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Abstract—The Internet presents a huge amount of useful information which is usually formatted for its users, which makes it difficult to
extract relevant data from various sources. Therefore, the availability of robust, flexible Information Extraction (IE) systems that

transform the Web pages into program-friendly structures such as a relational database will become a great necessity. Although many
approaches for data extraction from Web pages have been developed, there has been limited effort to compare such tools.

Unfortunately, in only a few cases can the results generated by distinct tools be directly compared since the addressed extraction tasks
are different. This paper surveys the major Web data extraction approaches and compares them in three dimensions: the task domain,

the automation degree, and the techniques used. The criteria of the first dimension explain why an IE system fails to handle some Web
sites of particular structures. The criteria of the second dimension classify IE systems based on the techniques used. The criteria of the

third dimension measure the degree of automation for IE systems. We believe these criteria provide qualitatively measures to evaluate
various IE approaches.

Index Terms—Information extraction, Web mining, wrapper, wrapper induction.
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1 INTRODUCTION

THE explosive growth and popularity of the World Wide
Web has resulted in a huge amount of information

sources on the Internet. However, due to the heterogeneity
and the lack of structure of Web information sources, access
to this huge collection of information has been limited to
browsing and searching. Sophisticated Web mining appli-
cations, such as comparison shopping robots, require
expensive maintenance to deal with different data formats.
To automate the translation of input pages into structured
data, a lot of efforts have been devoted in the area of
information extraction (IE). Unlike information retrieval
(IR), which concerns how to identify relevant documents
from a document collection, IE produces structured data
ready for postprocessing, which is crucial to many applica-
tions of Web mining and searching tools.

Formally, an IE task is defined by its input and its
extraction target. The input can be unstructured documents
like free text that are written in natural language (e.g.,
Fig. 1) or the semistructured documents that are pervasive
on the Web, such as tables or itemized and enumerated lists
(e.g., Fig. 2). The extraction target of an IE task can be a
relation of k-tuple (where k is the number of attributes in a

record) or it can be a complex object with hierarchically
organized data. For some IE tasks, an attribute may have
zero (missing) or multiple instantiations in a record. The
difficulty of an IE task can be further complicated when
various permutations of attributes or typographical errors
occur in the input documents.

Programs that perform the task of IE are referred to as
extractors or wrappers. A wrapper was originally defined
as a component in an information integration system which
aims at providing a single uniform query interface to access
multiple information sources. In an information integration
system, a wrapper is generally a program that “wraps” an
information source (e.g., a database server or a Web server)
such that the information integration system can access that
information source without changing its core query
answering mechanism. In the case where the information
source is a Web server, a wrapper must query the Web
server to collect the resulting pages via HTTP protocols,
perform information extraction to extract the contents in the
HTML documents, and finally integrate with other data
sources. Among the three procedures, information extrac-
tion has received most attention and some use wrappers to
denote extractor programs. Therefore, we use the terms
extractors and wrappers interchangeably.

Wrapper induction (WI) or information extraction (IE)
systems are software tools that are designed to generate
wrappers. A wrapper usually performs a pattern matching
procedure (e.g., a form of finite-state machines) which relies
on a set of extraction rules. Tailoring a WI system to a new
requirement is a task that varies in scale depending on the
text type, domain, and scenario. To maximize reusability
and minimize maintenance cost, designing a trainable
WI system has been an important topic in the research
fields of message understanding, machine learning, data
mining, etc. The task of Web IE, that we are concerned with
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in this paper, differs largely from traditional IE tasks in that
traditional IE aims at extracting data from totally unstruc-
tured free texts that are written in natural language. Web IE,
in contrast, processes online documents that are semistruc-
tured and usually generated automatically by a server-side
application program. As a result, traditional IE usually
takes advantage of NLP techniques such as lexicons and
grammars, whereas Web IE usually applies machine
learning and pattern mining techniques to exploit the
syntactical patterns or layout structures of the template-
based documents.

In this paper, we focus on IE from semistructured
documents and discuss only those that have been used for
Web data. We will compare different WI systems using
features from three dimensions which we regard as criteria
for comparing and evaluating WI systems. The rest of the
paper is organized as follows: Section 2 introduces related
work on WI system taxonomy, which we summarize into
three dimensions of evaluating WI systems. Section 3
suggests the criteria for each dimension. We develop a
survey of contemporary IE tools in Section 4 with a running
example to make such tools more understandable. A
comparative analysis of the surveyed IE tools from the
three dimensions is presented in Section 5. Finally, the
conclusions are made in Section 6.

2 RELATED WORK

In the past few years, many approaches to WI systems,
including machine learning and pattern mining techniques,
have been proposed, with various degrees of automation. In
this section, we survey the previously proposed taxonomies
for IE tools developed by the main researchers.

The Message Understanding Conferences (MUCs) have
inspired the early work in IE. There are five main tasks
defined for text IE, including named entity recognition,
coreference resolution, template element construction,
template relation construction, and scenario template
production. The significance of the MUCs in the field of
IE motivates some researchers to classify IE approaches into
two different classes: MUC Approaches (e.g., AutoSolg [1],
LIEP [2], PALKA [3], HASTEN [4], and CRYSTAL [5]) and
Post-MUC Approaches (e.g., WHISK [6], RAPIER [7], SRV
[8], WIEN [9], SoftMealy [10], and STALKER [11]).

Hsu and Dung [10] classified wrappers into four
distinct categories, including hand-crafted wrappers using

general programming languages, specially designed pro-
gramming languages or tools, heuristic-based wrappers,
and WI approaches. Chang [12] followed this taxonomy
and compared WI systems from the user point of view
and discriminated IE tools based on the degree of
automation. They classified IE tools into four distinct
categories, including systems that need programmers,
systems that need annotation examples, annotation-free
systems, and semisupervised systems.

Muslea, who maintains the RISE (Repository of Online
Information Sources Used in Information Extraction Tasks)
Web site, classified IE tools into three different classes
according to the type of input documents and the structure/
constraints of the extraction patterns [48]. The first class
includes tools that process IE from free text using extraction
patterns that are mainly based on syntactic/semantic
constraints. The second class is called Wrapper induction
systems which rely on the use of delimiter-based rules since
the IE task processes online documents such as HTML
pages. Finally, the third class also processes IE from online
documents; however, the patterns of these tools are based on
both delimiters and syntactic/semantic constraints.

Kushmerick classified many of the IE tools into two
distinct categories: finite-state and relational learning tools
[13]. The extraction rules in finite-state tools are formally
equivalent to regular grammars or automata, e.g., WIEN,
SoftMealy, and STALKER, while the extraction rules in
relational learning tools are essentially in the form of
Prolog-like logic programs, e.g., SRV, Crystal, WebFoot [14],
Rapier and Pinocchio [15].

Laender proposed a taxonomy for data extraction tools
based on the main technique used by each tool to generate a
wrapper [16]. These include languages for wrapper devel-
opment (e.g., Minerva [17], TSIMMIS [18], and WebOQL
[19]), HTML-aware tools (e.g., W4F [20], XWrap [21] and
RoadRunner [22]), NLP-based tools (e.g., WHISK, RAPIER,
and SRV), Wrapper induction tools (e.g., WIEN, SoftMealy,
and STALKER), Modeling-based tools (e.g., NoDoSE [23]
and DEByE [24], [25], and Ontology-based tools (e.g., BYU
[26]). Laender did a comparison among the tools by using
the following seven features: degree of automation, support
for complex objects, page contents, availability of a GUI,
XML output, support for non-HTML sources, resilience,
and adaptiveness.
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Fig. 1. (a) A free text IE task which is specified by the input and (b) its
output.

Fig. 2. A Semistructured page containing data records (in rectangular

box) to be extracted.



Sarawagi classified HTML wrappers into three cate-
gories according to the kind of extraction tasks [27]. The
first category, record-level wrappers, exploits regularities to
discover record boundaries and then extracts elements of a
single list of homogeneous records from a page. The second
category, page-level wrappers, extracts elements of multiple
kinds of records. Finally, the site-level wrappers populate a
database from pages of a Web site.

Kuhlins and Tredwell classified the toolkits for generat-
ing wrappers into two basic categories, based on commercial
and noncommercial availability [28]. They also contrasted
the toolkits by using some features such as output methods,
interface type, Web crawling, capability, and GUI support.

