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Algebraic models to improve 
ranking and query expansion


Latent Semantic Indexing, Word 
Embeddings
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Is there anything more advanced than co-
occurrences to learn word correlations?


n With the standard term-document matrix encoding, 
each term can be interpreted as a vector where 
dimensions are documents (just like each document 
is interpreted as a vector and dimensions are terms)


n Term vectors have no inherent similarity, even if 
terms are related, e.g.:
Web search: [0 0.2 0 0 0 0 0 0 0 0 1 0 0 0 0]
Information retrieval:[0 0 0 0 0 0 0 0.3 0 0 0 0 1 0 0] 


n If query has “web search” and document has 
“information retrieval” , then our query and document 
vectors are orthogonal. Dot product is zero.  But 
these two words are very related!







Can we directly learn term 
relations?


n Basic IR is scoring on qT.d/K (dot  product of query 
and document vectors)


n No treatment of synonyms; no machine learning
n Can we learn a matrix W to rank via qTWd, rather than  


qT.d?


n Where W is a matrix that captures similarity between 
words (e.g., “search” and “information retrieval”)? 3
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Latent Semantic Indexing
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Latent Semantic Indexing


n Term-document matrices are very large, 
though most cells are “zeros”


n But the number of topics that people talk 
about is smaller (in some sense)
n Clothes, movies, politics, …
n Each topic can be represented as a 


cluster of (semantically) related terms, 
e.g.:  clothes=golf, jacket, shoe..


n Can we represent the term-document 
space by a lower dimensional “latent” 
space  (latent space=set of topics)?
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Searching with latent topics
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n Given a collection of documents, LSI learns clusters 
of frequently co-occurring terms (ex: information 
retrieval, ranking and web)


n If you query with ranking, information 
retrieval LSI  “automatically”  extends the search 
to documents including also (and even ONLY) web , 
search
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With standard VSM
4 documents are selected
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The most relevant words
associated with golf in these


docs are:
Car, Topgear and Petrol


Rank of
selected


documents 


Car 
2 *(20/3) = 13


Topgear 
2 *(20/3) = 13


Petrol 
3 *(20/16) = 4


tf.idf
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If we consider the co-occurring terms 
with higher tf*idf,


car e topgear turn out to 
be related to Golf


more than petrol, wood,…
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We now search with all
the words in the “semantic domain” of Golf .


The list of retrieved docs now
is based on  Golf and the other 


related words
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The co-occurrence based
ranking improves the performance.


Note that 1) one of the most relevant doc does 
NOT include the word Golf, and 


2) a previously retrieved doc with a “spurious”
sense disappears







Ranking with  latent Semantic
Indexing
n Previous example just gives the intuition of what should be 


done.. But HOW do we select these clusters of  related words?
n Latent Semantic Indexing is an algebraic method to identify


clusters of co-occurring terms, called “latent topics”, and to 
compute query-doc similarity in a latent space, in which every
coordinate is a latent topic.


n A “latent” quantity is one which cannot be directly observed, 
what is observed is a measurement which may include some 
amount of random errors (topics are “latent” in this sense: we
observe them, but they are an approximation of “true” semantic
topics)


n Since it is an algebraic method, needs some linear algebra 
background
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Linear Algebra 
Background
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The LSI method: how to detect “topics”







Eigenvalues & Eigenvectors


n Eigenvectors (for a square m´m matrix S)


n Def: A vector v Î Rn, v ≠ 0, is an eigenvector of a 
matrix mxm A with corresponding eigenvalue l, if:
Av = lv


eigenvalue(right) eigenvector


Example


14


Av = lv


Av = lv







Algebraic method


n How many eigenvalues are there at most?
Av = lv
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equation has a non-zero solution if


Where I is the identity matrix, and A is mxm
this is a m-th order equation in λ which can have at 
most m distinct solutions (roots of the characteristic 
polynomial) – can be complex even though A is real.


|A


A A







Example of eigenvector/eigenvalues
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We show that v is an
eigenvector for A







Example of eigenvalues 
eigenvectors computation
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v


Characteristic
polynomial


Note that we compute only the DIRECTION of eigenvectors







Matrix vector multiplication
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Matrix multiplication by a vector = a linear transformation of 
the initial vector, that implies rotation and translation
of the original vector







Geometric interpretation
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https://www.geogebra.org/m/JP
2XZpzV



https://www.geogebra.org/m/JP2XZpzV





Geometric interpretation
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A matrix-vector multiplication Ax
is a linear transformation over
the vector







Geometric interpretation
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Geometric interpretation
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Ax=1.34x=λx


An eigenvector is a special
vector that is transformed
into its scalar multiple under 
a given matrix (no rotation!)







