to measure the degree to which the graph as a whole is centralized, we look at the dispersion of centrality:

Simple!: variance of the individual centrality scores.

$$
S_{D}^{2}=\left[\sum_{i=1}^{g}\left(C_{D}\left(n_{i}\right)-\bar{C}_{d}\right)^{2}\right] / g
$$

Or, using Freeman's general formula for centralization:

$$
C_{D}=\frac{\sum_{i=1}^{g}\left[C_{D}\left(n^{*}\right)-C_{D}\left(n_{i}\right)\right]}{[(g-1)(g-2)]}
$$

$C_{D}\left(n^{*}\right)$ is the maximum obtained value, therefore we are measuring the dispersion around that value

Network Centrality

Degree Centralization Scores

Freeman: . 07
Variance: . 20

Global Network Analysis

- Global properties of the network
- Community detection
- Spread of influence

Community detection

- Community: It is formed by individuals such that those within a group interact with each other more frequently than with those outside the group
- a.k.a. group, cluster, cohesive subgroup, module in different contexts
- Community detection: discovering groups in a network where individuals' group memberships are not explicitly given
- (next lesson)

