
5.LSI.pdf

Algebraic models to improve
ranking and query expansion

Latent Semantic Indexing, Word
Embeddings

1

Is there anything more advanced than co-
occurrences to learn word correlations?

n With the standard term-document matrix encoding,
each term can be interpreted as a vector where
dimensions are documents (just like each document
is interpreted as a vector and dimensions are terms)

n Term vectors have no inherent similarity, even if
terms are related, e.g.:
Web search: [0 0.2 0 0 0 0 0 0 0 0 1 0 0 0 0]
Information retrieval:[0 0 0 0 0 0 0 0.3 0 0 0 0 1 0 0]

n If query has “web search” and document has
“information retrieval” , then our query and document
vectors are orthogonal. Dot product is zero. But
these two words are very related!

Can we directly learn term
relations?

n Basic IR is scoring on qT.d/K (dot product of query
and document vectors)

n No treatment of synonyms; no machine learning
n Can we learn a matrix W to rank via qTWd, rather than

qT.d?

n Where W is a matrix that captures similarity between
words (e.g., “search” and “information retrieval”)? 3

!q •
!
d
!q
!
d

Latent Semantic Indexing

4

Latent Semantic Indexing

n Term-document matrices are very large,
though most cells are “zeros”

n But the number of topics that people talk
about is smaller (in some sense)
n Clothes, movies, politics, …
n Each topic can be represented as a

cluster of (semantically) related terms,
e.g.: clothes=golf, jacket, shoe..

n Can we represent the term-document
space by a lower dimensional “latent”
space (latent space=set of topics)?

5

Searching with latent topics

6

n Given a collection of documents, LSI learns clusters
of frequently co-occurring terms (ex: information
retrieval, ranking and web)

n If you query with ranking, information
retrieval LSI “automatically” extends the search
to documents including also (and even ONLY) web ,
search

7

Golf
Car

Topgear
Petrol
GTI

Golf
Car

Clarkson
Petrol
Badge

Golf
Petrol

Topgear
Polo
Red

Golf
Tiger

Woods
Belfry
Tee

Selection based on ‘Golf’

Golf
Car

Topgear
Petrol
GTI

Golf
Car

Clarkson
Petrol
Badge

Golf
Petrol

Topgear
Polo
Red

Golf
Tiger

Woods
Belfry
Tee

Car
Petrol

Topgear
GTI
Polo

Document base (20)

Motor
Bike
Oil

Petrol
Tourer

Bed
lace
legal
Petrol
button

soft
Petrol

cat
line

yellow

wind
full
sail

harbour
beach

report
Petrol

Topgear
June

Speed

Fish
Pond
gold

Petrol
Koi

PC
Dell
RAM
Petrol
Floppy

Core
Petrol
Apple

Pip
Tree

Pea
Pod

Fresh
Green
French

Lupin
Petrol
Seed
May
April

Office
Pen
Desk

Petrol
VDU

Friend
Pal

Help
Petrol
Can

Paper
Petrol
Paste
Pencil
Roof

Card
Stamp
Glue

Happy
Send

Toil
Petrol
Work
Time
Cost

With standard VSM
4 documents are selected

Golf

Golf
Car

Topgear
Petrol
GTI

Golf
Car

Clarkson
Petrol
Badge

Golf
Petrol

Topgear
Polo
Red

Golf
Tiger

Woods
Belfry
Tee

Selection based on ‘Golf’