This survey shows three main dimensions for evaluating
IE systems. First, the distinction of free text IE and online
documents made by Muslea, the three-level of extraction
tasks proposed by Sarawagi, and the capabilities of
handling non-HTML sources, together suggest the first
dimension, which concerns the difficulty or the task domain
that an IE task refers to. Second, the taxonomy of regular
expression rules or Prolog-like logic rules, and that of
deterministic finite-state transducer or probabilistic hidden
Markov models, prompts the second dimension which
relates the underlying techniques used in IE systems.
Finally, the categorizations of programmer-involved, learn-
ing-based, or annotation-free approaches imply the third
dimension which concerns the degree of automation. These
three dimensions are discussed in the next section.

3 THREE DIMENSIONS FOR COMPARING

IE SYSTEMS

Continuing our survey of various taxonomies, there are
three dimensions to be used in the comparison. The first
dimension evaluates the difficulty of an IE task, which can
be used to answer the question: “Why does an IE system fail
to handle some Web sites with particular structures?” The
second dimension compares the techniques used in
different IE systems. The third dimension evaluates both
the effort made by the user for the training process and the
necessity to port an IE system across different domains.
From the user’s point of view, the second dimension is less
important. However, researchers might get an overview of
which machine-learning or data mining technologies have
been used for WI through the comparison. In this section,
we describe each of these dimensions, and for each one, we
include a set of features that can be used as criteria for
comparing and evaluating IE systems from the dimension
prospective.

3.1 Task Difficulties

The input file of an IE task may be structured, semistruc-
tured, or free-text. As shown in Fig. 3, the definition of these
terms varies across research domains. Soderland [14]
considered free-texts, e.g., news article, that are written in
natural languages are unstructured, postings on newsgroup
(e.g., apartment rentals), medical records and equipment
maintenance logs are semistructured, while HTML pages
are structured. However, from the viewpoint of database
researchers [29], the information stored in databases is
known as structured data; XML documents are semistruc-

tured data for the schema information is mixed in with the
data values, while Web pages in HTML are unstructured
because there is very limited indication of the type of data.
From our viewpoints, XML documents are considered as
structured since there are DTD or XML schema available to
describe the data. Free texts are unstructured since they
require substantial natural language processing. For the
large volume of HTML pages on the Web, they are
considered as semistructured [10] since the embedded data
are often rendered regularly via the use of HTML tags.

Thus, semistructured inputs are the documents of a
fairly regular structure and data in them may be presented
in HTML or non-HTML format. One source of these large
semistructured documents is from the deep Web, which
includes dynamic Web pages that are generated from
structured databases with some templates or layouts. For
example, the set of book pages from Amazon has the same
layout for the authors, title, price, comments, etc. Web pages
that are generated from the same database with the same
template (program) form a page class. There are also
semistructured HTML pages generated by hand. For
example, the publication lists from various researchers’
homepages all have title and source for each single paper,
though they are produced by different people. For many
IE tasks, the input are pages of the same class, still some
IE tasks focus on information extraction from pages across
various Web sites.

In addition to the categorization by input documents, an
IE task can be classified according to the extraction target.
For example, Sarawagi classified HTML wrappers into
record-level, page-level, and site-level IE tasks. Record-level
wrappers discover record boundaries and then divide them
into separate attributes; page-level wrappers extract all data
that are embedded in one Web page, while site-level
wrappers populate a database from pages of a Web site;
thus, the attributes of an extraction object are scattered
across pages of a Web site. Academic researchers have
devoted much effort to develop record-level and page-level
data extraction, whereas industrial researchers have more
interest in complete suites which support site-level data
extraction.
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Fig. 3. Structurization of various documents.



There are various ways to describe the extraction targets
in a page. The most common structure (as proposed in
NoDoSE, DEByE, Stalker, etc.) is a hierarchical tree where
the leaf nodes are basic types while the internal nodes are
list of tuples. A data object may be of a plain/nested
structure. A plain text data-object has only one internal
node (the root), while a nested data-object contains more
than two levels and internal nodes. Since these Web pages
are intended to be human readable, tuples of the same list,
or elements of a tuple are often expressly separated or
delimited for easy visualization. However, the presentation
formats or the set of attributes that form a data-object is
subject to the following variations:

. An attribute may have zero or more values (list of
1-tuple) in a data-object. If the attribute has zero
value, it is called a missing attribute; if it has more
than one value, it is called a multivalued attribute.
The name of a book’s author may be an example of
multivalued attribute, whereas a special offer, which
is available only for certain books, is an example of
missing attribute.

. The set of attributes ðA1;A2; . . . ;AkÞ may have
multiple ordering, i.e., an attribute Ai may have
variant positions in different instances of a data-
object; and we call this attribute a multiordering
attribute. For example, a movie site might list the
release date before the title for movies prior to 1999,
but after the title for recent movies.

. An attribute may have variant formats along with
different instances of a data-object. If the format of
an attribute is not fixed, we might need disjunctive
rules to generalize all cases. For example, an
e-commerce site might list prices in boldface, except
for sale prices which are in red. So, price would be
an example of a variant-format attribute in this site.
On the other hand, different attributes in a data-
object may have the same format, especially in table
presentation, where single <TD> tags are used to
present various attributes. In such cases, order of
attributes is the key information to distinguish
various attributes. However, if missing attributes
occur or multiordering exists, the extraction rules for
these attributes need to be revised.

. Most IE systems handle input documents as strings
of tokens for they are easier to process than strings of
characters. Depending on the tokenization methods
used, sometimes an attribute cannot be decomposed
into individual tokens. Such an attribute is called an
untokenized attribute. For example, in a college
course catalog, the department code has no delimiter
separating it from the course number in strings such
as “COMP4016” or “GEOL2001.” The granularity of
extraction targets affects the decision/selections of
tokenization schemes for an IE system.

The combination of various input documents and
variation of extraction targets causes different degrees of
task difficulties. Since various IE systems are designed for
various IE tasks, it is not fair to compare them directly.
However, analyzing what task an IE system targets and
how it accomplishes the task, can be used to evaluate this
system and possibly extend to other task domains.

3.2 The Techniques Used

For a wrapper to extract data from input, it needs to tokenize
the input string, apply the extraction rules for each attribute,
assemble the extracted values into records, and repeat the
process for all object instances in the input. There are various
granularities for input string tokenization, including tag-
level and word-level encoding. The former encoding
translates each HTML tag as a token and translates any text
string between two tags as a special token, while the later,
word-level, treats each word in a document as a token.
Extraction rules can be induced by top-down or bottom-up
generalization, pattern mining, or logic programming. The
type of extraction rules may be expressed using regular
grammars or logic rules. Some of the WI systems use path-
expressions of the HTML parse tree path (e.g., html.head.-
title and html->table[0]) as the features in extraction rules;
some use syntactic or semantic constraints, such as POS-tags
and WordNet semantic class; while others use delimiter-
based constraints, such as HTML tags or literal words, in the
extraction rules. The extractor architecture may require
single or multiple passes over the pages.

In summary, the features for comparing WI systems
from the perspective of techniques used include: tokeniza-
tion/encoding schemes, scan pass, extraction rule type, features
involved, and learning algorithm.

3.3 Automation Degree

As described above, a wrapper program has many phases
that need to be accomplished: collecting training pages,
labeling training examples, generalizing extraction rules,
extracting the relevant data, and outputting the result in an
appropriate format. Most research focuses on the inter-
mediate three phases which involve the major extraction
process, while some provide a total solution including a
crawler or robot for collecting training pages (the first phase)
and an output support in XML format or back-end relational
database for further information integration (the final
phase). Generally speaking, the labeling phase defines/
specifies the output of an extraction task and requires the
involvement of users. However, some WI systems do not
require the collected training examples to be labeled before
the learning stage, instead, the labeling or annotation of the
extracted data can be done after the generation of extraction
rules (with or without users). This brings up a major
difference in automation: For some WI systems, the user
needs to label training examples; for others, the user simply
waits for the systems to clean the pages and extract the data.
However, the automation does not come without reason.
The cost is the applicability of these approaches to other task
domain. Some even have a limitation in the number and the
type of input pages.

