
Word embeddings for IR
An alternative way to go beyond keyword matching

Word Embedding approach: main ideas

• Represent each word with a low-dimensional vector (like for
LSI)
• Word similarity = vector similarity (two words with similar

vectors, are similar)
• Key idea: learn to predict surrounding words in the context of

every word, or, learn to predict a word from its surrounding
context
• Faster and, wrt SVD, can easily incorporate a new

sentence/document or add a new word to the vocabulary

2

Key idea: semantic similarity among words depends on similarity among
word contexts in documents

3

Co-occurrences are considered in a left-right context

Let’s consider the following example…

• We have four (tiny) documents:

Document 1 : “seattle seahawks jerseys”
Document 2 : “seattle seahawks highlights”
Document 3 : “denver broncos jerseys”
Document 4 : “denver broncos highlights”

4

Basic difference with previous methods (e.g.
LSI with SVD)

5

SVD would group words based on co-occurrences in documents

If we use context vectors:

6

Every position in the vector is a tuple <word, distance from “center”
word> an tells us how many times we see that word in the left(right)

context of a word (e.g. seahawks is found 2 times in position +1
to the right of seattle) è p(wt±i/wt)

Embeddings
• These “context vectors” are very high dimensional

(thousands, or even millions) and very sparse.
• But there are techniques to learn lower-dimensional dense

vectors for words using the same intuitions.
• These dense vectors are called embeddings.
• Rather than using matrix factorization techniques (such as

SVD) we use deep neural methods.
• The objective is to represent each word with a dense

vector, such that similar words have similar vectors
• We can, as for LSI, consider the dimensions of this dense

space as “concepts” or “semantic domains”

7

Word Embeddings – Skip Grams Model
• Objective: Given a specific word in the middle of

a sentence (the input word wt) (e.g., broncos)
look at the words nearby and pick one at random.
The neural network should tell us the probability
for every word in our vocabulary of being the
“nearby word” that we chose.

• "nearby” means that there is a "window size"
parameter m to the algorithm. A typical window
size might be 5, meaning 5 words behind and 5
words ahead (10 in total).

• Our examples hereafter will be with smaller m (1
or 2)

• Note that the system only predicts «nearby-
ness» not the exact position!

8

Training phase

• The original Skip-gram’s objective is to maximise 𝑷 𝒘𝒄 𝒘𝒕 — the probability of wc being
predicted as wt’s context for all training pairs (e.g., denver being nearby broncos) . If we
define the set of all training pairs as D we can formulate this objective as maximising the
following expression:

#
(%!,%')∈*

log(𝑃 𝑤𝑐 𝑤𝑡)

• To calculate 𝑃 𝑤𝑐 𝑤𝑡 we will need a means to quantify the «closeness» of the target-word
wt and the context-word wc.

• In Skip-gram this closeness is computed using the dot product between the input-
embedding of the target and the output-embedding of the context: 𝒖𝒄𝒕=𝒆𝒕 4 𝒐𝒄 where 𝑒' is a
dense vector or «embedding» of wt and 𝑜8 is the dense vector or « embedding» of wc.

• The idea is then that words that occur in similar contexts (but do not necessarily co-occur)
should have have similar input embeddings and words that tend to co-occur in same
contexts should have similar input and output embeddings.

Training phase

The similarity function (dot product) is turned into a probability using the
SOFTMAX function, so objective is to learn all 𝑢𝑐, 𝑢𝑘 such as tomaximize:

∑(%!,%")∈* log(𝑃 𝑤𝑐 𝑤𝑡)= ∑(%!,%")∈* log(
DEFG

∑HIJ
|L| DEHG

)

If |V| is the dimension of the vocabulary, and N is the dimension of
embedding vector (an hyperparameter), then our task si to learn two
matrixes, E |V|xN and O Nx|V| where V is the dimension of vocabulary
and N the dimension of the dense embedding space (N<<V)
E is the input embegging matrix that projects a word onto a N-dimensional
dense space.
O is the output embedding matrix where each row is the embedding of
context words

Example: predicting seahawks in the vicinity
of seattle

wt=seattle 0.3, 0.5, 0.1, 2.0
0.3
0.5
0.1
2.0

0.2
0.5
0.2
0.2

0.73

𝑒".$%

∑&'(
|*| 𝑒+#$

seahawks

Probability
(prediction) of
seahawks in the
vicinity of seattle

One-hot encoding
vector

ut, input embedding of
«seattle»

u3=uct=useahawks,seattle

Output embedding of
seahawks

Matrixes E and O are initially unknown – how
do we learn these numbers?

First, a training set of document is
scanned and word pairs are extracted.