Golf
Car

Topgear
Petrol
GTI

Golf
Car

Clarkson
Petrol
Badge

Golf
Petrol

Topgear
Polo
Red

Golf
Tiger

Woods
Belfry
Tee

Car
Petrol

Topgear
GTI
Polo

20 documents

Motor
Bike
Oil

Petrol
Tourer

Bed
lace
legal
Petrol
button

soft
Petrol

cat
line

yellow

wind
full
sail

harbour
beach

report
Petrol

Topgear
June

Speed

Fish
Pond
gold

Petrol
Koi

PC
Dell
RAM
Petrol
Floppy

Core
Petrol
Apple

Pip
Tree

Pea
Pod

Fresh
Green
French

Lupin
Petrol
Seed
May
April

Office
Pen
Desk

Petrol
VDU

Friend
Pal

Help
Petrol
Can

Paper
Petrol
Paste
Pencil
Roof

Card
Stamp
Glue

Happy
Send

Toil
Petrol
Work
Time
Cost

The most relevant words
associated with golf in these

docs are:
Car, Topgear and Petrol

Rank of
selected

documents

Car
2 *(20/3) = 13

Topgear
2 *(20/3) = 13

Petrol
3 *(20/16) = 4

tf.idf

Golf
Car

Topgear
Petrol
GTI

Golf
Car

Clarkson
Petrol
Badge

Golf
Petrol

Topgear
Polo
Red

Golf
Tiger

Woods
Belfry
Tee

Rank of
selected

docs
Selezione basata su ‘Golf’

Car
2 *(20/3) = 13

Topgear
2 *(20/3) = 13

Petrol
3 *(20/16) = 4

Golf
Car

Topgear
Petrol
GTI

Golf
Car

Clarkson
Petrol
Badge

Golf
Petrol

Topgear
Polo
Red

Golf
Tiger

Woods
Belfry
Tee

Car
Petrol

Topgear
GTI
Polo

20 docs

Motor
Bike
Oil

Petrol
Tourer

Bed
lace
legal
Petrol
button

soft
Petrol

cat
line

yellow

wind
full
sail

harbour
beach

report
Petrol

Topgear
June

Speed

Fish
Pond
gold

Petrol
Koi

PC
Dell
RAM
Petrol
Floppy

Core
Petrol
Apple

Pip
Tree

Pea
Pod

Fresh
Green
French

Lupin
Petrol
Seed
May
April

Office
Pen
Desk

Petrol
VDU

Friend
Pal

Help
Petrol
Can

Paper
Petrol
Paste
Pencil
Roof

Card
Stamp
Glue

Happy
Send

Toil
Petrol
Work
Time
Cost

If we consider the co-occurring terms
with higher tf*idf,

car e topgear turn out to
be related to Golf

more than petrol, wood,…

Golf
Car

Topgear
Petrol
GTI

Golf
Car

Clarkson
Petrol
Badge

Golf
Petrol

Topgear
Polo
Red

Golf
Tiger

Woods
Belfry
Tee

Car
Petrol

Topgear
GTI
Polo

20 docs

Motor
Bike
Oil

Petrol
Tourer

Bed
lace
legal
Petrol
button

soft
Petrol

cat
line

yellow

wind
full
sail

harbour
beach

report
Petrol

Topgear
June

Speed

Fish
Pond
gold

Petrol
Koi

PC
Dell
RAM
Petrol
Floppy

Core
Petrol
Apple

Pip
Tree

Pea
Pod

Fresh
Green
French

Lupin
Petrol
Seed
May
April

Office
Pen
Desk

Petrol
VDU

Friend
Pal

Help
Petrol
Can

Paper
Petrol
Paste
Pencil
Roof

Card
Stamp
Glue

Happy
Send

Toil
Petrol
Work
Time
Cost

Golf
Car

Topgear
Petrol
GTI

Golf
Car

Clarkson
Petrol
Badge

Golf
Petrol

Topgear
Polo
Red

Golf
Tiger

Woods
Belfry
Tee

rank
df selected

docs
Selection based on‘Golf’

Car
2 *(20/3) = 13

Topgear
2 *(20/3) = 13

Petrol
3 *(20/16) = 4

Selection based on the semantic domain of Golf
Golf
Car

Topgear
Petrol
GTI

Golf
Car

Clarkson
Petrol
Badge

Golf
Petrol

Topgear
Polo
Red

Golf
Tiger

Woods
Belfry
Tee

Car
Wheel

Topgear
GTI
Polo

We now search with all
the words in the “semantic domain” of Golf .

