Social Networks Measures

* Single-node Measures: Based on some
properties of specific nodes

* Graph-based measures: Based on the graph-
structure of the network



Graph-based measures of social
influence

Previously surveyed measures of influence, such as buzz,
applause etc. are based on surface metrics (e.g. number of
retweets, etc): graph-based measures go more in-depth.

Objective here: model the social network as a graph

Use graph-based methods/algorithms to identify “relevant
players” in the network
— Relevant players = more influential, according to some criterion

Use graph-based methods to identify communities
(community detection)

Use graph-based methods to analyze the “spread” of
information



Graph-based measures of social
influence

* Use graph-based methods/algorithms to
identify “relevant players” in the network

— Relevant players = more influential, according to
some criterion
* Use graph-based methods to identify global
network properties and communities
(community detection)

e Use graph-based methods to analyze the
“spread” of information



Modeling a Social Network as a

in a certain network

EDGE= “connection, edges, arcs, lines, ties” is defined by some type
of relationship between these actors (e.g. friendship, reply/re-tweet,
partnership between connected companies..)



SN = graph

* A network can then be represented as a graph
data structure

 We can apply a variety of measures and
analysis to the graph representing a given SN

* Edgesin a SN can be directed or undirected
(e.g. friendship, co-authorship are usually
undirected, emails are directed)



What is the meaning of edges?




Facebook in undirected (friendship is
mutual)
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Twitter is a directed graph (friendship
is not necessarily bidirectional)
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Social Network as a graph

In general, a relation can be:
Binary or Valued
Directed or Undirected

o

Directed, binary

0" e

Directed, Valued

Undirected, Valued



Example of directed, valued: Sentiment relations among
parties during a political campaign.

Color: positive (green) negative (red).

Intensity (thikness of edges): related to number of mutual
references
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Graph-based measures of social influence:
key players

Key players

Using graph theory, we can identify
key players in a social network

Key players are nodes (or actors, or

vertexes) with some measurable : : T
connectivity property S SR
Two important concepts in a L A

network are the ideas of centrality

and prestige of an actor.

Centrality more suited for
undirected, prestige for directed



Measuring Networks: Centrality

Centrality refers to (one dimension of) location,
identifying where an actor resides in a network.
Mostly used for undirected networks.

e For example, we can compare actors at the
edge of the network to actors at the center.

e |n general, this is a way to formalize
intuitive notions about the distinction
between insiders and outsiders.



Measuring Networks: Centrality

Conceptually, centrality is fairly straight forward:
we want to identify which nodes are in the
‘center’ of the network. Who is important based
onh network position.

Several types of centrality measures:

Y
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Measuring Networks: Centrality
1.Centrality Degree

The most intuitive notion of centrality focuses on degree. Degree is the
number of ties, and the actor with the most ties is the most important:
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Measuring Networks: Centrality
2.Normalized Centrality Degree

Divide by the maximum, e.g. the number of nodes N:
C’'p(n)=Cp(n)/(N-1)



Measuring Networks: Closeness Centrality

A second measure of centrality is closeness centrality. An actor is
considered important if he/she is relatively close to all other actors.

Closeness is based on the inverse of the distance of each actor to
every other actor in the network.

Closeness Centrality:

C.(n)=| S d(nn,)

Normalized Closeness Centrality (g is is the maximum, e.g.,
the number of nodes in the network)

Cc(n)
g—1

C'c(n) =



Closeness centrality simple example
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Measuring Networks: examples of closeness Centrality

Distance Closeness normalized

01111111 .143 1.00 ¢ -1
10222222 .077 .538 Cc(n,«){zd("p”j)}
12022222 .077 .538 =
12202222 .077 .538

12220222 .077 .538

12222022 .077 .538

12222202 .077 .538

12222220 .077 .538

Distance Closeness normalized

012344321 .050 .400
101234432 .050 .400
210123443 .050 .400
321012344 .050 .400
432101234 .050 .400
443210123 .050 .400
344321012 .050 .400
234432101 .050 .400
123443210 .050 .400




Measuring Networks: ex. Closeness Centrality
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Measuring Networks: Betweenness Centrality

Model based on communication flow: A person who lies on
communication paths can control communication flow, and is

thus important.
Betweenness centrality counts the number of geodesic paths
between i and k that actor j resides on. Geodesics are defined as

the shortest path between points




Measuring Networks: Betweenness Centrality

CB(”;‘) — Zgjk(ni)/gjk

j<k

Where g; = the number of geodesics (shortest)
connecting jk, and g (ni)= the number of such
paths that node i is on (count also in the start-end
nodes of the path).