Geometric interpretation


23


Here we found another
eigenvector for the matrix A


Note that for any single eigenvalue
you have infinite eigenvectors,
but they have the same direction







Matrix-vector multiplication


n Eigenvectors of different eigenvalues are linearly
independent (i.e. ∀α1.. α n è α1v1+.. αnvn≠0)


n For square normal matrixes A, eigenvectors of 
different eigenvalues define an orthonormal 
space and they are othogonal.


n A square matrix is NORMAL iff it commutes with 
its transpose, i.e. AAT=ATA


n Example: 


n èAAT=                       =ATA
24







Difference between orthonormal
and orthogonal?


n Orthogonal mean that the dot product is null (the 
cosin of the angle is zero). 
Orthonormal mean that the dot product is null
and the norm of the vectors is equal to 1.
What we are actually saying is that eigenvectors


define a set of DIRECTIONS wich are orthogonal
(=an othonormal space).  


n If two or more vectors are orthonormal they are 
also orthogonal but the inverse is not true.
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Why eigenvectors are orthonormal 
(if A is symmetric square matrix)
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Let v1, v2 be two eigenvectors, and let 𝜆" be the eigenvalue
of v1 , then we have:


Either 𝜆"= 𝜆# or (𝑣"% 𝑣#)=0!


Note this is true for A symmetric







Example: projecting a vector on 2 
orthonormal spaces (or “bases”)


27e1,e’1, e2,e’2 are unary vectors and v1,v’1, v2,v’2 are the 
coordinates of v along the directions of e1,e’1, e2,e’2 







The effect of a matrix-vector multiplication is 
governed by eigenvectors and eigenvalues


Let �⃗� be a generic vector and A a normal matrix
n 𝐴 % �⃗� = 𝐴(𝑥"𝑒" + 𝑥#𝑒#+ 𝑥&𝑒&)  where 𝑥' are the 


vector coordinates in the base defined by unary
vectors 𝑒'


n Let’s now project the very same vector �⃗� on the 
base defined by 3 eigenvectors of matrix A:


�⃗� = 𝑥′"𝑒′" + 𝑥′#𝑒′#+ 𝑥′&𝑒′&= ()*
|,*|


𝑣" +
()-
|,-|


𝑣#+ ().
|,.|


𝑣&


n We then have: 𝑥"= ()*
|,*|


, 𝑥#= ()-
|,-|


, 𝑥&= ().
|,.|


n 𝐴(𝑥"𝑒" + 𝑥#𝑒#+ 𝑥&𝑒&) = 𝐴(𝑥"𝑣" + 𝑥#𝑣#+ 𝑥&𝑣&) 
n 𝐴(𝑥"𝑣" + 𝑥#𝑣#+ 𝑥&𝑣&)=𝑥"𝜆"𝑣" + 𝑥#𝜆#𝑣#+𝑥&𝜆&𝑣& 28







The effect of a matrix-vector multiplication is 
governed by eigenvectors and eigenvalues  (2)


𝐴 % �⃗� = 𝑥"𝜆"𝑣" + 𝑥#𝜆#𝑣#+𝑥&𝜆&𝑣&
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Even though x is an 
arbitrary vector, the 
action of A on x
(transformation) is 
determined by the 
eigenvalues/vectors.
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The «distorsion» of vector
v is mostly along the direction
of the largest (principal) eigenvalue







31


Projecting along the direction of the second
eigenvalue causes a minor distortion (a shrinking
this case since 𝜆 = 0.5)
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Geometric explanation: largest eigenvalues play the 
largest role in the “distortion” of the original vector


Multiplying a matrix and a vector has two effects over the 
vector: rotation (the coordinates of the vector change) and 
scaling (the length changes). The max compression and 
rotation  depends on the largest matrix’s eigenvalues λi


Ax = x1λ1v1 + x2λ2v2 + x3λ3v 3


x is a generic vector with coordinates xi; λi,vi are the eigenvalues
and eigenvectors of A


λ 1>λ2


λ2


λ1







Geometric explanation


In the distorsion, the max effect is played by the
biggest eigenvalues (s1 and s2 in the picture )