In summary, the features we consider from the automa-
tion degree prospective include: user expertise needed for
labeling data or for generating the extraction rules,
applicability of these approaches to other task domain,
limitation for the number/type of input, page-fetching support
for collecting training pages, output support, and API support
for application integration.
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4 SURVEY FOR CONTEMPORARY IE SYSTEMS

The goal of WI is to automatically generate a wrapper that is
used to extract the targets for an information resource. Let
us consider how the user interacts with WI systems. Earlier
systems are designed to facilitate programmers in writing
extraction rules, while later systems introduce machine
learning for automatic rule generalization. Therefore, the
user interaction has evolved from writing extraction rules to
labeling target extraction data. In recent years, more efforts
are devoted to reducing labeling and creating WI systems
with unlabelled training examples. Following this trend, we
can classify WI systems into the four classes: manually
constructed IE Systems, supervised IE Systems, semisupervised
IE Systems, and unsupervised IE Systems.

In this section, we give a survey for most prominent and
contemporary IE approaches. To make such approaches
more understandable, we assume an IE task and describe
the generated wrapper that can be used to extract
information from other similar documents for each ap-
proach. Fig. 4 shows four Web pages as the input of the
IE task. The desired output is the book title and the
corresponding reviews, including the reviewer name,
rating, and comments.

4.1 Manually Constructed IE Systems

As shown on the right of Fig. 5, in manually constructed
IE systems, users program a wrapper for each Web site by
hand using general programming languages such as Perl or
by using specially designed languages. These tools require
the user to have substantial computer and programming
backgrounds, so it becomes expensive. Such systems
include TSIMMIS, Minerva, Web-OQL, W4F, and XWRAP.

4.1.1 TSIMMIS

TSIMMIS is one of the first approaches that give a
framework for manual building of Web wrappers [18].
The main component of this project is a wrapper that takes
as input a specification file that declaratively states (by a
sequence of commands given by programmers) where the
data of interest is located on the pages and how the data

should be “packaged” into objects. For example, Fig. 6a
shows the specification file for our IE task in Fig. 4. Each
command is of the form: [variables, source, pattern], where
source specifies the input text to be considered, pattern
specifies how to find the text of interest within the source,
and variables are a list of variables that hold the extracted
results. The special symbol “*” in a pattern means discard,
and “#” means save in the variables. TSIMMIS then outputs
data in Object Exchange Model (e.g., Fig. 6b) that contains
the desired data together with information about the
structure and the contents of the result. TSIMMIS provides
two important operators: split and case. The split operator is
used to divide the input list element into individual
elements (e.g., line 5). The case operator allows the user to
handle the irregularities in the structure of the input pages.

4.1.2 Minerva

Minerva attempts to combine the advantages of a declara-
tive grammar-based approach with the flexibility of
procedural programming in handling heterogeneities and
exceptions [17]. This is done by incorporating an explicit
exception-handling mechanism inside a regular grammar.
Exception-handling procedures are written in Minerva by
using a special language called Editor. The grammar used
by Minerva is defined in an EBNF style where a set of
productions is defined; each production rule defines the
structure of a nonterminal symbol (preceded by “$”) of the
grammar. For example, Fig. 7 shows the set of productions
that can be used to extract (also insert in a database)
relevant attributes for the defined IE task. As usual in EBNF
notation, expression ½p$ denotes an optional pattern p;
expression ðpÞ% denotes that pmay be repeated zero or more
times. The nonterminal productions $bName, $rName,
$rate, and $text immediately follow from their use in the
definition of $Book. Thus, book name is preceded by
“<b>Book Name</b>” and followed by “<b>” as indicated
by pattern “*(?<b>)” which matches every thing before
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Fig. 4. A running example of four Web pages ðpe1 & pe4Þ.

Fig. 5. A general view of WI systems.

Fig. 6. (a) A TSIMMIS specification file and (b) the OEM output.



tag <b>. The last production in Fig. 7 defines a special
nonterminal $TP (Tuple Production), which is used to insert
a tuple in the database after each book has been parsed. For
each production rule, it is possible to add an exception
handler containing a piece of the Editor code that can
handles the irregularities found in the Web data. Whenever
the parsing of that production rule fails, an exception is
raised and the corresponding exception handler is executed.

4.1.3 WebOQL

WebOQL is a functional language that can be used as query
language for the Web, for semistructured data, and for Web
site restructuring [19]. The main data structure provided by
WebOQL is the hypertree. Hypertrees are arc-lableled
ordered trees which can be used to model a relational
table, a Bibtex file, a directory hierarchy, etc. The abstraction
level of the data model is suitable to support collections,
nesting, and ordering. Fig. 8 shows the hypertree for page
pe1 of the running example. As shown in the figure, the tree
structure is similar to the DOM tree structure where arcs are
labeled with records with three attributes Tag, Source, Text,
corresponding to tag name, the piece of HTML code, and
the text excluding markup, respectively. The main construct
provided by WebOQL is the familiar select-from-where.
The language has the ability to simulate all operations in
nested relational algebra and compute transitive closure on
an arbitrary binary relation. As an example, the following
query extracts the reviewer names “Jeff” and “Jane” from
page pe2, where quotations and exclamation marks denote
the first subtree and the tail tree, respectively. The variables,
depending on the case, iterate over the simple trees or tail
trees of the hypertree specified after operator “in.”

Select [ Z!0.Text]
From x in browseð00pe2:html00Þ0, y in x0, Z in y0

Where x:Tag ¼ 00 ol00 and Z.Text=“Reviewer Name”

In addition to managing the data using the hypertrees,
the language can also be used for Web restructuring making
the query result readable for other applications.

4.1.4 W4F

W4F (Wysiwyg Web Wrapper Factory) is a Java toolkit to
generate Web wrappers [20]. The wrapper development
process consists of three independent layers: retrieval,

extraction, and mapping layers. In the retrieval layer, a to-
be-processed document is retrieved (from the Web through
HTTP protocol), cleaned, and then fed to an HTML parser
that constructs a parse tree following the Document Object
Model (DOM). In the extraction layer, extraction rules are
applied on the parse tree to extract information and then
store them into the W4F internal format called Nested
String List (NSL). In the mapping layer, the NSL structures
are exported to the upper-level application according to
mapping rules. Extraction rules are expressed using the
HEL (HTML Extraction Language), which uses the HTML
parse tree (i.e., DOM tree) path to address the data to be
located. For example, to address the reviewer’s name “Jeff”
and “Jane” from pe2, we can use expression <<html.bo-
dy.ol[0].li[*].pcdata[0].txt>> where the symbol [*] can match
any number (in this case, 0 and 1). The language also offers
regular expressions and constraints to address finer pieces
of data. For example, users can use a regular expression to
match or split (following the Perl syntax) the string obtained
by the DOM tree path. Finally, the fork operator allows the
construction of nested string list by following multiple sub-
paths at the same time. To assist the user addressing the
DOM tree path, the toolkit is designed with wysiwyg (what
you see is what you get) support via smart wizards.

4.1.5 XWrap

XWrap is a system that exploits formatting information in
Web pages to hypothesize the underlying semantic struc-
ture of a page [21]. It encodes the hypothetical structure and
the extraction knowledge of the Web pages in a rule-based
declarative language designed specifically for XWrap. The
wrapper generation process includes two phases: structure
analysis and source-specific XML generation. In the first phase,
XWrap fetches, cleans up, and generates a tree-like
structure for the page. The system then identifies regions,
semantic tokens of interest, and useful hierarchical struc-
tures of sections of the page by interacting with users
through object (record) and element extraction steps. In the
second phase, the system generates a XML template file
based on the content tokens and the nesting hierarchy
specification, and then constructs a source-specific XML
generator. In a way, XWRap can be classified as supervised
WI systems for when no rule writing is necessary; however,
it requires the user’s understanding of the HTML parse tree,
the identification of the separating tags for rows and
columns in a table, etc. Thus, it is classified as systems that
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require the special expertise of users. On the other hand, no
specific learning algorithm is used here; the extraction rules
are mainly based on DOM-tree path addressing.

4.2 Supervised WI Systems

As shown in the bottom-left of Fig. 5, supervised
WI systems take a set of Web pages labeled with examples
of the data to be extracted and output a wrapper. The user
provides an initial set of labeled examples and the system
(with a GUI) may suggest additional pages for the user to
label. For such systems, general users instead of program-
mers can be trained to use the labeling GUI, thus reducing
the cost of wrapper generation. Such systems are SRV,
RAPIER, WHISK, WIEN, STALKER, SoftMealy, NoDoSE,
and DEByE.