Can also compute edge betweenness in the very
same way



betweeness for node 4

Pair €6,0) -—->1 / 2
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Method (to avoid computing shortest
paths for all nodes /edges)

BFS breadth first search

* For each node A:

1. BFSstarting at A

2. Count the number of shortest paths from A to
each other node

3. Based on this number, determine the amount of
flow from A to all other nodes



Formal definition of betweenness

m Directed graph G=< V ,E >
m o(s, t): number of shortest paths between nodes s and ¢

m o(s, t|v): number of shortest paths between nodes s and t
that pass through v.

m Cp(Vv), the betweenness centrality of v:

Cav) = Y- “o

mlfs=1t theno(s.t) =1
If v (s, f) then o(s, t|v) = 0

https://www.cl.cam.ac.uk/teaching/1617/MLRD/slides/slides13.pdf



https://www.cl.cam.ac.uk/teaching/1617/MLRD/slides/slides13.pdf

1) Recursive calculation of shortest
paths

S
m o(s, t) can be calculated recursively: /(’\
¢ A
0
o(s.ty= Y o(s.u) o s
uePred(t) 4
- /
m Pred(t) = {u: (u,t)e E,d(s,t)=d(s,u)+1} t

predecessors of t on shortest path from s
B d(s,u): Distance between nodes s and u

m This can be done by running Breadth First search with
each node as source s once, for total complexity of
O(V(V+E)).

Example if there are 3 shortest paths between s and ul
and 2 between s and u2, then, there will be 5 shortest
paths between s and t



Figure 3-18 from Easley and Kleinberg (2010)

How many shortest paths between A and K??



We label each node Ni
\ / top down from A towards
6( K) K with the number of shortest
- paths from A

ue Pred(t)



2) Recursive calculation of flow

o(s.t|V) Fraction of shortes paths between
o(s.t) sandtthatvlieson

—_

Betweenness of v w.r.t. paths
starting from s

i(s, t|v) =

S = 3505, 11)

teV

Then Brandes (2001) shows:

ssy= Y 28D s(siw))

o(s,w)

(v,w)eE
w: d(s,w)=d(s,v)+1 .
w is a node «below»

And: node v

Ca(v) =) _ 4(s|v)

seV

d(s|v) can also be iteratively calculated bottom up!



2

(v,w)eE
w: d(s,w)=d(s,v)+1

o (s, v) /o (s,w).(1 + 5(s|w))



Betweenness of w w.r.t. paths

§(A1K)=0
starting from s

5(slv) = > (1 +Ho(slw))
(v,w)eE

w: d(s,w)=d(s,v)+1



o(s|v)

@i
vweE

w: d(s w)=d(s,v)+1



d(S‘V)

(v,w)eE
w: d(s,w)=d(s,v)+1

o(s,v)/o(s,w).(1+d(s|w))



Other examples (node betweenness)

CB(ni) — Zgjk(ni)/gjk

j<k



Measuring Networks: Information Centrality

It is quite likely that information can flow through paths other than
the geodesic. The Information Centrality score uses all paths in the
network, and weights them based on their length.

10 14 17 18 17 14 10

Computationall very demanding for large graphs!!



Measuring Networks: Prestige

The term prestige is used for directed networks since for
this measure the direction is an important property of the

relation.

In this case we can define two different types of prestige:

— one for outgoing arcs (measures of influence),

— one for incoming arcs (measures of support).

Examples:

— An actor has high influence, if he/she gives hints to several other
actors (e.g. in Yahoo! Answers, or if he/she has many followers).

— An actor has high support, if a lot of people vote for him/her
(many “likes”, many friends)

— Very similar to the concept of hubs and authorities in HITS
algorithm



Measures of prestige in directed
networks

nfluence and support

nfluence domain

Hubs and authorities
Brockers



Measuring prestige: influence and
support

* Influence and support: According to the
direction/meaning of a relation, in and
outdegree represent support or influence.
(e.g., likes, votes for,. . . ).

InDegree(x)=# incoming edges(x)

‘\. InDegree (x) = # incoming edges(x)

(k l g + yel;?e?v)v(ork(lnDegreeN( »))
® ¢ ® ¢



Measuring prestige: influence domain

* Influence domain: The influence domain of an
actor (node) in a directed network is the
number (or proportion) of all other nodes
which are connected by a path to this node.

All other actors are in influence domain of actor 1: Prest(1)=10/10=1.



Limits of Influence domain

* Influence domain has an
important limitation: all the
nodes contribute equally to
influence.

* Choices by actors 2, 3, and
/7 are more important to
person 1 than indirect
choices by 4, 5, 6, and 8.
Individuals 9 and 10
contribute even less to the
prestige of 1.