The eigenvalues describe the distorsion operated by the 
matrix on the original vector


Ax = x1λ1v1 + x2λ2v2 + x3λ3v 3
λ 1>λ2


λ2


λ1







Summary so far
n A matrix A has eigenvectors v and eigenvalues λ, defined by 


Av=λv
n Eigenvalues can be computed as: 


n We can compute only the the direction of eigenvectors, since
for any eigenvalue there are infinite eigenvectors lying on the 
same direction


n If A is normal (i.e. if AAT=ATA) then the eigenvector form an 
othonormal basis 


n The product of A by ANY vector x is a linear transformation of x
where the rotation is determined by eigenvectors and the 
translation is determined by the eigenvalues. The biggest role 
in this transformation is played by the biggest (principal) 
eigenvalues. 35


https://www.youtube.com/watch
?v=PFDu9oVAE-g



https://www.youtube.com/watch%3Fv=PFDu9oVAE-g





Bad news.. 
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More algebra..







n Let  A  be a square matrix with m orthogonal 
eigenvectors  (hence, A is normal)


n Theorem: Exists an eigen decomposition
n A=UΛU-1


n Λ is a diagonal matrix (all zero except the diagonal 
cells)


n Columns of U are eigenvectors of A
n Diagonal elements of  Λ are eigenvalues of A


Eigen/diagonal Decomposition


37







Diagonal decomposition: why/how
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Then, AU can be written


And A=ULU–1.


Thus AU=UL, or U–1AU=L
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Example
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From which we get v21=0 and v22 any real


from which we get v11=−2v12


AU=UL


From this we compute λ1=1, λ2=3 







Diagonal decomposition –
example 2
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So what?


n What do these matrices have to do with 
Information Retrieval and document ranking?


n Recall M ´ N term-document matrices … 
n But everything so far needs square normal 


matrices – so you need to be patient and learn 
one last notion
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Singular Value Decomposition for 
non-square matrixes


TVUA S=


M´M M´N V is N´N


For a non-square real M ´ N matrix A of rank r there exists a 
factorization (Singular Value Decomposition = SVD) as follows:


The columns of U are the orthogonal eigenvectors of AAT  


(called left singular vectors).  
The columns of V (rows of VT) are the orthogonal eigenvectors of ATA (called 
right singular eigenvector). NOTE THAT AAT and ATA are square symmetric 
(and hence NORMAL)


ii ls =


( )rdiag ss ...1=S Singular values of A


Eigenvalues l1 … lr of AAT = eigenvalues of ATA and:
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An example
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Singular Value Decomposition


n Illustration of SVD dimensions and sparseness


M


N
MxM NxNMxN


All zeros!


So when
we muliply
these
become
zeros, too


So these
become
zeros, too







Back to matrix-vector multiplication


n Remember what we said? In a matrix vector
multiplication the biggest role is played by the 
biggest eigenvalues


n The diagonal matrix Σ has the eigenvalues of 
ATA (called the singular values 𝝈 of A) in 
decreasing order along the diagonal


n We can therefore apply an approximation by 
setting σi=0  if σi≤θ and only consider only the 
first k singular values
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n If we retain only k highest singular values, and set the 
rest to 0, then we don’t need the matrix parts in red


n Then Σ is k×k, U is M×k, VT is k×N, and Ak is M×N
n This is referred to as the reduced SVD, or rank k 


approximation


Reduced SVD


k
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Now all the red and yellow parts are zeros!!







Let’s recap
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Since the yellow part is zero, an exact representation of A is:


€ 


A =σ1u1v1
T +σ2u2v2


T + ...+σrurvr
T


r =min(M,N)
But “for some” k<r, a good approximation is:


Ak =σ1u1v1
T +σ 2u2v2


T +...+σ kukvk
T


M<N


M>N







Example of rank approximation
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0.981 0.000 0.000 0.000 1.985
0.000 0.000 3.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000
0.000 4.000 0.000 0.000 0.000
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≅A
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1


1







Approximation error


n How good (bad) is this approximation?
n It’s the best possible, measured by the Frobenius


norm of the error:


where the si are ordered such that si ³ si+1.
n Suggests why Frobenius error drops as k increases.