4.2.1 SRV

SRV is a top-down relational algorithm that generates
single-slot extraction rules [8]. It regards IE as a kind of
classification problem. The input documents are tokenized
and all substrings of continuous tokens (i.e., text fragments)
are labeled as either extraction target (positive examples) or
not (negative examples). The rules generated by SRV are
logic rules that rely on a set of token-oriented features (or
predicates). These features have two basic varieties: simple
and relational. A simple feature is a function that maps a
token into some discrete value such as length, character
type (e.g., numeric), orthography (e.g., capitalized), and
part of speech (e.g., verb). A relational feature maps a token
to another token, e.g., the contextual (previous or next)
tokens of the input tokens. The learning algorithm proceeds
as FOIL, starting with entire set of examples and adds
predicates greedily to cover as many positive examples and
as few negative examples as possible. For example, to
extract the rating score for our running example, SRV might
return rule like Fig. 9a, which says rating is a single numeric
word and occurs within a HTML list tag.

4.2.2 RAPIER

RAPIER also focuses on field-level extraction but uses
bottom-up (compression-based) relational learning algo-
rithm [7], i.e., it begins with the most specific rules and
then replacing them with more general rules. RAPIER
learns single slot extraction patterns that make use of
syntactic and semantic information including part-of-
speech tagger or a lexicon (WordNet). The extraction
rules consist of three distinct patterns. The first one is the
prefiller pattern that matches text immediately preceding
the filler, the second one is the pattern that matches the
actual slot filler, and, finally, the last one is the postfiller
pattern that matches the text immediately following the
filler. As an example, Fig. 9b shows the extraction rule for

the book title, which is immediately preceded by words
“Book,” “Name,” and “</b>,”,and immediately followed
by the word “<b>.” The “Filler pattern” specifies that the
title consists of at most two words that were labeled as
“nn” or “nns” by the POS tagger (i.e., one or two singular
or plural common nouns).

4.2.3 WIEN

Kushmerick identified a family of six wrapper classes, LR,
HLRT, OCLR, HOCLRT, N-LR, and N-HLRT for semi-
structured Web data extraction [9]. WIEN focuses on
extractor architectures. The first four wrappers are used
for semistructured documents, while the remaining two
wrappers are used for hierarchically nested documents. The
LR wrapper is a vector of 2K delimiters for a site containing
K attributes. For example, the vector (“Reviewer name </
b>,” “<b>,” “Rating </b>,” “<b>,” “Text </b>,” “</li>”)
can be used to extract 3-slot book reviews for our running
example. The HLRT class uses two additional delimiters to
skip over potentially confusing text in either the head or tail
of the page. The OCLR class uses two additional delimiters
to identify an entire tuple in the document, and then uses
the LR strategy to extract each attribute in turn. The
HOCLRT wrapper combines the two classes OCLR and
HLRT. The two wrappers N-LR and N-HLRT are extensions
of LR and HLRT and designed specifically for nested data
extraction. Note that, since WIEN assumes ordered attri-
butes in a data record, missing attributes and permutation
of attributes cannot be handled.

4.2.4 WHISK

WHISK uses a covering learning algorithm to generate
multislot extraction rules for a wide variety of documents
ranging from structured to free text [6]. When applying to
free text, WHISK works best with input that has been
annotated by a syntactic analyzer and a semantic tagger.
WHISK rules are based on a form of regular expression
patterns that identify the context of relevant phrases and the
exact delimiters of those phrases. It takes a set of hand-
tagged training instances to guide the creation of rules and
to test the performance of the proposed rules. WHISK
induces rules top-down, starting from the most general rule
that covers all instances, and then extending the rule by
adding terms one at a time. For example, to generate 3-slot
book reviews, it start with empty rule “*(*)*(*)*(*)*,” where
each parenthesis indicates a phrase to be extracted. The
phrase within the first set of parentheses is bound to the
first variable $1, and the second to $2, and so forth. Thus,
the rule in Fig. 10 can be used to extract our 3-slot book
reviews for our running example. If part of the input
remains after the rule has succeeded, the rule is reapplied to
the rest of the input. Thus, the extraction logic is similar to
the LR wrapper for WIEN.
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4.2.5 NoDoSE

Opposed to WIEN, where training examples are obtained
from some oracles that can identify interesting types of
fields within a document, NoDoSE provides an interactive
tool for users to hierarchically decompose semistructured
documents (including plain text or HTML pages) [23]. Thus,
NoDoSE is able to handle nested objects. The system
attempts to infer the format/grammar of the input docu-
ments by two heuristic-based mining components: one that
mines text files and the other parses HTML code. Similar to
WIEN, the mining algorithms try to find a common prefix
and suffix as delimiters for various attributes. Although it
does not assume the order of attributes within a record to be
fixed, it seeks to find a totally consistent ordering for
various attributes in a record. The result of this task is a tree
that describes the structure of the document. For example,
to generate a wrapper for the running example, the user can
interact with the NoDoSE GUI to decompose the document
as a record with two fields: a book title (an attribute of type
string) and a list of Reviewer, which is in turn a record of
the three fields RName (string), Rate (integer), and Text
(string). Next, NoDoSE then automatically parses them and
generates the extraction rules.

4.2.6 SoftMealy

In order to handle missing attributes and attribute
permutations in input, Hsu and Dung introduce the idea
of finite-state transducer (FST) to allow more variation on
extractor structures [10]. A FST consists of two different
parts: the body transducer, which extracts the part of the page
that contains the tuples (similar to HLRT in WIEN), and the
tuple transducer which iteratively extracts the tuples from
the body. The tuple transducer accepts a tuple and returns
its attributes. Each distinct attribute permutation in the
page can be encoded as a successful path from start state to
the end state of the tuple transducer; the state transitions are
determined by matching contextual rules that describe the
context delimiting two adjacent attributes. Contextual rules
consist of individual separators that represent invisible
borderlines between adjacent tokens; an inductive general-
ization algorithm is used to induce these rules from training
examples. Fig. 11 shows an example of FST that can be used
to extract the attributes of the book reviews: the reviewer
name (N), the rating (R), and the comment (T ). In addition
to the begin and end states, each attribute, A, is followed by
a dummy state, !A. Each arc is labeled with the contextual
rule that enables the transition and the tokens to output. For

example, when the state transition reaches to the R state, the
transducer will extract the attribute R until it matches the
contextual rules < s < R;R > (which is composed of < s <
R;R >L and s < R;R >R ). The state R and the end state
are connected if we assume no comment can occur.

4.2.7 STALKER

STALKER is a WI system that performs hierarchical data
extraction [11]. It introduces the concept of embedded
catalog (EC) formalism to describe the structure of a wide
range of semistructured documents. The EC description of a
page is a tree-like structure in which the leaves are the
attributes to be extracted and the internal nodes are lists of
tuples. For each node in the tree, the wrapper needs a rule
to extract this node from its parent. Additionally, for each
list node, the wrapper requires a list iteration rule that
decomposes the list into individual tuples. Therefore,
STALKER turns the difficult problem of extracting data
from an arbitrary complex document into a series of easier
extraction tasks from higher level to lower level. Moreover,
the extractor uses multipass scans to handle missing
attributes and multiple permutations. The extraction rules
are generated by using of a sequential covering algorithm,
which starts from linear landmark automata to cover as
many positive examples as possible, and then tries to
generate new automata for the remaining examples. A
Stalker EC tree that describes the data structure of the
running example is shown in Fig. 12a, where some of the
extraction rules are shown in Fig. 12b. For example, the
reviewer ratings can be extracted by first applying the
List(Reviewer) extraction rule (which begins with “<ol>”
and ends with “</ol>”) to the whole document, and then
the Rating extraction rule to each individual reviewer,
which is obtained by applying the iteration rule for
List(Reviewer). In a way, STALKER is equivalent to
multipass Softmealy [30]. However, the extraction patterns
for each attribute can be sequential as opposed to the
continuous patterns used by Softmealy.