The list of retrieved docs now
is based on Golf and the other

related words

Golf
Car

Topgear
Petrol
GTI

Golf
Car

Clarkson
Petrol
Badge

Golf
Petrol

Topgear
Polo
Red

Golf
Tiger

Woods
Belfry
Tee

rank
of

selected
docs

Selezione basata su ‘Golf’

Selection based on semantic domain
Car

2 *(20/3) = 13
Topgear

2 *(20/3) = 13
Petrol

3 *(20/16) = 4

Rank 2617 17 030

Golf
Car

Topgear
Petrol
GTI

Golf
Car

Clarkson
Petrol
Badge

Golf
Petrol

Topgear
Polo
Red

Golf
Tiger

Woods
Belfry
Tee

Car
Petrol

Topgear
GTI
Polo

20 docs

Motor
Bike
Oil

Petrol
Tourer

Bed
lace
legal
Petrol
button

soft
Petrol

cat
line

yellow

wind
full
sail

harbour
beach

report
Petrol

Topgear
June

Speed

Fish
Pond
gold

Petrol
Koi

PC
Dell
RAM
Petrol
Floppy

Core
Petrol
Apple

Pip
Tree

Pea
Pod

Fresh
Green
French

Lupin
Petrol
Seed
May
April

Office
Pen
Desk

Petrol
VDU

Friend
Pal

Help
Petrol
Can

Paper
Petrol
Paste
Pencil
Roof

Card
Stamp
Glue

Happy
Send

Toil
Petrol
Work
Time
Cost

Golf
Car

Topgear
Petrol
GTI

Golf
Car

Clarkson
Petrol
Badge

Golf
Petrol

Topgear
Polo
Red

Golf
Tiger

Woods
Belfry
Tee

Car
Wheel

Topgear
GTI
Polo

The co-occurrence based
ranking improves the performance.

Note that 1) one of the most relevant doc does
NOT include the word Golf, and

2) a previously retrieved doc with a “spurious”
sense disappears

Ranking with latent Semantic
Indexing
n Previous example just gives the intuition of what should be

done.. But HOW do we select these clusters of related words?
n Latent Semantic Indexing is an algebraic method to identify

clusters of co-occurring terms, called “latent topics”, and to
compute query-doc similarity in a latent space, in which every
coordinate is a latent topic.

n A “latent” quantity is one which cannot be directly observed,
what is observed is a measurement which may include some
amount of random errors (topics are “latent” in this sense: we
observe them, but they are an approximation of “true” semantic
topics)

n Since it is an algebraic method, needs some linear algebra
background

12

Linear Algebra
Background

13

The LSI method: how to detect “topics”

Eigenvalues & Eigenvectors

n Eigenvectors (for a square m´m matrix S)

n Def: A vector v Î Rn, v ≠ 0, is an eigenvector of a
matrix mxm A with corresponding eigenvalue l, if:
Av = lv

eigenvalue(right) eigenvector

Example

14

Av = lv

Av = lv

Algebraic method

n How many eigenvalues are there at most?
Av = lv

15

equation has a non-zero solution if

Where I is the identity matrix, and A is mxm
this is a m-th order equation in λ which can have at
most m distinct solutions (roots of the characteristic
polynomial) – can be complex even though A is real.

|A

A A

Example of eigenvector/eigenvalues

A= 1 −1
3 5

"

#
$$

%

&
'', v =

1
−3

"

#
$$

%

&
'', λ = 4

Av = λv

1 −1
3 5

"

#
$$

%

&
''

1
−3

"

#
$$

%

&
''= 4

1
−3

"

#
$$

%

&
''

1+−3(−1)
3+5(−3)

"

#

$
$

%

&

'
'=

4
−12

"

#
$$

%

&
''

4
−12

"

#
$$

%

&
''=

4
−12

"

#
$$

%

&
''

We show that v is an
eigenvector for A

Example of eigenvalues
eigenvectors computation

A= 1 −1
3 5

"

#
$$

%

&
''

det(A−λI) = 0

1 −1
3 5

"

#
$$

%

&
''−λ

1 0
0 1

"

#
$$

%

&
'' = 0

1 −1
3 5

"

#
$$

%

&
''−

λ 0
0 λ

"

#
$$

%

&
'' = 0

1−λ −1
3 5−λ

"