Each word pair represents a tuple
𝑤𝑐, 𝑤𝑡
Tuples are evidences of contexts

In this example the blue word is the wt and the other words are the wc

Suppose we want to learn predicting P(quick/brown) and P(fox/brown)

.%.'

∑#()
|+| .,#$

=0.6

Probability of
quick in the
vicinity of brown

V: house, quick, brown, fox uquick,brown

ufox,brown

ground-truth one-hot
vectors

Error (softmax-true) is used to adjust values in E and O
with the objective of «reducing» the gap

between predicted and true value (backpropagation algorithm,
see neural networks)

Negative sampling (1)

• The original softmax objective of Skip-gram is highly computationally
expensive, as it requires scanning through the output-embeddings
of all words in the vocabulary in order to calculate the sum from the
denominator. And this must be repeated for any input pair, and for
many epochs
• And typically such vocabularies contain hundreds of thousands of

words. Because of this inefficiency most implementations use an
alternative, negative-sampling objective, which rephrases the
problem as a set of independent binary classification tasks.

Negative sampling (2)

• Instead of defining the complete probability distribution over words, the
model learns to differentiate between the correct training pairs retrieved
from the corpus and a set of incorrect, randomly generated pairs.
• For each correct pair the model draws m negative ones — with m being a

hyperparameter.
• All negative samples have the same wt (e.g., seattle) as the original training

word, but their context words wc are drawn at random from an arbitrary
noisy distribution.
• For the training pair (seattle, seahawks) the incorrect ones could be

(seattle, logarithm) or (seattle, monkey). The new objective of the model is
to maximise the probability of the correct samples coming from the corpus
and minimise the corpus probability for the negative samples, such as
(seattle, logarithm) .

Negative sampling (2)

• Let’s set D to be the set of all correct pairs and D’ to denote a set of
all negatively sampled |D| × m pairs. We will also define P(C = 1|wt,
wc) to be the probability of (wt, wc) being a correct pair, originating
from the corpus.
• Given this setting, the negative-sampling objective is defined as

maximising:
∑"G"F∈$ log 𝑃(𝐶 = 1|𝑤% , 𝑤&) - ∑"G"F∈$' log (1 −𝑃(𝐶 = 1|𝑤% , 𝑤&))
where:

𝑃(𝐶 = 1|𝑤% , 𝑤&)=𝜎(𝑢&)= (
()*MEF

(uc output embedding of wc)

Word embedding hyperparameters

• |V| dimension of vocabulary
•N dimension of embeddibg vectors
•m dimension of context for extracting

word pairs

17

Matrixes D and O

• Several implementations:
word2vect and Glove among
the most well known
• Google word2vect original

paper has N=300 and
|V|=10,000
• The matrix D is what we are

really interested in: the
embedding matrix.
• It has the property that words

with similar embedding
vectors are similar.

18

19

20

21

Applications of Word Embeddings to IR

• Word embeddings are the “hot new” technology
for document ranking
• Lots of applications wherever knowing word

contexts or similarity helps predicting users’
interests:
• Synonym handling in search
• Query expansion
• Document “aboutness”
• Machine translation
• Sentiment analysis
• ….

22

Applications of Word Embeddings to IR:
Google RankBrain
• Google’s RankBrain – almost nothing is publicly known
• Bloomberg article by Jack Clark (Oct 26, 2015):
• http://www.bloomberg.com/news/articles/2015-10-26/google-turning-

itslucrative-web-search-over-to-ai-machines
• A result re-ranking system

23

http://www.bloomberg.com/news/articles/2015-10-26/google-turning-itslucrative-web-search-over-to-ai-machines

Weakness of Word Embedding

• Very vulnerable, and not a robust concept
• Can take a long time to train (despite negative sampling and

other “tricks”)
• Non-uniform results
• Hard to understand and visualize
• Emerging technique, yet not sufficiently robust and well

understood
• Important: it learns the same embedding for different senses

e.g. “bank account” and “bank of the river.”

New trend: bidirectional encoders

• BERT Bidirectional Encoder Representations from Transformers
https://arxiv.org/pdf/1810.04805.pdf

• BERT is Google latest search algorithm based on deep neural networks
• It has been proved to improve:

• Named entity identification
• Next sentence prediction (conversational analysis)
• Co-reference (pronouns)
• Question answering
• Summarization
• Ambiguity

https://arxiv.org/pdf/1810.04805.pdf

Basic idea

• Word embeddings are context independent

• BERT is context-aware (train on contextual representations)

Better understanding of language nuances

+1 on final grade for presenting BERT
next week (20 minutes max, max 2
presentations)
lots of BERT-based papers since mid-2019, just read the original paper and the necessary
ML background (LSTM, Transformers)