4.2.8 DEByE (Data Extraction By Example)

Like NoDoSE, DEByE provides an interactive GUI for
wrapper generation [24], [25]. The difference is that in
DEByE, the user marks only atomic (attribute) values to
assemble nested tables, while in NoDoSE the user decom-
poses the whole document in a top-down fashion. In
addition, DEByE adopts a bottom-up extraction strategy
which is different from other approaches. The main feature
of this strategy is that it extracts atomic components first and
then assembles them into (nested) objects. The extraction
rules, called attribute-value pair patterns (AVPs), for atomic

1418 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 10, OCTOBER 2006

Fig. 11. An FST for the Web pages in the running example.

Fig. 12. (a) An EC tree and (b) a Stalker extraction rule.



components are identified by context analysis: starting with
context length 1, if the number of matches exceeds the
estimated number of occurrences provided by the user, it
adds additional terms to the pattern until the number of
matches is less than the estimated one. For example, DEByE
generates AVP patterns, “Name</b>* <b>Reviews,”
“Name</b>*<b> Rating,” “Rating</b>*<b>Text,” and
“</b>*<li>” for book name, reviewer name, rating, and
comment, respectively (* denotes the data to be extracted).
The resulting AVPs are then used to compose an object
extraction pattern (OEPs). OEPs are trees containing
information on the structure of the document. The subtrees
of an OEP are themselves OEPs, modeling the structure of
component objects. At the bottom of the hierarchy lies the
AVPs that used to identify atomic components. The
assemble of atomic values into lists or tuples is based on
the assumption that various occurrences of objects do not
overlap each other. For nonhomogeneous objects, the user
can specify more than one example object, thus creating a
distinct OEP for each example.

4.3 Semisupervised IE Systems

The systems that we categorize as semisupervised
IE systems include IEPAD, OLERA, and Thresher. As
opposed to supervised approach, OLERA and Thresher
accept a rough (instead of a complete and exact) example
from users for extraction rule generation, therefore, they are
called semisupervised. IEPAD, although no labeled training
pages are required, posteffort from the user is required to
choose the target pattern and indicate the data to be
extracted. All these systems are targeted for record-level
extraction tasks. Since no extraction targets are specified for
such systems, a GUI is required for users to specify the
extraction targets after the learning phase. Thus, the user’s
supervision is involved.

4.3.1 IEPAD

IEPAD is one of the first IE systems that generalize
extraction patterns from unlabeled Web pages [31]. This
method exploits the fact that if a Web page contains
multiple (homogeneous) data records to be extracted, they
are often rendered regularly using the same template for
good visualization. Thus, repetitive patterns can be dis-
covered if the page is well encoded. Therefore, learning
wrappers can be solved by discovering repetitive patterns.
IEPAD uses a data structure called PAT trees, which is a
binary suffix tree, to discover repetitive patterns in a Web
page. Since such a data structure only records the exact
match for suffixes, IEPAD further applies the center star
algorithm to align multiple strings which start from each
occurrence of a repeat and end before the start of next
occurrence. Finally, a signature representation is used to
denote the template to comprehend all data records. For our
running example, only page pe2 can be used as input to
IEPAD. By encoding each tag as an individual token and
any text between two adjacent tags as a special token “T,”
IEPAD discovers the pattern “<li><b>T</b>T<b>T</b>T
<b>T</b>T</li>” with two occurrences. The user then has
to specify, for example, the second, fourth, and sixth
“T” tokens, as the relevant data (denoting reviewer name,
rating, and comment, respectively).

4.3.2 OLERA

OLERA is a semisupervised IE system that acquires a rough
example from the user for extraction rule generation [32].
OLERA can learn extraction rules for pages containing
single data records, a situation where IEPAD fails. OLERA
consists of three main operations: 1) Enclosing an information
block of interest: where the user marks an information block
containing a record to be extracted for OLERA to discover
other similar blocks (using approximate matching techni-
que) and generalize them to an extraction pattern (using
multiple string alignment technique). 2) Drilling-down/rolling-
up an information slot: drilling-down allows the user to
navigate from a text fragment to more detailed components,
whereas rolling-up combines several slots to form a mean-
ingful information unit. 3) Designating relevant information
slots for schema specification as in IEPAD.

4.3.3 Thresher

Thresher [33] is also a semisupervised approach that is
similar to OLERA. The GUI for Thresher is built in the
Haystack browser which allows users to specify examples
of semantic contents by highlighting them and describing
their meaning (labeling them). However, it uses tree edit
distance (instead of string edit distance as in OLERA)
between the DOM subtrees of these examples to create a
wrapper. Then, it allows the user to bind the semantic Web
language RDF (Resource Description Framework) classes
and predicates to the nodes of these wrappers.

4.4 Unsupervised IE Systems

As shown at the left-top of Fig. 5, unsupervised IE
systems do not use any labeled training examples and
have no user interactions to generate a wrapper. Un-
supervised IE systems, RoadRunner and EXALG, are
designed to solve page-level extraction task, while DeLa
and DEPTA are designed for record-level extraction task.
In contrast to supervised IE systems where the extraction
targets are specified by the users, the extraction target is
defined as the data that is used to generate the page or
nontag texts in data-rich regions of the input page. In
some cases, several schemas may comply with the
training pages due to the presence of nullable data
attributes, leading to ambiguity [34]. The choice of
determining the right schema is left to the users.
Similarly, if not all data is needed, postprocessing may
be required for the user to select relevant data and give
each piece of data a proper name.

4.4.1 DeLa

As an extension of IEPAD, DeLa [35], [36] removes the
interaction of users in extraction rule generalization and
deals with nested object extraction. The wrapper genera-
tion process in DeLa works on two consecutive steps.
First, a Data-rich Section Extraction algorithm (DSE) is
designed to extract data-rich sections from the Web pages
by comparing the DOM trees for two Web pages (from the
same Web site), and discarding nodes with identical
subtrees. Second, a pattern extractor is used to discover
continuously repeated (C-repeated) patterns using suffix
trees. By retaining the last occurrence for each discovered
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pattern, new repeated patterns were discovered from the
new sequence iteratively, forming nested structure. For
example, given the string sequence “<P><A>T</A><A>T
</A>T</P><P><A>T</A>T</P>,” DeLa will discover
“<P><A>T</A>T<P>” from the immediate sequence
“<P><A>T</A>T</P><P><A>T</A>T</P>” and return
parenthesized pattern “(<P>(<A>T</A>)*T<P>)*” to de-
note the nested structure. Since a discovered pattern may
cross the boundary of a data object, DeLa tries K pages
and selects the one with the largest page support. Again,
each occurrence of the regular expression represents one
data object. The data objects are then transformed to a
relational table where multiple values of one attribute are
distributed into multiple rows of the table. Finally, labels
are assigned to the columns of the data table by four
heuristics, including element labels in the search form or
tables of the page and maximal-prefix and maximal-suffix
shared by all cells of the column.

4.4.2 RoadRunner

RoadRunner considers the site generation process as
encoding of the original database content into strings of
HTML code [22]. As a consequence, data extraction is
considered as a decoding process. Therefore, generating a
wrapper for a set of HTML pages corresponds to inferring a
grammar for the HTML code. The system uses the ACME
matching technique to compare HTML pages of the same
class and generate a wrapper based on their similarities and
differences. It starts by comparing two pages, using the
ACME technique to align the matched tokens and collapse
for mismatched tokens. There are two kinds of mismatches:
string mismatches that are used to discover attributes
(#PCDATA) and tag mismatches that are used to discover
iterators (+) and optional (?). Fig. 13 shows both an example
of matching for the first two pages of the running example
and its generated wrapper. Since there can be several

alignments, RoadRunner adopts UFRE (union-free regular
expression) to reduce the complexity. The alignment result
of the first two pages is then compared to the third page in
the page class. In addition to the module for template
deduction, RoadRunner also includes two modules, Classi-
fier and Labeler to facilitate wrapper construction. The first
module, Classifier, analyzes pages and collects them into
clusters with a homogeneous structure, i.e., pages with the
same template are clustered together. The second module,
Labeler, discovers attribute names for each page class.