#
$$

%

&
'' = 0

€

(λ −1)(λ − 5) + 3 = 0
λ2 − 6λ + 5 + 3 = 0
λ2 − 6λ + 8 = 0
(λ − 4)(λ − 2) = 0
λ1 = 4,λ2 = 2

remember

bcad
dc

ba
MM −=== ||det

2 and 4 are the
eigenvalues of S

(A−λI)v = 0

1− 2 −1
3 5− 2

"

#
$$

%

&
''

α
β

"

#
$
$

%

&
'
'=

0
0

"

#
$$

%

&
''

−1 −1
3 3

"

#
$$

%

&
''

α
β

"

#
$
$

%

&
'
'=

0
0

"

#
$$

%

&
''

−α −β = 0
3α +3β = 0

 α = −β
(
)
*

+*

(A−λI)v = 0

1− 4 −1
3 5− 4

"

#
$$

%

&
''

α
β

"

#
$
$

%

&
'
'=

0
0

"

#
$$

%

&
''

−3 −1
3 1

"

#
$$

%

&
''

α
β

"

#
$
$

%

&
'
'=

0
0

"

#
$$

%

&
''

−3α −β = 0
3α +β = 0

 β = −
(
)
*

+*
3α

λ2 = 2

v =
β

−β

"

#

$
$

%

&

'
' !

!

"

#

$
$

%

&

−
=

=

α

α

λ

3

41

v

Characteristic
polynomial

Note that we compute only the DIRECTION of eigenvectors

Matrix vector multiplication

18

Matrix multiplication by a vector = a linear transformation of
the initial vector, that implies rotation and translation
of the original vector

Geometric interpretation

19

https://www.geogebra.org/m/JP
2XZpzV

https://www.geogebra.org/m/JP2XZpzV

Geometric interpretation

20

A matrix-vector multiplication Ax
is a linear transformation over
the vector

Geometric interpretation

21

Geometric interpretation

22

Ax=1.34x=λx

An eigenvector is a special
vector that is transformed
into its scalar multiple under
a given matrix (no rotation!)

Geometric interpretation

23

Here we found another
eigenvector for the matrix A

Note that for any single eigenvalue
you have infinite eigenvectors,
but they have the same direction

Matrix-vector multiplication

n Eigenvectors of different eigenvalues are linearly
independent (i.e. ∀α1.. α n è α1v1+.. αnvn≠0)

n For square normal matrixes A, eigenvectors of
different eigenvalues define an orthonormal
space and they are othogonal.

n A square matrix is NORMAL iff it commutes with
its transpose, i.e. AAT=ATA

n Example:

n èAAT= =ATA
24

Difference between orthonormal
and orthogonal?

n Orthogonal mean that the dot product is null (the
cosin of the angle is zero).
Orthonormal mean that the dot product is null
and the norm of the vectors is equal to 1.
What we are actually saying is that eigenvectors

define a set of DIRECTIONS wich are orthogonal
(=an othonormal space).

n If two or more vectors are orthonormal they are
also orthogonal but the inverse is not true.

25

Why eigenvectors are orthonormal
(if A is symmetric square matrix)

26

Let v1, v2 be two eigenvectors, and let 𝜆" be the eigenvalue
of v1 , then we have:

Either 𝜆"= 𝜆# or (𝑣"% 𝑣#)=0!

Note this is true for A symmetric

Example: projecting a vector on 2
orthonormal spaces (or “bases”)

27e1,e’1, e2,e’2 are unary vectors and v1,v’1, v2,v’2 are the
coordinates of v along the directions of e1,e’1, e2,e’2

The effect of a matrix-vector multiplication is
governed by eigenvectors and eigenvalues

Let �⃗� be a generic vector and A a normal matrix
n 𝐴 % �⃗� = 𝐴(𝑥"𝑒" + 𝑥#𝑒#+ 𝑥&𝑒&) where 𝑥' are the

vector coordinates in the base defined by unary
vectors 𝑒'

n Let’s now project the very same vector �⃗� on the
base defined by 3 eigenvectors of matrix A:

�⃗� = 𝑥′"𝑒′" + 𝑥′#𝑒′#+ 𝑥′&𝑒′&= ()*
|,*|

𝑣" +
()-
|,-|

𝑣#+ ().
|,.|

𝑣&

n We then have: 𝑥"= ()*
|,*|

, 𝑥#= ()-
|,-|

, 𝑥&= ().
|,.|

n 𝐴(𝑥"𝑒" + 𝑥#𝑒#+ 𝑥&𝑒&) = 𝐴(𝑥"𝑣" + 𝑥#𝑣#+ 𝑥&𝑣&)
n 𝐴(𝑥"𝑣" + 𝑥#𝑣#+ 𝑥&𝑣&)=𝑥"𝜆"𝑣" + 𝑥#𝜆#𝑣#+𝑥&𝜆&𝑣& 28

The effect of a matrix-vector multiplication is
governed by eigenvectors and eigenvalues (2)

𝐴 % �⃗� = 𝑥"𝜆"𝑣" + 𝑥#𝜆#𝑣#+𝑥&𝜆&𝑣&

29

Even though x is an
arbitrary vector, the
action of A on x
(transformation) is
determined by the
eigenvalues/vectors.

30

The «distorsion» of vector
v is mostly along the direction
of the largest (principal) eigenvalue

31

Projecting along the direction of the second
eigenvalue causes a minor distortion (a shrinking
this case since 𝜆 = 0.5)

32

Geometric explanation: largest eigenvalues play the
largest role in the “distortion” of the original vector

Multiplying a matrix and a vector has two effects over the
vector: rotation (the coordinates of the vector change) and
scaling (the length changes). The max compression and
rotation depends on the largest matrix’s eigenvalues λi

Ax = x1λ1v1 + x2λ2v2 + x3λ3v 3

x is a generic vector with coordinates xi; λi,vi are the eigenvalues
and eigenvectors of A

λ 1>λ2

λ2

λ1

Geometric explanation

In the distorsion, the max effect is played by the
biggest eigenvalues (s1 and s2 in the picture)

The eigenvalues describe the distorsion operated by the
matrix on the original vector

Ax = x1λ1v1 + x2λ2v2 + x3λ3v 3
λ 1>λ2

λ2

λ1

Summary so far
n A matrix A has eigenvectors v and eigenvalues λ, defined by

Av=λv
n Eigenvalues can be computed as:

n We can compute only the the direction of eigenvectors, since
for any eigenvalue there are infinite eigenvectors lying on the
same direction

n If A is normal (i.e. if AAT=ATA) then the eigenvector form an
othonormal basis

n The product of A by ANY vector x is a linear transformation of x
where the rotation is determined by eigenvectors and the
translation is determined by the eigenvalues. The biggest role
in this transformation is played by the biggest (principal)
eigenvalues. 35

https://www.youtube.com/watch
?v=PFDu9oVAE-g

https://www.youtube.com/watch%3Fv=PFDu9oVAE-g

Bad news..

36

More algebra..

n Let A be a square matrix with m orthogonal
eigenvectors (hence, A is normal)

n Theorem: Exists an eigen decomposition
n A=UΛU-1

n Λ is a diagonal matrix (all zero except the diagonal
cells)

n Columns of U are eigenvectors of A
n Diagonal elements of Λ are eigenvalues of A

Eigen/diagonal Decomposition

37

Diagonal decomposition: why/how

ú
ú
ú

û

ù

ê
ê
ê

ë

é
= nvvU ...1Let U have the eigenvectors as columns:

AU = A v1 ... vn

!

"

#
#
#

$

%

&
&
&
= λ1v1 ... λnvn

!

"

#
#
#

$

%

&
&
&
= v1 ... vn

!

"

#
#
#

$

%

&
&
&

λ1
...

λn

!

"

#
#
#
#

$

%

&
&
&
&

Then, AU can be written

And A=ULU–1.

Thus AU=UL, or U–1AU=L

38

Example

39

From which we get v21=0 and v22 any real

from which we get v11=−2v12

AU=UL

From this we compute λ1=1, λ2=3

Diagonal decomposition –
example 2

Recall A= 2 1
1 2

!