1
)(:


min +
=


=-=- kFkF
kXrankX


AAXA s
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ii ls =







Images gives a better intuition
(image = matrix of pixels)
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K=10
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K=20
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K=30
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K=100
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K=322 (the original image)
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We save space!! But this is only
one issue


56







So, finally, back to IR!!!
n Our initial problem was: 


n the term-document (MxN) matrix A is highly
sparse (has many zeros)


n However, since groups of terms tend to co-occur
together, can we identify the semantic space of 
these clusters of terms, and apply the vector
space model in the semantic space defined by 
such clusters (rather than the space of terms)? 


n What we learned so far:
n Matrix A can be decomposed, and rank-k 


approximated using SVD, achieving compression
n Does this help solving our initial problems?  57







A is our term document matrix


n Latent Semantic Indexing via the SVD


n If A is a term/document matrix, then AAT and 
AT A are the (square) matrixes of term and
document co-occurrences, repectively
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Meaning of ATA and AAT


L = A AT    =   


€ 


Lij   = Aik ATkj


€ 


AT


€ 


ALij = AikA
T
kj


k=1


N
∑ = AikAjk


k=1


N
∑


Lij depends on the number of documents dk in which wi and wj co-
occurr (= the non-zero products AikAT


kj of the sum, k is the index)
Similarly, LT


ij depends on the number of common documents 
for two word pairs (or vice-versa if A is a document-term matrix 
rather than term-document)


Word i in doc k Word j in doc k


T







Example







Term-document matrix
A







Term co-occurrences example


L trees,graph = (000001110) •(000000111)T=2







So the matrix L=AAT is the matrix
of term co-occurrences in docs
n Remember: eigenvectors of a matrix define an orthonormal


space
n Remember: bigger eigenvalues define the “main” directions


of this space
n But: Matrixes L and LT are SIMILARITY (co-occurrence) 


matrixes (respectively, of terms and of documents). They
define a SIMILARITY SPACE (the orthonormal space of their
eigenvectors)


n If the matrix elements are word co-occurrences, bigger
eigenvalues are associated to bigger groups of similar
words


n Similarly, bigger eigenvalues of LT=ATA are associated
with bigger groups of similar documents (those in which
co-occur the same terms)







LSI: the intuition
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t1


t3t2


Projecting A in the term
space: green, yellow and
red vectors are documents.
If they form small angles,
they have common words
(remember cosin-sim)
The black vector
are the unary eigenvector
of LT: they represent the 
main “directions” of the
document similarity
matrix


The blue segments give the
intuition of eigenvalues of 
LT=ATA
Bigger eigenvalues are 
those for
which the projection of all
vectors on the direction of
correspondent eigenvectors
is higher
These directions can be 
see as a «mixtures» of 
words, e.g. latent semantic
spaces







LSI intuition
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t1


t3t2
We now project our document vectors on the reference orthonormal
system represented by the 3 black vectors


If we multiply all
document vectors
by LT= ATA, their
“distorsion” is mostly
determined by the
highest eigenvalues


d
!"
j = (d j


1,d j
2 ,d j


3)


LT d
!"
j = d j


1λ1v1 + d j
2λ2v2 + d j


3λ 3v 3







LSI intuition
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..If we remove the dimension(s)
with lower eigenvalues (i.e. if we
rank-reduce Σ) we don’t loose
much information


Remember that the two “new” axis represent a combination
of co-occurring words e.g. a latent semantic space


d
!"
j = (d j


1,d j
2 ,d j


3)


LT d
!"
j ≅ d j


1λ1v1 + d j
2λ2v2







Example
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1.000 1.000 0.000 0.000
1.000 0.000 0.000 0.000
0.000 0.000 1.000 1.000
0.000 0.000 1.000 1.000


t1
t2
t3
t4


d1    d2   d3    d4


0.000 -0.851 -0.526  0.000
0.000 -0.526  0.851  0.000


-0.707  0.000  0.000 -0.707
-0.707  0.000  0.000  0.707


2.000 0.000 0.000 0.000
0.000 1.618 0.000 0.000
0.000 0.000 0.618 0.000
0.000 0.000 0.000 0.000


0.000  0.000 -0.707 -0.707
-0.851 -0.526  0.000  0.000
0.526 -0.851  0.000  0.000
0.000  0.000 -0.707  0.707


x x


1.172 0.724 0.000 0.000
0.724 0.448 0.000 0.000
0.000 0.000 1.000 1.000
0.000 0.000 1.000 1.000


We project terms
and docs on two
dimensions, v1 and v2
(the principal eigenvectors) 


We have two latent semantic
coordinates: s1:(t1,t2) and
s2:(t3,t4)


Approximated
new term-doc
matrix


Even if t2 does not occur in d2, now if we query
with t2 the system will return also d2!!