4.4.3 EXALG

Arasu and Molina presented an effective formulation for
the problem of data extraction from Web pages [37]. The
input of EXALG is a set of pages created from the unknown
template T and the values to be extracted. EXALG deduces
the template T and uses it to extract the set of values from
the encoded pages as an output. EXALG detects the
unknown template by using the two techniques differentiat-
ing roles and equivalence classes (EC). In the former technique,
the occurrences with two different paths of a particular
token have different roles. For example, in the running
example, the role of “Name” when it occurs in “Book
Name” (i.e., Name5) is different from its role when it occurs
in “Reviewer Name” (i.e., Name14). In the later technique,
an equivalence class is a maximal set of tokens having the
same occurrence frequencies over the training pages
(occurrence-vector). For example, in Fig. 4, the two tokens
< html >1 and < body >2 have the same occurrence-vector
(<1, 1, 1, 1>), so they belong to the same equivalence class.
The insight is that template tokens that encompass a data
tuple have the same occurrence vector and form an
equivalence class. However, to avoid data tokens to
accidentally form an equivalence class, ECs with insuffi-
cient support (the number of pages containing the tokens)
and size (the number of tokens in an EC) are filtered. In
addition, to conform to the hierarchical structure of the data
schema, equivalence classes must be mutually nested and
the tokens in an EC must be ordered. Those valid ECs are
then used to construct the original template.

4.4.4 DEPTA (Data Extraction Based on Partial Tree
Alignment)

Like IEPAD and DeLa, DEPTA can be only applicable to
Web pages that contain two or more data records in a data
region. However, instead of discovering repeat substrings
based on suffix trees, which compares all suffixes of the
HTML tag strings (as the encoded token string described in
IEPAD), it compares only adjacent substrings with starting
tags having the same parent in the HTML tag tree (similar
to HTML DOM tree, but only tags are considered). The
insight is that data records of the same data region are
reflected in the tag tree of a Web page under the same
parent node. Thus, irrelevant substrings do not need to be
compared together as that in suffix-based approaches.
Furthermore, the substring comparison can be computed
by string edit distance instead of exact string match when
using suffix trees where only completely similar substrings
are identified. The described algorithm, called MDR [38],
works in three steps. First, it builds an HTML tag tree for
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the Web page as shown in Fig. 14 where text strings are
disregarded. Second, it compares substrings for all children
under the same parent. For example, we need to make two
string comparison, ðb1; b2Þ and ðb2; olÞ, under parent node
<body>, where the tag string node <ol> is represented by
“<li><b><b><b><li><b><b><b>.” If the similarity is great-
er than a predefined threshold (as shown in the shaded
nodes in Fig. 14), the nodes are recorded as data regions.
The third step is designed to handle situations when a data
record is not rendered contiguously as assumed in previous
works. Finally, the recognition of data items or attributes in
a record is accomplished by partial tree alignment [39]. Tree
alignment is better than string alignment for it considers
tree structure, thus reducing the number of possible
alignments. The algorithm first chooses the record tree
with the largest number of data items as center and then
matches other record trees to the center tree. However,
DEPTA only adds tag nodes to the center tree when the
positions of the tag nodes can be uniquely determined in
the center tree. For the nodes that remain, they are
processed in the next iteration after all tag trees are
processed. Note that DEPTA assumes that nontag tokens
are data items to be extracted; thus, it extracts not only the
reviewer name, rating, and comments, but also the labels
“Reviewer Name,” “Rating,” and “Text” for page pe2 in our
running example. Further, DEPTA is limited to handle
nested data records. So, a new algorithm, NET, is developed
to handle such data records by performing a postorder
traversal of the visual-based tag tree of a Web page and
matching subtrees in the process using a tree edit distance
method and visual cues [40].

Of the unsupervised WI approaches, one important issue
is to differentiate the role of each token: either a data token
or template token. Some assume that every HTML tag is
generated by the template and other tokens are data items
to simplify the issue (as in DeLa and DEPTA). However, the
assumption does not hold for many collections of pages
(therefore, IEPAD and OLERA simply leave the issue to
distinguish between data and template tokens to the users).
RoadRunner also assumes that every HTML tag is
generated by the template, but other matched string tokens
are also considered as part of the template. In comparison,
EXALG has the most detailed tokenization method while a
more flexible assumption is that each token can be a

template token if there are enough tokens to form
frequently occurring equivalence classes.

On the other hand, DEPTA conducts the mining process
from single Web pages, while RoadRunner and EXALG do
the analysis from multiple Web pages (while DeLa takes
advantage of multiple input pages for data-rich section
extraction and generalized pattern construction, it discovers
C-repeat patterns from single Web pages). The latter, in our
viewpoint, is the key point that is used to differentiate the
role of each token. Thus, multiple pages of the same class
are also used to discover data rich section (as in DeLa) or
eliminate noisy information (as in [41]). Meanwhile, the
adaptation of tree matching in DEPTA (as well as Thresher)
also provides better results than string matching techniques
used in IEPAD and RoadRunner. EXALG similarly does not
make full use of the tree structure, although the DOM tree
path information is used for differentiating token roles.
Finally, since information extraction is only a part of a
wrapper program or information integration systems,
additional tasks like page fetching, label assignment, and
mapping with other Web data sources remain to be
processed.

Due to space limitation, we are not able to compare all
researches here. For example, ViNTs [42] is a record-level
wrapper generation system which exploits visual informa-
tion to find separators between data regions from search
result pages. However, the algorithm can be only applicable
to pages that contain at least four data records. Another
related approach that has been applied on Web sites for
extracting information from tables is [43]. The technique
relies on the use of additional links to a detail page
containing additional information about that item. In
parallel to the efforts to detect Web tables, other researchers
have worked in detecting tables in plain text documents
(such as government statistical reports) and segmenting
them into records [44]. Since these approaches do not
address the problem of distinguishing data tokens from
template tokens, we consider them as semisupervised
approaches.

5 A COMPARATIVE ANALYSIS OF IE TOOLS

Although many researchers have developed various tools
for data extraction from Web pages, there has been only a
limited amount of effort to compare such tools. Unfortu-
nately, in only a few cases can results generated by distinct
tools be directly comparable. From our viewpoint, even in
these few cases, the main goal of the comparison is for a
survey. Therefore, in this section, we use the criteria of the
three dimensions suggested in Section 3 to compare the
surveyed IE tools.

5.1 Task Domain-Based Comparison

In this section, we contrast among the capabilities of the
surveyed IE systems to support various IE tasks as shown
in Table 1. The features in this dimension include input
variation, such as page type, Non-HTML support, and
output variation such as extraction level, attribute variation,
and template variation.
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5.1.1 Page Type

We first compare the input documents that each IE system
targets. As discussed above, Web pages may be structured,
semistructured, or free-text Web pages according to the level
of structurization. For example, manual or supervised IE
systems are designed to extract information from cross-Web
site pages (e.g., professor data from various universities),
while semisupervised and supervised IE systems are
designed primarily for extracting data from the deep Web
(template pages). Thus, the latter systems depend heavily
on the common template that is used to generate Web
pages, while the former has included more features of the
tokens (e.g., the number of characters, the fraction of upper-
case letters, etc.) for inducing extraction rules. By incorpor-
ating more characteristics of the template pages, unsuper-
vised IE systems present high-degree automation for
extraction rule generalization; in contrast, the extension to
nontemplate pages is rather limited.

5.1.2 Non-HTML Support (NHS)

The support for non-HTML inputs depends on the features
or background knowledge used by the IE systems. Thus,

when an IE system fails to generalize extraction rules for an
IE task, we (the programmers) know how to or what to
adjust the system for such a task. Most supervised systems
can support non-HTML documents by modifying the
generalization hierarchy (e.g., Softmealy) or adding new
token features (e.g., SRV). Manual systems such as Minerva
and TSIMMIS, where extraction rules are written by hand,
can be adapted by the wrapper developer to handle non-
HTML documents. Some wrappers, e.g., WebOQL, W4F,
XWrap, and DEPTA, rely heavily on the use of DOM trees
information in their systems, so they cannot support non-
HTML documents, while sequence based approaches, such
as IEPAD, OLERA, RoadRunner, and DeLa can be adapted
to handle non-HTML documents by adding proper encod-
ing schemes. The equivalence class technology of EXALG
also supports non-HTML documents, but the success
depends on token role differentiation.