"
#

$

%
&; λ1 =1,λ2 = 3.

The eigenvectors and form
÷÷
ø

ö
çç
è

æ
-1
1

÷÷
ø

ö
çç
è

æ
1
1

ú
û

ù
ê
ë

é
-

=
11
11

U

Inverting, we have ú
û

ù
ê
ë

é -
=-

2/12/1
2/12/11U

Then, A=ULU–1 = ú
û

ù
ê
ë

é -
ú
û

ù
ê
ë

é
ú
û

ù
ê
ë

é
- 2/12/1

2/12/1
30
01

11
11

Recall
UU–1 =1.

40

So what?

n What do these matrices have to do with
Information Retrieval and document ranking?

n Recall M ´ N term-document matrices …
n But everything so far needs square normal

matrices – so you need to be patient and learn
one last notion

41

Singular Value Decomposition for
non-square matrixes

TVUA S=

M´M M´N V is N´N

For a non-square real M ´ N matrix A of rank r there exists a
factorization (Singular Value Decomposition = SVD) as follows:

The columns of U are the orthogonal eigenvectors of AAT

(called left singular vectors).
The columns of V (rows of VT) are the orthogonal eigenvectors of ATA (called
right singular eigenvector). NOTE THAT AAT and ATA are square symmetric
(and hence NORMAL)

ii ls =

()rdiag ss ...1=S Singular values of A

Eigenvalues l1 … lr of AAT = eigenvalues of ATA and:

42

An example

43

Singular Value Decomposition

n Illustration of SVD dimensions and sparseness

M

N
MxM NxNMxN

All zeros!

So when
we muliply
these
become
zeros, too

So these
become
zeros, too

Back to matrix-vector multiplication

n Remember what we said? In a matrix vector
multiplication the biggest role is played by the
biggest eigenvalues

n The diagonal matrix Σ has the eigenvalues of
ATA (called the singular values 𝝈 of A) in
decreasing order along the diagonal

n We can therefore apply an approximation by
setting σi=0 if σi≤θ and only consider only the
first k singular values

45

n If we retain only k highest singular values, and set the
rest to 0, then we don’t need the matrix parts in red

n Then Σ is k×k, U is M×k, VT is k×N, and Ak is M×N
n This is referred to as the reduced SVD, or rank k

approximation

Reduced SVD

k

46

Now all the red and yellow parts are zeros!!

Let’s recap

47

Since the yellow part is zero, an exact representation of A is:

€

A =σ1u1v1
T +σ2u2v2

T + ...+σrurvr
T

r =min(M,N)
But “for some” k<r, a good approximation is:

Ak =σ1u1v1
T +σ 2u2v2

T +...+σ kukvk
T

M<N

M>N

Example of rank approximation

48

0.981 0.000 0.000 0.000 1.985
0.000 0.000 3.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000
0.000 4.000 0.000 0.000 0.000

A*=

A

≅A

= x x
1

1

Approximation error

n How good (bad) is this approximation?
n It’s the best possible, measured by the Frobenius

norm of the error:

where the si are ordered such that si ³ si+1.
n Suggests why Frobenius error drops as k increases.

1
)(:

min +
=

=-=- kFkF
kXrankX

AAXA s

49

ii ls =

Images gives a better intuition
(image = matrix of pixels)

50

K=10

51

K=20

52

K=30

53

K=100

54

K=322 (the original image)

55

We save space!! But this is only
one issue

56

So, finally, back to IR!!!
n Our initial problem was:

n the term-document (MxN) matrix A is highly
sparse (has many zeros)

n However, since groups of terms tend to co-occur
together, can we identify the semantic space of
these clusters of terms, and apply the vector
space model in the semantic space defined by
such clusters (rather than the space of terms)?

n What we learned so far:
n Matrix A can be decomposed, and rank-k

approximated using SVD, achieving compression
n Does this help solving our initial problems? 57