Note that the direction of each eigenvector is determined by
the direction of just two terms: (t1,t2) or (t3,t4)







Co-occurrence space


n In principle, the space of document or 
term co-occurrences is much (much!) 
higher than the original space of terms!!


n But with SVD we consider only the most
relevant ones, trough rank reduction
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A =U VT ≅Uk∑ ΣkVk
T = Ak







Summary so-far


n We compute the SVD rank-k approximation for 
the term-document matrix A


n This approximation is based on considering only
the principal eigenvalues of the term co-
occurrence and document similarity matrixes
(L=AAT and LT=ATA)


n The eigenvectors of the eigenvalues of L=AAT


and LT=ATA represent the main
“directions”(principal components) identified by 
the term and document similarity matrixes, 
respectively. These directions represent latent
semantic spaces (mixture of words) 69







LSI: what are the steps


1. From term-doc matrix A, compute the rank-k 
approximation Ak. with SVD


2. Project  docs and queries in a reduced 
space of k<<r dimensions (the k “survived” 
eigenvectors) and compute cos-similarity as 
usual


3. These dimensions are not the original axes 
(terms), but those defined by the 
orthonormal space of the reduced matrix Ak
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Aq
!
≅ Ak q
!
=σ1q1v


!
1 +σ 2q2v


!
2 + ...σ kqk v


!
k


Where σiqi (i=1,2..k<<r) are the new coordinates of q in the 
orthonormal space of Ak 







Projecting terms documents and 
queries in the LS space


71


A


If A=USVT we also 
have that:


V = ATUS-1


t = t’TSVT


d = d’TUS-1


q = q’TUS-1


After rank k-
approximation :


A≅Ak=UkSkVk
T


dk ≅ dTUkSk
-1


qk ≅ qTUkSk
-1


sim(q, d) = 
sim(qTUkSk


-1, 
dTUkSk


-1)


These are the 
coordinates of 
t in the new 
base defined
by L


These are the 
coordinates of 
d in the new 
base
defined by LT







Consider a term-doc matrix MxN
(M=11, N=3) and a query q


query


A







1. Compute SVD:  A= USVT







2. Obtain a low rank approximation 
(k=2) Ak= UkSkVT


k


“latent” 2-dimensional 
term- similarity space 


“latent” document-
similarity space 







3a. Compute doc/query similarity


n For N documents, Ak has N columns, each 
representing the coordinates of a document di
projected in the k LSI dimensions


n A query is considered like a document, and is 
projected in the LSI space







3c. Compute the query vector
qk = qTUkSk


-1


q is projected in the 2-dimension LSI space!







Documents and queries projected 
in the LSI space







q/d similarity







An overview of a semantic network of terms
based on the top 100 most significant latent
semantic dimensions (Zhu&Chen)
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Conclusion
n LSI performs a low-rank approximation of document-term 


matrix (typical rank 100–300)
n General idea


n Map documents (and terms) to a low-dimensional
representation.


n Design a mapping such that the low-dimensional space 
reflects semantic associations between words (latent 
semantic space).


n Compute document similarity based on the cos-sim in this 
latent semantic space


n Eigenvector eigenvalues and SVD are at the basis of
many methods to compress sparse data (not only term-
document matrixes)







Another LSI Example







t1
t2
t3
t4


d1           d2         d3


AT


t1
t2
t3
t4


Term co-occurrencesAAT







Ak=UkΣkVk
T≈A


Now it is like if t3 belongs to d1!







Problems with SVD


n Computational cost scales quadratically for
n x m matrix: O(mn2) flops (when n<m)


n Hard to incorporate new words or documents
n Does not consider order of words
n Anything better?
n (note that there are a variety of methods similar 


to SVD, see “principal component analysis”, 
based on same principles  - finding the “main 
directions” of a set of vectors in a multi-
dimensional space)


84







Is there anything more advanced than co-
occurrences to learn correlations?


n Traditional IR uses Term 
matching, → # of times the doc 
says “Albuquerque” – not fully 
appropriate


n We can use a different 
approach: compare all-pairs of 
query-document terms, → # of 
terms in the doc that relate to 
Albuquerque


n To detect these similarities (next 
lessons):
n Latent Semantic Indexing
n Word embeddings (a.k.o. 


deep method)
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