5.1.3 Extraction Level

IE tasks can be classified into four categories: field-level,
record-level, page-level, and site-level. Rapier and SRV are
designed to extract single-slot records or, equivalently,
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field-level extractions. Wrappers in EXALG and Road-
Runner extract the embedded data objects in whole pages
which may contain records of multiple kindes, so wrappers
in these systems are page-level. The other remaining
systems in Table 1 are examples of record-level IE tasks,
although some can be extended for page-level extraction,
e.g., NoDoSE, STALKER, etc. Most record-level IE systems
discover record boundaries and then divide them into
separate items, while the bottom-up extraction strategy in
DEByE extracts a set of attributes and then assembles them
to form a record. So far, there are no site-level IE systems.

5.1.4 Extraction Target Variation

ManyWeb pages are hierarchically organized with multiple
nesting levels. Typically, this complex structure is loose,
presenting variations on semistructured data. The complex
degree of an extraction target (data object) depends on the
appearance of missing attributes (MA), multiple-valued
attributes (MVA), multiordering attributes (MOA), and
nested data objects. To handle these variations, the extract-
ing procedure needs special care in addition to its usual logic
where attributes appear exactly once without ordering and
nesting issues. Understanding how various IE systems
support these variations can help us decide how to tailor
an IE system to new tasks. Note that, for field-level
extraction systems (SRV and Rapier), the handling of these
variations does not present specific difficulties, since they do
not deal with the relationships of attributes in the data
objects.

Most IE systems support missing attributes and multiple-
valued attributes extraction, except for WIEN and WHISK.
The special care for programming-based IE systems is
usually an exception handler, e.g., Minerva, W4F, and
WebOQL. In TSIMMIS, two operators “case” and “split”
are designed to handle missing attributes and multiple-
valued attributes. Many IE systems do not support multiple-
ordering attributes since their extraction rules depend on the
location of the fields within a record. Hsu was a pioneer who
attempted to overcome the problem of multiple ordering
attributes. However, from our viewpoint, the situations he
handledwere instances ofmissing attributes. So,we consider
that SoftMealy is limited to handle MOA using single-pass
finite state transducer (FST). The use of FST in SoftMealy also
make it possible to handleMA andMVA. Overall, SoftMealy
can handle objects of nested structures through multipass
FST. Stalker can handleMOA and nested object extraction by
multipass scans over the input data. Other IE systems
(IEPAD, OLERA, and DeLa), make use of alignment
technique to form disjunctive rules to handle MA, MVA,
andMOA. In addition, the use of multiple encoding schemes
in IEPAD and OLERA give them the opportunity to handle
more complex nested data objects. The two heuristic-based
mining components in NoDoSE and the bottom-up strategy
(where the set of attributes are recognized, extracted, and
stored in a set variable prior to the object itself) inDEByE give
these systems the ability to handle MOA and nested data
objects in overall. RoadRunner and EXALG did not support
MOAbecause their extraction rules depend on the location of
the attributes within a record, although, overall, they can
handle nested data objects. DEPTA, theoretically can support
nested data objects by exploiting the tag tree structure. MOA

is not possible in DEPTA since the partial tree match is based
on unique order of the tag children with the same parent.

5.1.5 Template Variation

The difficulties in extraction rule induction come from the
variant formats of the data instances. As described in
Section 3.1, an attribute may have variant formats (VF),
which usually require disjunctive rule supports or sequen-
tial rule supports. Some IE systems support both disjunctive
rules and sequential patterns (SP) for rule generalization. To
the best of our knowledge, WIEN, W4F, XWrap, NoDoSE,
and RoadRunner do not support disjunctive rules. How-
ever, W4F and XWrap support sequential pattern for rule
generalization. A regular expressions containing don’t care
symbols is an example of sequential pattern. Sequential
patterns can be generalized by alignment technique or by
sequential pattern mining (e.g., Stalker). Meanwhile, differ-
ent attributes may have the same display format called
common format (CT). Most IE systems take the advantage
of attribute order to extract them. Others, e.g., DeBYE and
Stalker, add more constraints to form a longer extraction
rule. What follows is that the extraction precision can be
greatly decreased in case of missing attributes or multiple-
order attributes.

5.1.6 UnTokenized Attributes (UTA)

So far, we have seen three approaches used to handle
untokenized attributes. The first one is through postproces-
sing. For example, the split operator in W4F offers regular
expressions and constraints to address finer pieces of data.
The second one is by contextual rules instead of delimiter-
based rules. As proposed by Softmealy, the idea of
separators as well as contextual rules helps user address
data of any granularity. Finally, multiple-level encodings
also allow IE systems to address data of different
granularity without sacrificing the advantage of abstraction
for rule generalization as in IEPAD and OLERA.

5.2 Technique-Based Comparison

In this section, we use the criteria suggested in Section 3.2 to
compare and evaluate IE systems from the perspective of
the underlying techniques used. The results are shown in
Table 2 and discussed below.

5.2.1 Scan Pass

This comparison refers to the number of scan passes
required over an input document for information extrac-
tion. Most WI systems design the extractor to scan the input
document once, referred to as single-pass extractor, while
others (e.g., STALKER and multipass SoftMealy) scan the
input document several times to complete the extraction.
The extractor of DEByE also needs multiple passes to
extract each atomic attributes. Generally speaking, single-
pass wrappers are more efficient than multipass wrappers.
However, multipass wrappers are more effective at hand-
ling data objects with unrestricted attribute permutations or
complex object extraction. SRV and Rapier can only
generate single slot rules, so the extractor needs to make
multiple passes over the input page to extract relevant data.
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5.2.2 Extraction Rule Type

Most WI systems use extraction rules that are represented
as regular grammars to identify the beginning and end of
the relevant data, whereas Rapier and SRV use extraction
rules expressed using first order logic. Regular expression
rules are powerful for semistructured inputs, especially
template-based pages, since we usually find common
tokens surrounding the data to be extracted. Even when
no common tokens exist, we can induce rules by incorpor-
ating a generalization hierarchy of tokens as background
knowledge (e.g., Softmealy). However, for free-text inputs,
where very few common tokens can be found, we need to
incorporate more features, e.g., digit density, length, POS
tags, etc., to generalize the common characteristics among
various tokens. That’s why first-order logic rules are used
for free-text IE tasks (e.g., SRV and Rapier).

5.2.3 Features Used

Earlier IE systems are designed to handle nontemplate-
based Web pages, say Computer Science Department Web
pages from various universities. Therefore, they have used
both HTML tags and literal words as delimiter-based
constraints. For template-based Web pages, it is possible
to use DOM tree paths to denote a specific piece of
information in a Web page. For example, W4F, XWrap, and
other commercial products use DOM tree paths to address a
Web page. Since the data to be extracted are often colocated
in the same path of the DOM tree, this makes the rule

learning process much easier. For free text information
extraction, natural language processing techniques such as
part-of-speech tagger and Word-Net semantic classes are
used as additional features. SRV also uses orthographic
features, token’s length, and link grammars. Finally,
EXALG exploits statistical information of the tokens in
Web pages to generate their wrappers.

5.2.4 Learning Algorithm

Wrappers in programming-based WI systems are written
by hand and take as input a specification that is
declaratively stated where the data of interest is located in
the HTML pages and how the data is packaged into objects.
Thus, no learning algorithms are used in these systems.
Rapier is a bottom-up relational learning system inspired by
ILP methods, while SRV is a top-down relational algorithm.
Whisk is a top-down covering learning system. Its patterns
have two components that specify the context and the exact
delimiters of the phrase to be extracted. DEByE and NoDoSE
all require a large amount of support from users to model
the data in the documents. They focus on the interface
design and apply very simple methods to learn extraction
patterns, i.e., common prefix and suffix of the data values to
be extracted. On the other hand, Stalker and SoftMealy use
Ad hoc generalization methods for learning extraction
rules. They focus on the learning techniques and the
extractor architecture and use a hierarchy of token classes
for token generalization, which is quite different from
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NoDoSE and DEByE where the extraction rules are simply
based on superficial or literal words.

Semisupervised or unsupervised IE systems mainly
apply data mining techniques for various pattern discov-
eries. IEPAD discovers regular and adjacent maximum
patterns using PAT trees and string alignment techniques,
while DeLa further discovers nested structures from con-
tinuous repeated (C-repeated) patterns. OLERA applies
approximate string matching and string alignment techni-
ques following the users’ enclosing, drill-down/roll-up
operations. RoadRunner analyzes input pages by string
comparison using the ACME technique. EXALG exploits
statistical information to generate the template and schema
of Web pages by using equivalence classes and differentiat-
ing roles techniques. DEPTA applies amining technique and
partial tree alignment to mine data records in a Web page. In
comparison, IEPAD and DEPTA discover repeated patterns
from one HTML page, while Roadrunner and EXALG
discover repeat patterns from multiple HTML pages.