A is our term document matrix

n Latent Semantic Indexing via the SVD

n If A is a term/document matrix, then AAT and
AT A are the (square) matrixes of term and
document co-occurrences, repectively

58

Meaning of ATA and AAT

L = A AT =

€

Lij = Aik ATkj

€

AT

€

ALij = AikA
T
kj

k=1

N
∑ = AikAjk

k=1

N
∑

Lij depends on the number of documents dk in which wi and wj co-
occurr (= the non-zero products AikAT

kj of the sum, k is the index)
Similarly, LT

ij depends on the number of common documents
for two word pairs (or vice-versa if A is a document-term matrix
rather than term-document)

Word i in doc k Word j in doc k

T

Example

Term-document matrix
A

Term co-occurrences example

L trees,graph = (000001110) •(000000111)T=2

So the matrix L=AAT is the matrix
of term co-occurrences in docs
n Remember: eigenvectors of a matrix define an orthonormal

space
n Remember: bigger eigenvalues define the “main” directions

of this space
n But: Matrixes L and LT are SIMILARITY (co-occurrence)

matrixes (respectively, of terms and of documents). They
define a SIMILARITY SPACE (the orthonormal space of their
eigenvectors)

n If the matrix elements are word co-occurrences, bigger
eigenvalues are associated to bigger groups of similar
words

n Similarly, bigger eigenvalues of LT=ATA are associated
with bigger groups of similar documents (those in which
co-occur the same terms)

LSI: the intuition

64

t1

t3t2

Projecting A in the term
space: green, yellow and
red vectors are documents.
If they form small angles,
they have common words
(remember cosin-sim)
The black vector
are the unary eigenvector
of LT: they represent the
main “directions” of the
document similarity
matrix

The blue segments give the
intuition of eigenvalues of
LT=ATA
Bigger eigenvalues are
those for
which the projection of all
vectors on the direction of
correspondent eigenvectors
is higher
These directions can be
see as a «mixtures» of
words, e.g. latent semantic
spaces

LSI intuition

65

t1

t3t2
We now project our document vectors on the reference orthonormal
system represented by the 3 black vectors

If we multiply all
document vectors
by LT= ATA, their
“distorsion” is mostly
determined by the
highest eigenvalues

d
!"
j = (d j

1,d j
2 ,d j

3)

LT d
!"
j = d j

1λ1v1 + d j
2λ2v2 + d j

3λ 3v 3

LSI intuition

66

..If we remove the dimension(s)
with lower eigenvalues (i.e. if we
rank-reduce Σ) we don’t loose
much information

Remember that the two “new” axis represent a combination
of co-occurring words e.g. a latent semantic space

d
!"
j = (d j

1,d j
2 ,d j

3)

LT d
!"
j ≅ d j

1λ1v1 + d j
2λ2v2

Example

67

1.000 1.000 0.000 0.000
1.000 0.000 0.000 0.000
0.000 0.000 1.000 1.000
0.000 0.000 1.000 1.000

t1
t2
t3
t4

d1 d2 d3 d4

0.000 -0.851 -0.526 0.000
0.000 -0.526 0.851 0.000

-0.707 0.000 0.000 -0.707
-0.707 0.000 0.000 0.707

2.000 0.000 0.000 0.000
0.000 1.618 0.000 0.000
0.000 0.000 0.618 0.000
0.000 0.000 0.000 0.000

0.000 0.000 -0.707 -0.707
-0.851 -0.526 0.000 0.000
0.526 -0.851 0.000 0.000
0.000 0.000 -0.707 0.707

x x

1.172 0.724 0.000 0.000
0.724 0.448 0.000 0.000
0.000 0.000 1.000 1.000
0.000 0.000 1.000 1.000

We project terms
and docs on two
dimensions, v1 and v2
(the principal eigenvectors)

We have two latent semantic
coordinates: s1:(t1,t2) and
s2:(t3,t4)

Approximated
new term-doc
matrix

Even if t2 does not occur in d2, now if we query
with t2 the system will return also d2!!