Measuring prestige: Hubs and
Authorities, Page Rank

Hubness is a good measure of
influence

Authority is a good measure of
support

Kleinberg’s algorithm (HITS) to
compute authority and hubness
degree of nodes, same as for link
analysis

Page Rank is a good measure of
support

HITS, Page Rank: see previous
lessons

ap = the sum of h; for all nodes ¢ pointing to p

I\

. .

. hy, = the sum of q; for all nodes 1
pointed to by p



Example

r N Assooate /

Assoqate
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' ®  —Assodate— ‘
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Associate 8 " Assodate ~ o~
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PEREA, 1
L / E E W‘a Accnmatro CH[CA, Rafael

If Mrs. Green is the boss, employees referring directly to her are more important



High-level scheme

« Hubs and authorities can be computed in
sub-communities, i.e. on parts of a large
social network graph, or on the entire
graph

 |nitial step (create a sub-graph):

1. Extract from the graph a base set of users
that could be good hubs or authorities (e.q.
with many incoming or outgoing links).

2. From these, identify a small set of top hub
and authority users;

—using the iterative HITS algorithm.




Measuring prestige: Brockers (bridges)

* Network brokerage: Links between different
groups/communites (very similar to betweenness)

Local bridging ties:
Brokerage of disconnected
groups:

“spanning structural holes”

Local cut points:
Brokerage through
overlapping group
membership



Measuring prestige: Brockers

Finding Brockers

* Brockers are “intermediaries”,
people that create relationships
between communities

* As for graph representation, a
brocker is a node that, if removed
from the graph, reduces graph
connectivity. For example, it
causes the creation of
disconnected components (Jenny,

Jack and John in the graph)

* Brockers are also called key
separators




Example of key separator

Broker ‘/ ®
* 1 ’k

‘ AN
J -~ \ /

Algorithms to identify brockers are all based on some
measure of the graph connectivity.



Algorithm for KPP_NEG (Keblady 2010)

* Let C; be a measure of graph connectivity (e.g
reachability, see later) for a graph G; V is the
set of actors in G(nodes, vertexes)

e Algorithm KPP-neg (greedy algorithm)

Compute proposed measure of entire graph, Cg;
VY v; €V, remove v; from the graph
Compute C;_g,, 4 for the graph G — {v;}.
Rank the nodes based on |C;- C;_y, | difference. Larger difference ranks higher.

Top ranked nodes are considered a key separat@




KPP-neg (2) 2

* A measure of connectivity: reachability

Pseudocode 1: Reach(v;) — number of nodes reachable from v;

Go to Source vertex v; and mark 1t as visited and add to the set Reach(v;)
For each adjacent vertex, A , of v;,
If A 1s not already visited,
Add adjacent vertex A to the set Reach(v;) and mark A as visited
Call Reach(A)

Ce =) ?:1 Reach(v;)



Example

R(E)= E,C,A,B,D,F |



Example (2)

R(F)=F,B

NOTE: node reachability is a more accurate measure
than previously seen “REACH”



Graph-based measures of social
influence

1. Use graph-based methods/algorithms to
identify “relevant players” in the network

Relevant players = more influential, according to
some criterion

2. Use graph-based methods to identify global
network properties and communities
(community detection)

3. Use graph-based methods to analyze the
“spread” of information



Global Network Analysis

* Global properties of the network
* Community detection
e Spread of influence



Network Centrality

If we want to measure the degree to which the graph as a whole
is centralized, we look at the dispersion of centrality:

Simple!: variance of the individual centrality scores.

- . _
2 ~ N2

St =| Y(Crn)-C) |/ g

Or, using Freeman’ s general formula for centralization:

- Zil [CD (n)-C, (nz)]
[(g-D(g-2)]

Cp(n™) is the maximum obtained value , therefore we are
measuring the dispersion around that value

CD



Network Centrality

Degree Centralization Scores

2
3]
VAV
2
2]
i i ‘ B‘E 2]

) Freeman: 0.0
Freeman: 1.0 Freeman: .02 _ _
Variance: 3.9 Variance: 17 Variance: 0.0

[1] 2] 2] 2] 2] 2] (1]

Freeman: .07
Variance: .20



Global Network Analysis

* Global properties of the network
e Community detection
e Spread of influence



Community detection

 Community: It is formed by individuals
such that those within a group interact with
each other more frequently than with
those outside the group

—a.k.a. group, cluster, cohesive subgroup,
module in different contexts

« Community detection: discovering groups
in a network where individuals’ group
memberships are not explicitly given

* (next lesson)
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