5.2.5 Tokenization Schemes

Wrappers in Minerva and TSIMMIS are written by hand, so
they do not need to tokenize the input pages. Most WI
systems for Web pages support tag-level tokernization.
Some systems even support word-level tokernization, e.g.,
supervised WI systems and EXALG. WebOQL, W4F,
XWrap, RoadRunner, and DeLa use a tag-level encoding
scheme to translate the input training pages into tokens.

Also, the input HTML page in W4F and XWrap has been

parsed to construct a parse tree that reflects its HTML tags

hierarchy following the document object model (DOM).

Finally, IEPAD and OLERA allow multiple levels of

encodings for input training pages.

5.3 Automation Degree-Based Comparison

In this section, we use the features suggested in Section 3.3

to compare and evaluate IE systems from the automation

degree prospective. The results are shown in Table 3 and

discussed below.

5.3.1 User Expertise

Manual IE systems require users of programming back-

ground to write correct extraction rules. Supervised and

semisupervised WI systems require users to label exact or

part of the data to be extracted, thus there is no special

expertise needed. For unsupervised systems, they require

no assistant from users (except for pattern selection). For

IEPAD and OLERA, although they require no labeling

before pattern discovery, postlabeling is needed to sift

desired data, while the work of distinguishing template

tokens from data tokens is accomplished by unsupervised

IE systems. Strictly speaking, the label of the data extracted

by unsupervised IE systems remains to be assigned, and

only DeLa has dealt with this problem.
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5.3.2 Fetching Support
Most IE systems focus on extraction rule generalization and
use a set of pages that are manually downloaded as training
examples. Some systems specifically support page fetching
in wrapper construction. For example, W4F has a compo-
nent called RetrieveAgent that is used to retrieve a Web
source by inputting its URL. Also, the syntactical normalizer
component of XWrap accepts an URL entered by the user,
issues an HTTP request to the remote server identified by
the URL, and fetches the corresponding Web page. Other
systems also propose new tools for page fetching support.
For instance, WNDL is a language proposed by Hsu et al. to
describe Web navigation for page fetching support with
Softmealy and IEPAD [45]. ASByE, a member of DEByE
family, is a tool for collecting static and dynamic Web
pages. DeLa uses the existing Hidden Web crawler, HiWe,
to automatically collect the labels of the elements from Web
sites and send queries to the Web site.

5.3.3 Output/API Support

Outputting the extracted relevant data is comparably
simple, so most IE systems support it. The systems Minerva,
W4F, XWrap, NoDoSE, DEByE, SoftMealy, OLERA, and
RoadRunner output the extracted data in a XML format.
Also, NoDoSE supports other formats, such as OEM, and
DEByE supports SQL database output format. On the other
hand, API support is important since it is the connection
between the generated wrapper and information integra-
tion systems. Programming-based IE systems have API
supports, while others do not specifically mention this in
their papers.

5.3.4 Applicability

As described in Section 3.3, applicability concerns how easy
these approaches can be extended to other task domains. A
key factor for high applicability is that domain-specific
information is separate from the underlying learning
mechanism. For the various IE tasks we discussed above,
manual systems and supervised systems have good
modularity while semisupervised or unsupervised systems
have less applicability since they have pushed the domain
specific information to the limit for high automation degree.

5.3.5 Limitation

Finally, we consider the requirements for multiple data-
records or multiple training pages input. Although, we can
regard such requirements as a different input IE task, we
view them as a limitation of these approaches for various
WI systems to be compared in the same task domain. Take
template-page IE, for example, an IE system that needs
multiple-records training Web pages cannot be applied to a
site that includes Web pages of a single record. As
summarized in Table 3, there is no restriction about the
content and the number of training pages for manual and
supervised IE systems. IEPAD, DeLa, and DEPTA require
input pages with multiple-records to generate a wrapper.
DeLa, RoadRunner, and EXALG require more than one
training page as input for their approaches to work.

5.4 Overall Comparison

Although we have compared various IE systems from three
dimensions, there are correlations among these criteria. For
example, template-based pages have a higher automation
degree than nontemplate pages and free-text documents
since the inputs present structured framework that can be
discovered by unsupervised approaches. However, this
does not imply that data extraction from template-based
pages is easier than other pages. Instead, new problems
arise, e.g., distinction between template and data tokens,
and label assignment to data tokens.

As shown in Fig. 15, manual IE systems can be applied to
all kinds of inputs as long as proper features are provided
by the systems, though it depends on the programmers’
techniques to compose the extraction rules. Semisupervised
and unsupervised IE systems can be applied only to
template-based pages since their success rely on the
existence of template. In addition, we also see that
unsupervised systems usually apply superficial features
such as HTML tags for regular expression rules since they
are targeted for template-based pages. For IE from cross-site
pages and free texts, semantic features (e.g., orthographic
features, token’s length, etc.) are required since there are
less common tags and words among the input documents.

For a practitioner, one wants to know which techniques
are effective, good recall and precision. Since these systems
deal with different data and have different features, it is not
possible to evaluate them in a consistent way. Thus, we can
only compare them from their applicability. Semisuper-
vised and unsupervised IE systems have embedded in their
systems heuristics observed from template pages, e.g.,
contiguous data area (IEPAD), noncontiguous data records
(DEPTA), and nested data objects (DeLa). Since there are
many variations on the Web, there is no guarantee such
techniques work for all Web pages, though we do find that
newly proposed approaches can solve more pages than past
approaches. As for supervised approaches, since data to be
extracted are labeled by users, their applicability is
comparatively better than unsupervised systems. Still, there
is no guarantee for the success of rule induction.
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For a researcher, one wants to know which technique to
apply when tailoring current systems to a new IE task
domain. As discussed above, the techniques used in
unsupervised IE systems are hard to extend to free texts
and even nontemplate pages since many heuristics are
applicable only to template-based pages. For supervised
approaches, we have seen well-known learning techniques
(e.g., ILP and set covering in SRV, WHISK, etc.) as well as
ad hoc learning (bottom-up generalization in Stalker,
Softmealy, etc.). Ad hoc learning techniques are faster in
learning by incorporating a token hierarchy for general-
ization. We appreciate supervised approaches since we can
add new features to existing systems without modifying the
learning algorithms. Although only ILP and set covering
algorithms are used now, it would be interesting to see
other learning algorithms (e.g., support vector machine,
etc.) to be applied.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we survey the major IE tools in the literature
and compare them in three dimensions: the task domain,
the automation degree, and the techniques used. A set of
criteria are proposed for the comparison and evaluation in
each dimension. The criteria of the first dimension explain
why an IE system fails to handle some Web sites of
particular structures. The criteria of the second dimension
measure the degree of automation for IE systems. The
criteria of the third dimension measure the performance of
IE systems. We present our taxonomy of WI systems from
the users’ viewpoint and compare important features of WI
systems that affect their effectiveness.

There are several points to make from the survey. First,
we see the trend of developing highly automatic IE systems,
which saves not only the effort for programming, but also
the effort for labeling. Thus, although the creation of Web
services provides another way for data exchange and
information integration, it may not be the best choice since
the involvement of programmer is unavoidable. On the
other hand, not all IE tasks can be wrapped by fully
automatic IE systems. Unsupervised approaches can only
support template pages. The extension of such systems to
nontemplate page extraction tasks is very limited. In
contrast, supervised approaches, although require annota-
tions from users, extend well to nontemplate page extrac-
tion if proper features are selected for extraction rules.

The technique of information extraction can be applied to
non-HTML documents such as medical records and
curriculum vitae to facilitate the maintenance of large
semistructured documents. In the future, information
extraction from cross-Web site pages will become more
important as we move toward semantic Web. In this survey,
we only focus on data extraction from Web documents.
Page fetching support and extracted data integration (or
schema mapping) from various data sources are two
research topics that are not thoroughly studied in this
paper. A new research topic on integration of search forms
has also drawn many attentions [46], [47].
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