Note that the direction of each eigenvector is determined by
the direction of just two terms: (t1,t2) or (t3,t4)

Co-occurrence space

n In principle, the space of document or
term co-occurrences is much (much!)
higher than the original space of terms!!

n But with SVD we consider only the most
relevant ones, trough rank reduction

68

A =U VT ≅Uk∑ ΣkVk
T = Ak

Summary so-far

n We compute the SVD rank-k approximation for
the term-document matrix A

n This approximation is based on considering only
the principal eigenvalues of the term co-
occurrence and document similarity matrixes
(L=AAT and LT=ATA)

n The eigenvectors of the eigenvalues of L=AAT

and LT=ATA represent the main
“directions”(principal components) identified by
the term and document similarity matrixes,
respectively. These directions represent latent
semantic spaces (mixture of words) 69

LSI: what are the steps

1. From term-doc matrix A, compute the rank-k
approximation Ak. with SVD

2. Project docs and queries in a reduced
space of k<<r dimensions (the k “survived”
eigenvectors) and compute cos-similarity as
usual

3. These dimensions are not the original axes
(terms), but those defined by the
orthonormal space of the reduced matrix Ak

70

Aq
!
≅ Ak q
!
=σ1q1v

!
1 +σ 2q2v

!
2 + ...σ kqk v

!
k

Where σiqi (i=1,2..k<<r) are the new coordinates of q in the
orthonormal space of Ak

Projecting terms documents and
queries in the LS space

71

A

If A=USVT we also
have that:

V = ATUS-1

t = t’TSVT

d = d’TUS-1

q = q’TUS-1

After rank k-
approximation :

A≅Ak=UkSkVk
T

dk ≅ dTUkSk
-1

qk ≅ qTUkSk
-1

sim(q, d) =
sim(qTUkSk

-1,
dTUkSk

-1)

These are the
coordinates of
t in the new
base defined
by L

These are the
coordinates of
d in the new
base
defined by LT

Consider a term-doc matrix MxN
(M=11, N=3) and a query q

query

A

1. Compute SVD: A= USVT

2. Obtain a low rank approximation
(k=2) Ak= UkSkVT

k

“latent” 2-dimensional
term- similarity space

“latent” document-
similarity space

3a. Compute doc/query similarity

n For N documents, Ak has N columns, each
representing the coordinates of a document di
projected in the k LSI dimensions

n A query is considered like a document, and is
projected in the LSI space

3c. Compute the query vector
qk = qTUkSk

-1

q is projected in the 2-dimension LSI space!

Documents and queries projected
in the LSI space

q/d similarity

An overview of a semantic network of terms
based on the top 100 most significant latent
semantic dimensions (Zhu&Chen)

79

Conclusion
n LSI performs a low-rank approximation of document-term

matrix (typical rank 100–300)
n General idea

n Map documents (and terms) to a low-dimensional
representation.

n Design a mapping such that the low-dimensional space
reflects semantic associations between words (latent
semantic space).

n Compute document similarity based on the cos-sim in this
latent semantic space

n Eigenvector eigenvalues and SVD are at the basis of
many methods to compress sparse data (not only term-
document matrixes)

Another LSI Example

t1
t2
t3
t4

d1 d2 d3

AT

t1
t2
t3
t4

Term co-occurrencesAAT

Ak=UkΣkVk
T≈A

Now it is like if t3 belongs to d1!

Problems with SVD

n Computational cost scales quadratically for
n x m matrix: O(mn2) flops (when n<m)

n Hard to incorporate new words or documents
n Does not consider order of words
n Anything better?
n (note that there are a variety of methods similar

to SVD, see “principal component analysis”,
based on same principles - finding the “main
directions” of a set of vectors in a multi-
dimensional space)

84

Is there anything more advanced than co-
occurrences to learn correlations?

n Traditional IR uses Term
matching, → # of times the doc
says “Albuquerque” – not fully
appropriate

n We can use a different
approach: compare all-pairs of
query-document terms, → # of
terms in the doc that relate to
Albuquerque

n To detect these similarities (next
lessons):
n Latent Semantic Indexing
n Word embeddings (a.k.o.

deep method)

__MACOSX/._5.LSI.pdf

